59 KiB
Forge
A native implementation of TLS (and various other cryptographic tools) in JavaScript.
Introduction
The Forge software is a fully native implementation of the TLS protocol in JavaScript, a set of cryptography utilities, and a set of tools for developing Web Apps that utilize many network resources.
Performance
Forge is fast. Benchmarks against other popular JavaScript cryptography libraries can be found here:
- http://dominictarr.github.io/crypto-bench/
- http://cryptojs.altervista.org/test/simulate-threading-speed_test.html
Documentation
API
Transports
Ciphers
PKI
Message Digests
Utilities
Other
Installation
Note: Please see the Security Considerations section before using packaging systems and pre-built files.
Forge uses a CommonJS module structure with a build process for browser bundles. The older 0.6.x branch with standalone files is available but will not be regularly updated.
Node.js
If you want to use forge with Node.js, it is available through
npm
:
https://npmjs.org/package/node-forge
Installation:
npm install node-forge
You can then use forge as a regular module:
var forge = require('node-forge');
The npm package includes pre-built forge.min.js
,
forge.all.min.js
, and prime.worker.min.js
using the UMD format.
Bundle / Bower
Each release is published in a separate repository as pre-built and minimized basic forge bundles using the UMD format.
https://github.com/digitalbazaar/forge-dist
This bundle can be used in many environments. In particular it can be installed with Bower:
bower install forge
jsDelivr CDN
To use it via jsDelivr include this in your html:
<script src="https://cdn.jsdelivr.net/npm/node-forge@0.7.0/dist/forge.min.js"></script>
unpkg CDN
To use it via unpkg include this in your html:
<script src="https://unpkg.com/node-forge@0.7.0/dist/forge.min.js"></script>
Development Requirements
The core JavaScript has the following requirements to build and test:
- Building a browser bundle:
- Node.js
- npm
- Testing
- Node.js
- npm
- Chrome, Firefox, Safari (optional)
Some special networking features can optionally use a Flash component. See the Flash README for details.
Building for a web browser
To create single file bundles for use with browsers run the following:
npm install
npm run build
This will create single non-minimized and minimized files that can be included in the browser:
dist/forge.js
dist/forge.min.js
A bundle that adds some utilities and networking support is also available:
dist/forge.all.js
dist/forge.all.min.js
Include the file via:
<script src="YOUR_SCRIPT_PATH/forge.js"></script>
or
<script src="YOUR_SCRIPT_PATH/forge.min.js"></script>
The above bundles will synchronously create a global ‘forge’ object.
Note: These bundles will not include any WebWorker
scripts (eg: dist/prime.worker.js
), so these will need to
be accessible from the browser if any WebWorkers are used.
Building a custom browser bundle
The build process uses webpack and the config file can be modified to generate a file or files that only contain the parts of forge you need.
Browserify override support is
also present in package.json
.
Testing
Prepare to run tests
npm install
Running automated tests with Node.js
Forge natively runs in a Node.js environment:
npm test
Running automated tests with Headless Chrome
Automated testing is done via Karma. By default it will run the tests with Headless Chrome.
npm run test-karma
Is ‘mocha’ reporter output too verbose? Other reporters are available. Try ‘dots’, ‘progress’, or ‘tap’.
npm run test-karma -- --reporters progress
By default webpack is used. Browserify can also be used.
BUNDLER=browserify npm run test-karma
Running automated tests with one or more browsers
You can also specify one or more browsers to use.
npm run test-karma -- --browsers Chrome,Firefox,Safari,ChromeHeadless
The reporter option and BUNDLER
environment variable can
also be used.
Running manual tests in a browser
Testing in a browser uses webpack to combine forge and all
tests and then loading the result in a browser. A simple web server is
provided that will output the HTTP or HTTPS URLs to load. It also will
start a simple Flash Policy Server. Unit tests and older legacy tests
are provided. Custom ports can be used by running
node tests/server.js
manually.
To run the unit tests in a browser a special forge build is required:
npm run test-build
To run legacy browser based tests the main forge build is required:
npm run build
The tests are run with a custom server that prints out the URLs to use:
npm run test-server
Running other tests
There are some other random tests and benchmarks available in the tests directory.
Coverage testing
To perform coverage testing of the unit tests, run the following. The
results will be put in the coverage/
directory. Note that
coverage testing can slow down some tests considerably.
npm install
npm run coverage
Contributing
Any contributions (eg: PRs) that are accepted will be brought under the same license used by the rest of the Forge project. This license allows Forge to be used under the terms of either the BSD License or the GNU General Public License (GPL) Version 2.
See: LICENSE
If a contribution contains 3rd party source code with its own license, it may retain it, so long as that license is compatible with the Forge license.
API
Options
If at any time you wish to disable the use of native code, where
available, for particular forge features like its secure random number
generator, you may set the forge.options.usePureJavaScript
flag to true
. It is not recommended that you set this flag
as native code is typically more performant and may have stronger
security properties. It may be useful to set this flag to test certain
features that you plan to run in environments that are different from
your testing environment.
To disable native code when including forge in the browser:
To disable native code when using Node.js:
var forge = require('node-forge');
.options.usePureJavaScript = true; forge
Transports
TLS
Provides a native javascript client and server-side TLS implementation.
Examples
// create TLS client
var client = forge.tls.createConnection({
server: false,
caStore: /* Array of PEM-formatted certs or a CA store object */,
sessionCache: {},
// supported cipher suites in order of preference
cipherSuites: [
.tls.CipherSuites.TLS_RSA_WITH_AES_128_CBC_SHA,
forge.tls.CipherSuites.TLS_RSA_WITH_AES_256_CBC_SHA],
forgevirtualHost: 'example.com',
verify: function(connection, verified, depth, certs) {
if(depth === 0) {
var cn = certs[0].subject.getField('CN').value;
if(cn !== 'example.com') {
= {
verified alert: forge.tls.Alert.Description.bad_certificate,
message: 'Certificate common name does not match hostname.'
;
}
}
}return verified;
,
}connected: function(connection) {
console.log('connected');
// send message to server
.prepare(forge.util.encodeUtf8('Hi server!'));
connection/* NOTE: experimental, start heartbeat retransmission timer
myHeartbeatTimer = setInterval(function() {
connection.prepareHeartbeatRequest(forge.util.createBuffer('1234'));
}, 5*60*1000);*/
,
}/* provide a client-side cert if you want
getCertificate: function(connection, hint) {
return myClientCertificate;
},
/* the private key for the client-side cert if provided */
getPrivateKey: function(connection, cert) {
return myClientPrivateKey;
,
}tlsDataReady: function(connection) {
// TLS data (encrypted) is ready to be sent to the server
sendToServerSomehow(connection.tlsData.getBytes());
// if you were communicating with the server below, you'd do:
// server.process(connection.tlsData.getBytes());
,
}dataReady: function(connection) {
// clear data from the server is ready
console.log('the server sent: ' +
.util.decodeUtf8(connection.data.getBytes()));
forge// close connection
.close();
connection,
}/* NOTE: experimental
heartbeatReceived: function(connection, payload) {
// restart retransmission timer, look at payload
clearInterval(myHeartbeatTimer);
myHeartbeatTimer = setInterval(function() {
connection.prepareHeartbeatRequest(forge.util.createBuffer('1234'));
}, 5*60*1000);
payload.getBytes();
},*/
closed: function(connection) {
console.log('disconnected');
,
}error: function(connection, error) {
console.log('uh oh', error);
};
})
// start the handshake process
.handshake();
client
// when encrypted TLS data is received from the server, process it
.process(encryptedBytesFromServer);
client
// create TLS server
var server = forge.tls.createConnection({
server: true,
caStore: /* Array of PEM-formatted certs or a CA store object */,
sessionCache: {},
// supported cipher suites in order of preference
cipherSuites: [
.tls.CipherSuites.TLS_RSA_WITH_AES_128_CBC_SHA,
forge.tls.CipherSuites.TLS_RSA_WITH_AES_256_CBC_SHA],
forge// require a client-side certificate if you want
verifyClient: true,
verify: function(connection, verified, depth, certs) {
if(depth === 0) {
var cn = certs[0].subject.getField('CN').value;
if(cn !== 'the-client') {
= {
verified alert: forge.tls.Alert.Description.bad_certificate,
message: 'Certificate common name does not match expected client.'
;
}
}
}return verified;
,
}connected: function(connection) {
console.log('connected');
// send message to client
.prepare(forge.util.encodeUtf8('Hi client!'));
connection/* NOTE: experimental, start heartbeat retransmission timer
myHeartbeatTimer = setInterval(function() {
connection.prepareHeartbeatRequest(forge.util.createBuffer('1234'));
}, 5*60*1000);*/
,
}getCertificate: function(connection, hint) {
return myServerCertificate;
,
}getPrivateKey: function(connection, cert) {
return myServerPrivateKey;
,
}tlsDataReady: function(connection) {
// TLS data (encrypted) is ready to be sent to the client
sendToClientSomehow(connection.tlsData.getBytes());
// if you were communicating with the client above you'd do:
// client.process(connection.tlsData.getBytes());
,
}dataReady: function(connection) {
// clear data from the client is ready
console.log('the client sent: ' +
.util.decodeUtf8(connection.data.getBytes()));
forge// close connection
.close();
connection,
}/* NOTE: experimental
heartbeatReceived: function(connection, payload) {
// restart retransmission timer, look at payload
clearInterval(myHeartbeatTimer);
myHeartbeatTimer = setInterval(function() {
connection.prepareHeartbeatRequest(forge.util.createBuffer('1234'));
}, 5*60*1000);
payload.getBytes();
},*/
closed: function(connection) {
console.log('disconnected');
,
}error: function(connection, error) {
console.log('uh oh', error);
};
})
// when encrypted TLS data is received from the client, process it
.process(encryptedBytesFromClient); server
Connect to a TLS server using node’s net.Socket:
var socket = new net.Socket();
var client = forge.tls.createConnection({
server: false,
verify: function(connection, verified, depth, certs) {
// skip verification for testing
console.log('[tls] server certificate verified');
return true;
,
}connected: function(connection) {
console.log('[tls] connected');
// prepare some data to send (note that the string is interpreted as
// 'binary' encoded, which works for HTTP which only uses ASCII, use
// forge.util.encodeUtf8(str) otherwise
.prepare('GET / HTTP/1.0\r\n\r\n');
client,
}tlsDataReady: function(connection) {
// encrypted data is ready to be sent to the server
var data = connection.tlsData.getBytes();
.write(data, 'binary'); // encoding should be 'binary'
socket,
}dataReady: function(connection) {
// clear data from the server is ready
var data = connection.data.getBytes();
console.log('[tls] data received from the server: ' + data);
,
}closed: function() {
console.log('[tls] disconnected');
,
}error: function(connection, error) {
console.log('[tls] error', error);
};
})
.on('connect', function() {
socketconsole.log('[socket] connected');
.handshake();
client;
}).on('data', function(data) {
socket.process(data.toString('binary')); // encoding should be 'binary'
client;
}).on('end', function() {
socketconsole.log('[socket] disconnected');
;
})
// connect to google.com
.connect(443, 'google.com');
socket
// or connect to gmail's imap server (but don't send the HTTP header above)
//socket.connect(993, 'imap.gmail.com');
HTTP
Provides a native JavaScript mini-implementation of an http client that uses pooled sockets.
Examples
// create an HTTP GET request
var request = forge.http.createRequest({method: 'GET', path: url.path});
// send the request somewhere
sendSomehow(request.toString());
// receive response
var buffer = forge.util.createBuffer();
var response = forge.http.createResponse();
var someAsyncDataHandler = function(bytes) {
if(!response.bodyReceived) {
.putBytes(bytes);
bufferif(!response.headerReceived) {
if(response.readHeader(buffer)) {
console.log('HTTP response header: ' + response.toString());
}
}if(response.headerReceived && !response.bodyReceived) {
if(response.readBody(buffer)) {
console.log('HTTP response body: ' + response.body);
}
}
}; }
SSH
Provides some SSH utility functions.
Examples
// encodes (and optionally encrypts) a private RSA key as a Putty PPK file .ssh.privateKeyToPutty(privateKey, passphrase, comment); forge // encodes a public RSA key as an OpenSSH file .ssh.publicKeyToOpenSSH(key, comment); forge // encodes a private RSA key as an OpenSSH file .ssh.privateKeyToOpenSSH(privateKey, passphrase); forge // gets the SSH public key fingerprint in a byte buffer .ssh.getPublicKeyFingerprint(key); forge // gets a hex-encoded, colon-delimited SSH public key fingerprint .ssh.getPublicKeyFingerprint(key, {encoding: 'hex', delimiter: ':'}); forge
XHR
Provides an XmlHttpRequest implementation using forge.http as a backend.
Examples
Sockets
Provides an interface to create and use raw sockets provided via Flash.
Examples
Ciphers
CIPHER
Provides a basic API for block encryption and decryption. There is built-in support for the ciphers: AES, 3DES, and DES, and for the modes of operation: ECB, CBC, CFB, OFB, CTR, and GCM.
These algorithms are currently supported:
- AES-ECB
- AES-CBC
- AES-CFB
- AES-OFB
- AES-CTR
- AES-GCM
- 3DES-ECB
- 3DES-CBC
- DES-ECB
- DES-CBC
When using an AES algorithm, the key size will determine whether AES-128, AES-192, or AES-256 is used (all are supported). When a DES algorithm is used, the key size will determine whether 3DES or regular DES is used. Use a 3DES algorithm to enforce Triple-DES.
Examples
// generate a random key and IV
// Note: a key size of 16 bytes will use AES-128, 24 => AES-192, 32 => AES-256
var key = forge.random.getBytesSync(16);
var iv = forge.random.getBytesSync(16);
/* alternatively, generate a password-based 16-byte key
var salt = forge.random.getBytesSync(128);
var key = forge.pkcs5.pbkdf2('password', salt, numIterations, 16);
*/
// encrypt some bytes using CBC mode
// (other modes include: ECB, CFB, OFB, CTR, and GCM)
// Note: CBC and ECB modes use PKCS#7 padding as default
var cipher = forge.cipher.createCipher('AES-CBC', key);
.start({iv: iv});
cipher.update(forge.util.createBuffer(someBytes));
cipher.finish();
ciphervar encrypted = cipher.output;
// outputs encrypted hex
console.log(encrypted.toHex());
// decrypt some bytes using CBC mode
// (other modes include: CFB, OFB, CTR, and GCM)
var decipher = forge.cipher.createDecipher('AES-CBC', key);
.start({iv: iv});
decipher.update(encrypted);
deciphervar result = decipher.finish(); // check 'result' for true/false
// outputs decrypted hex
console.log(decipher.output.toHex());
// decrypt bytes using CBC mode and streaming
// Performance can suffer for large multi-MB inputs due to buffer
// manipulations. Stream processing in chunks can offer significant
// improvement. CPU intensive update() calls could also be performed with
// setImmediate/setTimeout to avoid blocking the main browser UI thread (not
// shown here). Optimal block size depends on the JavaScript VM and other
// factors. Encryption can use a simple technique for increased performance.
var encryptedBytes = encrypted.bytes();
var decipher = forge.cipher.createDecipher('AES-CBC', key);
.start({iv: iv});
deciphervar length = encryptedBytes.length;
var chunkSize = 1024 * 64;
var index = 0;
var decrypted = '';
do {
+= decipher.output.getBytes();
decrypted var buf = forge.util.createBuffer(encryptedBytes.substr(index, chunkSize));
.update(buf);
decipher+= chunkSize;
index while(index < length);
} var result = decipher.finish();
assert(result);
+= decipher.output.getBytes();
decrypted console.log(forge.util.bytesToHex(decrypted));
// encrypt some bytes using GCM mode
var cipher = forge.cipher.createCipher('AES-GCM', key);
.start({
cipheriv: iv, // should be a 12-byte binary-encoded string or byte buffer
additionalData: 'binary-encoded string', // optional
tagLength: 128 // optional, defaults to 128 bits
;
}).update(forge.util.createBuffer(someBytes));
cipher.finish();
ciphervar encrypted = cipher.output;
var tag = cipher.mode.tag;
// outputs encrypted hex
console.log(encrypted.toHex());
// outputs authentication tag
console.log(tag.toHex());
// decrypt some bytes using GCM mode
var decipher = forge.cipher.createDecipher('AES-GCM', key);
.start({
decipheriv: iv,
additionalData: 'binary-encoded string', // optional
tagLength: 128, // optional, defaults to 128 bits
tag: tag // authentication tag from encryption
;
}).update(encrypted);
deciphervar pass = decipher.finish();
// pass is false if there was a failure (eg: authentication tag didn't match)
if(pass) {
// outputs decrypted hex
console.log(decipher.output.toHex());
}
Using forge in Node.js to match openssl’s “enc” command line tool (Note: OpenSSL “enc” uses a non-standard file format with a custom key derivation function and a fixed iteration count of 1, which some consider less secure than alternatives such as OpenPGP/GnuPG):
var forge = require('node-forge');
var fs = require('fs');
// openssl enc -des3 -in input.txt -out input.enc
function encrypt(password) {
var input = fs.readFileSync('input.txt', {encoding: 'binary'});
// 3DES key and IV sizes
var keySize = 24;
var ivSize = 8;
// get derived bytes
// Notes:
// 1. If using an alternative hash (eg: "-md sha1") pass
// "forge.md.sha1.create()" as the final parameter.
// 2. If using "-nosalt", set salt to null.
var salt = forge.random.getBytesSync(8);
// var md = forge.md.sha1.create(); // "-md sha1"
var derivedBytes = forge.pbe.opensslDeriveBytes(
, salt, keySize + ivSize/*, md*/);
passwordvar buffer = forge.util.createBuffer(derivedBytes);
var key = buffer.getBytes(keySize);
var iv = buffer.getBytes(ivSize);
var cipher = forge.cipher.createCipher('3DES-CBC', key);
.start({iv: iv});
cipher.update(forge.util.createBuffer(input, 'binary'));
cipher.finish();
cipher
var output = forge.util.createBuffer();
// if using a salt, prepend this to the output:
if(salt !== null) {
.putBytes('Salted__'); // (add to match openssl tool output)
output.putBytes(salt);
output
}.putBuffer(cipher.output);
output
.writeFileSync('input.enc', output.getBytes(), {encoding: 'binary'});
fs
}
// openssl enc -d -des3 -in input.enc -out input.dec.txt
function decrypt(password) {
var input = fs.readFileSync('input.enc', {encoding: 'binary'});
// parse salt from input
= forge.util.createBuffer(input, 'binary');
input // skip "Salted__" (if known to be present)
.getBytes('Salted__'.length);
input// read 8-byte salt
var salt = input.getBytes(8);
// Note: if using "-nosalt", skip above parsing and use
// var salt = null;
// 3DES key and IV sizes
var keySize = 24;
var ivSize = 8;
var derivedBytes = forge.pbe.opensslDeriveBytes(
, salt, keySize + ivSize);
passwordvar buffer = forge.util.createBuffer(derivedBytes);
var key = buffer.getBytes(keySize);
var iv = buffer.getBytes(ivSize);
var decipher = forge.cipher.createDecipher('3DES-CBC', key);
.start({iv: iv});
decipher.update(input);
deciphervar result = decipher.finish(); // check 'result' for true/false
.writeFileSync(
fs'input.dec.txt', decipher.output.getBytes(), {encoding: 'binary'});
}
AES
Provides AES encryption and decryption in CBC, CFB, OFB, CTR, and GCM modes. See CIPHER for examples.
DES
Provides 3DES and DES encryption and decryption in ECB and CBC modes. See CIPHER for examples.
RC2
Examples
// generate a random key and IV var key = forge.random.getBytesSync(16); var iv = forge.random.getBytesSync(8); // encrypt some bytes var cipher = forge.rc2.createEncryptionCipher(key); .start(iv); cipher.update(forge.util.createBuffer(someBytes)); cipher.finish(); ciphervar encrypted = cipher.output; // outputs encrypted hex console.log(encrypted.toHex()); // decrypt some bytes var cipher = forge.rc2.createDecryptionCipher(key); .start(iv); cipher.update(encrypted); cipher.finish(); cipher// outputs decrypted hex console.log(cipher.output.toHex());
PKI
Provides X.509 certificate support, ED25519 key generation and signing/verifying, and RSA public and private key encoding, decoding, encryption/decryption, and signing/verifying.
ED25519
Special thanks to TweetNaCl.js for providing the bulk of the implementation.
Examples
var ed25519 = forge.pki.ed25519;
// generate a random ED25519 keypair
var keypair = ed25519.generateKeyPair();
// `keypair.publicKey` is a node.js Buffer or Uint8Array
// `keypair.privateKey` is a node.js Buffer or Uint8Array
// generate a random ED25519 keypair based on a random 32-byte seed
var seed = forge.random.getBytesSync(32);
var keypair = ed25519.generateKeyPair({seed: seed});
// generate a random ED25519 keypair based on a "password" 32-byte seed
var password = 'Mai9ohgh6ahxee0jutheew0pungoozil';
var seed = new forge.util.ByteBuffer(password, 'utf8');
var keypair = ed25519.generateKeyPair({seed: seed});
// sign a UTF-8 message
var signature = ED25519.sign({
message: 'test',
// also accepts `binary` if you want to pass a binary string
encoding: 'utf8',
// node.js Buffer, Uint8Array, forge ByteBuffer, binary string
privateKey: privateKey
;
})// `signature` is a node.js Buffer or Uint8Array
// sign a message passed as a buffer
var signature = ED25519.sign({
// also accepts a forge ByteBuffer or Uint8Array
message: Buffer.from('test', 'utf8'),
privateKey: privateKey
;
})
// sign a message digest (shorter "message" == better performance)
var md = forge.md.sha256.create();
.update('test', 'utf8');
mdvar signature = ED25519.sign({
md: md,
privateKey: privateKey
;
})
// verify a signature on a UTF-8 message
var verified = ED25519.verify({
message: 'test',
encoding: 'utf8',
// node.js Buffer, Uint8Array, forge ByteBuffer, or binary string
signature: signature,
// node.js Buffer, Uint8Array, forge ByteBuffer, or binary string
publicKey: publicKey
;
})// `verified` is true/false
// sign a message passed as a buffer
var verified = ED25519.verify({
// also accepts a forge ByteBuffer or Uint8Array
message: Buffer.from('test', 'utf8'),
// node.js Buffer, Uint8Array, forge ByteBuffer, or binary string
signature: signature,
// node.js Buffer, Uint8Array, forge ByteBuffer, or binary string
publicKey: publicKey
;
})
// verify a signature on a message digest
var md = forge.md.sha256.create();
.update('test', 'utf8');
mdvar verified = ED25519.verify({
md: md,
// node.js Buffer, Uint8Array, forge ByteBuffer, or binary string
signature: signature,
// node.js Buffer, Uint8Array, forge ByteBuffer, or binary string
publicKey: publicKey
; })
RSA
Examples
var rsa = forge.pki.rsa; // generate an RSA key pair synchronously // *NOT RECOMMENDED*: Can be significantly slower than async and may block // JavaScript execution. Will use native Node.js 10.12.0+ API if possible. var keypair = rsa.generateKeyPair({bits: 2048, e: 0x10001}); // generate an RSA key pair asynchronously (uses web workers if available) // use workers: -1 to run a fast core estimator to optimize # of workers // *RECOMMENDED*: Can be significantly faster than sync. Will use native // Node.js 10.12.0+ or WebCrypto API if possible. .generateKeyPair({bits: 2048, workers: 2}, function(err, keypair) { rsa// keypair.privateKey, keypair.publicKey ; }) // generate an RSA key pair in steps that attempt to run for a specified period // of time on the main JS thread var state = rsa.createKeyPairGenerationState(2048, 0x10001); var step = function() { // run for 100 ms if(!rsa.stepKeyPairGenerationState(state, 100)) { setTimeout(step, 1); }else { // done, turn off progress indicator, use state.keys }; }// turn on progress indicator, schedule generation to run setTimeout(step); // sign data with a private key and output DigestInfo DER-encoded bytes // (defaults to RSASSA PKCS#1 v1.5) var md = forge.md.sha1.create(); .update('sign this', 'utf8'); mdvar signature = privateKey.sign(md); // verify data with a public key // (defaults to RSASSA PKCS#1 v1.5) var verified = publicKey.verify(md.digest().bytes(), signature); // sign data using RSASSA-PSS where PSS uses a SHA-1 hash, a SHA-1 based // masking function MGF1, and a 20 byte salt var md = forge.md.sha1.create(); .update('sign this', 'utf8'); mdvar pss = forge.pss.create({ md: forge.md.sha1.create(), mgf: forge.mgf.mgf1.create(forge.md.sha1.create()), saltLength: 20 // optionally pass 'prng' with a custom PRNG implementation // optionalls pass 'salt' with a forge.util.ByteBuffer w/custom salt ; })var signature = privateKey.sign(md, pss); // verify RSASSA-PSS signature var pss = forge.pss.create({ md: forge.md.sha1.create(), mgf: forge.mgf.mgf1.create(forge.md.sha1.create()), saltLength: 20 // optionally pass 'prng' with a custom PRNG implementation ; })var md = forge.md.sha1.create(); .update('sign this', 'utf8'); md.verify(md.digest().getBytes(), signature, pss); publicKey // encrypt data with a public key (defaults to RSAES PKCS#1 v1.5) var encrypted = publicKey.encrypt(bytes); // decrypt data with a private key (defaults to RSAES PKCS#1 v1.5) var decrypted = privateKey.decrypt(encrypted); // encrypt data with a public key using RSAES PKCS#1 v1.5 var encrypted = publicKey.encrypt(bytes, 'RSAES-PKCS1-V1_5'); // decrypt data with a private key using RSAES PKCS#1 v1.5 var decrypted = privateKey.decrypt(encrypted, 'RSAES-PKCS1-V1_5'); // encrypt data with a public key using RSAES-OAEP var encrypted = publicKey.encrypt(bytes, 'RSA-OAEP'); // decrypt data with a private key using RSAES-OAEP var decrypted = privateKey.decrypt(encrypted, 'RSA-OAEP'); // encrypt data with a public key using RSAES-OAEP/SHA-256 var encrypted = publicKey.encrypt(bytes, 'RSA-OAEP', { md: forge.md.sha256.create() ; }) // decrypt data with a private key using RSAES-OAEP/SHA-256 var decrypted = privateKey.decrypt(encrypted, 'RSA-OAEP', { md: forge.md.sha256.create() ; }) // encrypt data with a public key using RSAES-OAEP/SHA-256/MGF1-SHA-1 // compatible with Java's RSA/ECB/OAEPWithSHA-256AndMGF1Padding var encrypted = publicKey.encrypt(bytes, 'RSA-OAEP', { md: forge.md.sha256.create(), mgf1: { md: forge.md.sha1.create() }; }) // decrypt data with a private key using RSAES-OAEP/SHA-256/MGF1-SHA-1 // compatible with Java's RSA/ECB/OAEPWithSHA-256AndMGF1Padding var decrypted = privateKey.decrypt(encrypted, 'RSA-OAEP', { md: forge.md.sha256.create(), mgf1: { md: forge.md.sha1.create() }; })
RSA-KEM
Examples
// generate an RSA key pair asynchronously (uses web workers if available) // use workers: -1 to run a fast core estimator to optimize # of workers .rsa.generateKeyPair({bits: 2048, workers: -1}, function(err, keypair) { forge// keypair.privateKey, keypair.publicKey ; }) // generate and encapsulate a 16-byte secret key var kdf1 = new forge.kem.kdf1(forge.md.sha1.create()); var kem = forge.kem.rsa.create(kdf1); var result = kem.encrypt(keypair.publicKey, 16); // result has 'encapsulation' and 'key' // encrypt some bytes var iv = forge.random.getBytesSync(12); var someBytes = 'hello world!'; var cipher = forge.cipher.createCipher('AES-GCM', result.key); .start({iv: iv}); cipher.update(forge.util.createBuffer(someBytes)); cipher.finish(); ciphervar encrypted = cipher.output.getBytes(); var tag = cipher.mode.tag.getBytes(); // send 'encrypted', 'iv', 'tag', and result.encapsulation to recipient // decrypt encapsulated 16-byte secret key var kdf1 = new forge.kem.kdf1(forge.md.sha1.create()); var kem = forge.kem.rsa.create(kdf1); var key = kem.decrypt(keypair.privateKey, result.encapsulation, 16); // decrypt some bytes var decipher = forge.cipher.createDecipher('AES-GCM', key); .start({iv: iv, tag: tag}); decipher.update(forge.util.createBuffer(encrypted)); deciphervar pass = decipher.finish(); // pass is false if there was a failure (eg: authentication tag didn't match) if(pass) { // outputs 'hello world!' console.log(decipher.output.getBytes()); }
X.509
Examples
var pki = forge.pki; // convert a PEM-formatted public key to a Forge public key var publicKey = pki.publicKeyFromPem(pem); // convert a Forge public key to PEM-format var pem = pki.publicKeyToPem(publicKey); // convert an ASN.1 SubjectPublicKeyInfo to a Forge public key var publicKey = pki.publicKeyFromAsn1(subjectPublicKeyInfo); // convert a Forge public key to an ASN.1 SubjectPublicKeyInfo var subjectPublicKeyInfo = pki.publicKeyToAsn1(publicKey); // gets a SHA-1 RSAPublicKey fingerprint a byte buffer .getPublicKeyFingerprint(key); pki // gets a SHA-1 SubjectPublicKeyInfo fingerprint a byte buffer .getPublicKeyFingerprint(key, {type: 'SubjectPublicKeyInfo'}); pki // gets a hex-encoded, colon-delimited SHA-1 RSAPublicKey public key fingerprint .getPublicKeyFingerprint(key, {encoding: 'hex', delimiter: ':'}); pki // gets a hex-encoded, colon-delimited SHA-1 SubjectPublicKeyInfo public key fingerprint .getPublicKeyFingerprint(key, { pkitype: 'SubjectPublicKeyInfo', encoding: 'hex', delimiter: ':' ; }) // gets a hex-encoded, colon-delimited MD5 RSAPublicKey public key fingerprint .getPublicKeyFingerprint(key, { pkimd: forge.md.md5.create(), encoding: 'hex', delimiter: ':' ; }) // creates a CA store var caStore = pki.createCaStore([/* PEM-encoded cert */, ...]); // add a certificate to the CA store .addCertificate(certObjectOrPemString); caStore // gets the issuer (its certificate) for the given certificate var issuerCert = caStore.getIssuer(subjectCert); // verifies a certificate chain against a CA store .verifyCertificateChain(caStore, chain, customVerifyCallback); pki // signs a certificate using the given private key .sign(privateKey); cert // signs a certificate using SHA-256 instead of SHA-1 .sign(privateKey, forge.md.sha256.create()); cert // verifies an issued certificate using the certificates public key var verified = issuer.verify(issued); // generate a keypair and create an X.509v3 certificate var keys = pki.rsa.generateKeyPair(2048); var cert = pki.createCertificate(); .publicKey = keys.publicKey; cert// alternatively set public key from a csr //cert.publicKey = csr.publicKey; // NOTE: serialNumber is the hex encoded value of an ASN.1 INTEGER. // Conforming CAs should ensure serialNumber is: // - no more than 20 octets // - non-negative (prefix a '00' if your value starts with a '1' bit) .serialNumber = '01'; cert.validity.notBefore = new Date(); cert.validity.notAfter = new Date(); cert.validity.notAfter.setFullYear(cert.validity.notBefore.getFullYear() + 1); certvar attrs = [{ name: 'commonName', value: 'example.org' , { }name: 'countryName', value: 'US' , { }shortName: 'ST', value: 'Virginia' , { }name: 'localityName', value: 'Blacksburg' , { }name: 'organizationName', value: 'Test' , { }shortName: 'OU', value: 'Test' ; }].setSubject(attrs); cert// alternatively set subject from a csr //cert.setSubject(csr.subject.attributes); .setIssuer(attrs); cert.setExtensions([{ certname: 'basicConstraints', cA: true , { }name: 'keyUsage', keyCertSign: true, digitalSignature: true, nonRepudiation: true, keyEncipherment: true, dataEncipherment: true , { }name: 'extKeyUsage', serverAuth: true, clientAuth: true, codeSigning: true, emailProtection: true, timeStamping: true , { }name: 'nsCertType', client: true, server: true, email: true, objsign: true, sslCA: true, emailCA: true, objCA: true , { }name: 'subjectAltName', altNames: [{ type: 6, // URI value: 'http://example.org/webid#me' , { }type: 7, // IP ip: '127.0.0.1' }], { }name: 'subjectKeyIdentifier' ; }])/* alternatively set extensions from a csr var extensions = csr.getAttribute({name: 'extensionRequest'}).extensions; // optionally add more extensions extensions.push.apply(extensions, [{ name: 'basicConstraints', cA: true }, { name: 'keyUsage', keyCertSign: true, digitalSignature: true, nonRepudiation: true, keyEncipherment: true, dataEncipherment: true }]); cert.setExtensions(extensions); */ // self-sign certificate .sign(keys.privateKey); cert // convert a Forge certificate to PEM var pem = pki.certificateToPem(cert); // convert a Forge certificate from PEM var cert = pki.certificateFromPem(pem); // convert an ASN.1 X.509x3 object to a Forge certificate var cert = pki.certificateFromAsn1(obj); // convert a Forge certificate to an ASN.1 X.509v3 object var asn1Cert = pki.certificateToAsn1(cert);
PKCS#5
Provides the password-based key-derivation function from PKCS#5.
Examples
// generate a password-based 16-byte key
// note an optional message digest can be passed as the final parameter
var salt = forge.random.getBytesSync(128);
var derivedKey = forge.pkcs5.pbkdf2('password', salt, numIterations, 16);
// generate key asynchronously
// note an optional message digest can be passed before the callback
.pkcs5.pbkdf2('password', salt, numIterations, 16, function(err, derivedKey) {
forge// do something w/derivedKey
; })
PKCS#7
Provides cryptographically protected messages from PKCS#7.
Examples
// convert a message from PEM
var p7 = forge.pkcs7.messageFromPem(pem);
// look at p7.recipients
// find a recipient by the issuer of a certificate
var recipient = p7.findRecipient(cert);
// decrypt
.decrypt(p7.recipients[0], privateKey);
p7
// create a p7 enveloped message
var p7 = forge.pkcs7.createEnvelopedData();
// add a recipient
var cert = forge.pki.certificateFromPem(certPem);
.addRecipient(cert);
p7
// set content
.content = forge.util.createBuffer('Hello');
p7
// encrypt
.encrypt();
p7
// convert message to PEM
var pem = forge.pkcs7.messageToPem(p7);
// create a degenerate PKCS#7 certificate container
// (CRLs not currently supported, only certificates)
var p7 = forge.pkcs7.createSignedData();
.addCertificate(certOrCertPem1);
p7.addCertificate(certOrCertPem2);
p7var pem = forge.pkcs7.messageToPem(p7);
// create PKCS#7 signed data with authenticatedAttributes
// attributes include: PKCS#9 content-type, message-digest, and signing-time
var p7 = forge.pkcs7.createSignedData();
.content = forge.util.createBuffer('Some content to be signed.', 'utf8');
p7.addCertificate(certOrCertPem);
p7.addSigner({
p7key: privateKeyAssociatedWithCert,
certificate: certOrCertPem,
digestAlgorithm: forge.pki.oids.sha256,
authenticatedAttributes: [{
type: forge.pki.oids.contentType,
value: forge.pki.oids.data
, {
}type: forge.pki.oids.messageDigest
// value will be auto-populated at signing time
, {
}type: forge.pki.oids.signingTime,
// value can also be auto-populated at signing time
value: new Date()
}];
}).sign();
p7var pem = forge.pkcs7.messageToPem(p7);
// PKCS#7 Sign in detached mode.
// Includes the signature and certificate without the signed data.
.sign({detached: true}); p7
PKCS#8
Examples
var pki = forge.pki; // convert a PEM-formatted private key to a Forge private key var privateKey = pki.privateKeyFromPem(pem); // convert a Forge private key to PEM-format var pem = pki.privateKeyToPem(privateKey); // convert an ASN.1 PrivateKeyInfo or RSAPrivateKey to a Forge private key var privateKey = pki.privateKeyFromAsn1(rsaPrivateKey); // convert a Forge private key to an ASN.1 RSAPrivateKey var rsaPrivateKey = pki.privateKeyToAsn1(privateKey); // wrap an RSAPrivateKey ASN.1 object in a PKCS#8 ASN.1 PrivateKeyInfo var privateKeyInfo = pki.wrapRsaPrivateKey(rsaPrivateKey); // convert a PKCS#8 ASN.1 PrivateKeyInfo to PEM var pem = pki.privateKeyInfoToPem(privateKeyInfo); // encrypts a PrivateKeyInfo using a custom password and // outputs an EncryptedPrivateKeyInfo var encryptedPrivateKeyInfo = pki.encryptPrivateKeyInfo( , 'myCustomPasswordHere', { privateKeyInfoalgorithm: 'aes256', // 'aes128', 'aes192', 'aes256', '3des' ; }) // decrypts an ASN.1 EncryptedPrivateKeyInfo that was encrypted // with a custom password var privateKeyInfo = pki.decryptPrivateKeyInfo( , 'myCustomPasswordHere'); encryptedPrivateKeyInfo // converts an EncryptedPrivateKeyInfo to PEM var pem = pki.encryptedPrivateKeyToPem(encryptedPrivateKeyInfo); // converts a PEM-encoded EncryptedPrivateKeyInfo to ASN.1 format var encryptedPrivateKeyInfo = pki.encryptedPrivateKeyFromPem(pem); // wraps and encrypts a Forge private key and outputs it in PEM format var pem = pki.encryptRsaPrivateKey(privateKey, 'password'); // encrypts a Forge private key and outputs it in PEM format using OpenSSL's // proprietary legacy format + encapsulated PEM headers (DEK-Info) var pem = pki.encryptRsaPrivateKey(privateKey, 'password', {legacy: true}); // decrypts a PEM-formatted, encrypted private key var privateKey = pki.decryptRsaPrivateKey(pem, 'password'); // sets an RSA public key from a private key var publicKey = pki.setRsaPublicKey(privateKey.n, privateKey.e);
PKCS#10
Provides certification requests or certificate signing requests (CSR) from PKCS#10.
Examples
// generate a key pair
var keys = forge.pki.rsa.generateKeyPair(1024);
// create a certification request (CSR)
var csr = forge.pki.createCertificationRequest();
.publicKey = keys.publicKey;
csr.setSubject([{
csrname: 'commonName',
value: 'example.org'
, {
}name: 'countryName',
value: 'US'
, {
}shortName: 'ST',
value: 'Virginia'
, {
}name: 'localityName',
value: 'Blacksburg'
, {
}name: 'organizationName',
value: 'Test'
, {
}shortName: 'OU',
value: 'Test'
;
}])// set (optional) attributes
.setAttributes([{
csrname: 'challengePassword',
value: 'password'
, {
}name: 'unstructuredName',
value: 'My Company, Inc.'
, {
}name: 'extensionRequest',
extensions: [{
name: 'subjectAltName',
altNames: [{
// 2 is DNS type
type: 2,
value: 'test.domain.com'
, {
}type: 2,
value: 'other.domain.com',
, {
}type: 2,
value: 'www.domain.net'
}]
}];
}])
// sign certification request
.sign(keys.privateKey);
csr
// verify certification request
var verified = csr.verify();
// convert certification request to PEM-format
var pem = forge.pki.certificationRequestToPem(csr);
// convert a Forge certification request from PEM-format
var csr = forge.pki.certificationRequestFromPem(pem);
// get an attribute
.getAttribute({name: 'challengePassword'});
csr
// get extensions array
.getAttribute({name: 'extensionRequest'}).extensions; csr
PKCS#12
Provides the cryptographic archive file format from PKCS#12.
Note for Chrome/Firefox/iOS/similar users: If you
have trouble importing a PKCS#12 container, try using the TripleDES
algorithm. It can be passed to forge.pkcs12.toPkcs12Asn1
using the {algorithm: '3des'}
option.
Examples
// decode p12 from base64
var p12Der = forge.util.decode64(p12b64);
// get p12 as ASN.1 object
var p12Asn1 = forge.asn1.fromDer(p12Der);
// decrypt p12 using the password 'password'
var p12 = forge.pkcs12.pkcs12FromAsn1(p12Asn1, 'password');
// decrypt p12 using non-strict parsing mode (resolves some ASN.1 parse errors)
var p12 = forge.pkcs12.pkcs12FromAsn1(p12Asn1, false, 'password');
// decrypt p12 using literally no password (eg: Mac OS X/apple push)
var p12 = forge.pkcs12.pkcs12FromAsn1(p12Asn1);
// decrypt p12 using an "empty" password (eg: OpenSSL with no password input)
var p12 = forge.pkcs12.pkcs12FromAsn1(p12Asn1, '');
// p12.safeContents is an array of safe contents, each of
// which contains an array of safeBags
// get bags by friendlyName
var bags = p12.getBags({friendlyName: 'test'});
// bags are key'd by attribute type (here "friendlyName")
// and the key values are an array of matching objects
var cert = bags.friendlyName[0];
// get bags by localKeyId
var bags = p12.getBags({localKeyId: buffer});
// bags are key'd by attribute type (here "localKeyId")
// and the key values are an array of matching objects
var cert = bags.localKeyId[0];
// get bags by localKeyId (input in hex)
var bags = p12.getBags({localKeyIdHex: '7b59377ff142d0be4565e9ac3d396c01401cd879'});
// bags are key'd by attribute type (here "localKeyId", *not* "localKeyIdHex")
// and the key values are an array of matching objects
var cert = bags.localKeyId[0];
// get bags by type
var bags = p12.getBags({bagType: forge.pki.oids.certBag});
// bags are key'd by bagType and each bagType key's value
// is an array of matches (in this case, certificate objects)
var cert = bags[forge.pki.oids.certBag][0];
// get bags by friendlyName and filter on bag type
var bags = p12.getBags({
friendlyName: 'test',
bagType: forge.pki.oids.certBag
;
})
// get key bags
var bags = p12.getBags({bagType: forge.pki.oids.keyBag});
// get key
var bag = bags[forge.pki.oids.keyBag][0];
var key = bag.key;
// if the key is in a format unrecognized by forge then
// bag.key will be `null`, use bag.asn1 to get the ASN.1
// representation of the key
if(bag.key === null) {
var keyAsn1 = bag.asn1;
// can now convert back to DER/PEM/etc for export
}
// generate a p12 using AES (default)
var p12Asn1 = forge.pkcs12.toPkcs12Asn1(
, certificateChain, 'password');
privateKey
// generate a p12 that can be imported by Chrome/Firefox/iOS
// (requires the use of Triple DES instead of AES)
var p12Asn1 = forge.pkcs12.toPkcs12Asn1(
, certificateChain, 'password',
privateKeyalgorithm: '3des'});
{
// base64-encode p12
var p12Der = forge.asn1.toDer(p12Asn1).getBytes();
var p12b64 = forge.util.encode64(p12Der);
// create download link for p12
var a = document.createElement('a');
.download = 'example.p12';
a.setAttribute('href', 'data:application/x-pkcs12;base64,' + p12b64);
a.appendChild(document.createTextNode('Download')); a
ASN.1
Provides ASN.1 DER encoding and decoding.
Examples
var asn1 = forge.asn1;
// create a SubjectPublicKeyInfo
var subjectPublicKeyInfo =
.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
asn1// AlgorithmIdentifier
.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
asn1// algorithm
.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
asn1.oidToDer(pki.oids['rsaEncryption']).getBytes()),
asn1// parameters (null)
.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
asn1,
])// subjectPublicKey
.create(asn1.Class.UNIVERSAL, asn1.Type.BITSTRING, false, [
asn1// RSAPublicKey
.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
asn1// modulus (n)
.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
asn1_bnToBytes(key.n)),
// publicExponent (e)
.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
asn1_bnToBytes(key.e))
])
]);
])
// serialize an ASN.1 object to DER format
var derBuffer = asn1.toDer(subjectPublicKeyInfo);
// deserialize to an ASN.1 object from a byte buffer filled with DER data
var object = asn1.fromDer(derBuffer);
// convert an OID dot-separated string to a byte buffer
var derOidBuffer = asn1.oidToDer('1.2.840.113549.1.1.5');
// convert a byte buffer with a DER-encoded OID to a dot-separated string
console.log(asn1.derToOid(derOidBuffer));
// output: 1.2.840.113549.1.1.5
// validates that an ASN.1 object matches a particular ASN.1 structure and
// captures data of interest from that structure for easy access
var publicKeyValidator = {
name: 'SubjectPublicKeyInfo',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.SEQUENCE,
constructed: true,
captureAsn1: 'subjectPublicKeyInfo',
value: [{
name: 'SubjectPublicKeyInfo.AlgorithmIdentifier',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.SEQUENCE,
constructed: true,
value: [{
name: 'AlgorithmIdentifier.algorithm',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.OID,
constructed: false,
capture: 'publicKeyOid'
}], {
}// subjectPublicKey
name: 'SubjectPublicKeyInfo.subjectPublicKey',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.BITSTRING,
constructed: false,
value: [{
// RSAPublicKey
name: 'SubjectPublicKeyInfo.subjectPublicKey.RSAPublicKey',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.SEQUENCE,
constructed: true,
optional: true,
captureAsn1: 'rsaPublicKey'
}]
}];
}
var capture = {};
var errors = [];
if(!asn1.validate(
, subjectPublicKeyInfo, validator, capture, errors)) {
publicKeyValidatorthrow 'ASN.1 object is not a SubjectPublicKeyInfo.';
}// capture.subjectPublicKeyInfo contains the full ASN.1 object
// capture.rsaPublicKey contains the full ASN.1 object for the RSA public key
// capture.publicKeyOid only contains the value for the OID
var oid = asn1.derToOid(capture.publicKeyOid);
if(oid !== pki.oids['rsaEncryption']) {
throw 'Unsupported OID.';
}
// pretty print an ASN.1 object to a string for debugging purposes
.prettyPrint(object); asn1
Message Digests
SHA1
Provides SHA-1 message digests.
Examples
var md = forge.md.sha1.create();
.update('The quick brown fox jumps over the lazy dog');
mdconsole.log(md.digest().toHex());
// output: 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12
SHA256
Provides SHA-256 message digests.
Examples
var md = forge.md.sha256.create();
.update('The quick brown fox jumps over the lazy dog');
mdconsole.log(md.digest().toHex());
// output: d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592
SHA384
Provides SHA-384 message digests.
Examples
var md = forge.md.sha384.create();
.update('The quick brown fox jumps over the lazy dog');
mdconsole.log(md.digest().toHex());
// output: ca737f1014a48f4c0b6dd43cb177b0afd9e5169367544c494011e3317dbf9a509cb1e5dc1e85a941bbee3d7f2afbc9b1
SHA512
Provides SHA-512 message digests.
Examples
// SHA-512
var md = forge.md.sha512.create();
.update('The quick brown fox jumps over the lazy dog');
mdconsole.log(md.digest().toHex());
// output: 07e547d9586f6a73f73fbac0435ed76951218fb7d0c8d788a309d785436bbb642e93a252a954f23912547d1e8a3b5ed6e1bfd7097821233fa0538f3db854fee6
// SHA-512/224
var md = forge.md.sha512.sha224.create();
.update('The quick brown fox jumps over the lazy dog');
mdconsole.log(md.digest().toHex());
// output: 944cd2847fb54558d4775db0485a50003111c8e5daa63fe722c6aa37
// SHA-512/256
var md = forge.md.sha512.sha256.create();
.update('The quick brown fox jumps over the lazy dog');
mdconsole.log(md.digest().toHex());
// output: dd9d67b371519c339ed8dbd25af90e976a1eeefd4ad3d889005e532fc5bef04d
MD5
Examples
var md = forge.md.md5.create();
.update('The quick brown fox jumps over the lazy dog');
mdconsole.log(md.digest().toHex());
// output: 9e107d9d372bb6826bd81d3542a419d6
HMAC
Provides HMAC w/any supported message digest algorithm.
Examples
var hmac = forge.hmac.create();
.start('sha1', 'Jefe');
hmac.update('what do ya want for nothing?');
hmacconsole.log(hmac.digest().toHex());
// output: effcdf6ae5eb2fa2d27416d5f184df9c259a7c79
Utilities
Prime
Provides an API for generating large, random, probable primes.
Examples
// generate a random prime on the main JS thread var bits = 1024; .prime.generateProbablePrime(bits, function(err, num) { forgeconsole.log('random prime', num.toString(16)); ; }) // generate a random prime using Web Workers (if available, otherwise // falls back to the main thread) var bits = 1024; var options = { algorithm: { name: 'PRIMEINC', workers: -1 // auto-optimize # of workers }; }.prime.generateProbablePrime(bits, options, function(err, num) { forgeconsole.log('random prime', num.toString(16)); ; })
PRNG
Provides a Fortuna-based cryptographically-secure pseudo-random number generator, to be used with a cryptographic function backend, e.g. AES. An implementation using AES as a backend is provided. An API for collecting entropy is given, though if window.crypto.getRandomValues is available, it will be used automatically.
Examples
// get some random bytes synchronously
var bytes = forge.random.getBytesSync(32);
console.log(forge.util.bytesToHex(bytes));
// get some random bytes asynchronously
.random.getBytes(32, function(err, bytes) {
forgeconsole.log(forge.util.bytesToHex(bytes));
;
})
// collect some entropy if you'd like
.random.collect(someRandomBytes);
forgejQuery().mousemove(function(e) {
.random.collectInt(e.clientX, 16);
forge.random.collectInt(e.clientY, 16);
forge;
})
// specify a seed file for use with the synchronous API if you'd like
.random.seedFileSync = function(needed) {
forge// get 'needed' number of random bytes from somewhere
return fetchedRandomBytes;
;
}
// specify a seed file for use with the asynchronous API if you'd like
.random.seedFile = function(needed, callback) {
forge// get the 'needed' number of random bytes from somewhere
callback(null, fetchedRandomBytes);
;
})
// register the main thread to send entropy or a Web Worker to receive
// entropy on demand from the main thread
.random.registerWorker(self);
forge
// generate a new instance of a PRNG with no collected entropy
var myPrng = forge.random.createInstance();
Tasks
Provides queuing and synchronizing tasks in a web application.
Examples
Utilities
Provides utility functions, including byte buffer support, base64, bytes to/from hex, zlib inflate/deflate, etc.
Examples
// encode/decode base64 var encoded = forge.util.encode64(str); var str = forge.util.decode64(encoded); // encode/decode UTF-8 var encoded = forge.util.encodeUtf8(str); var str = forge.util.decodeUtf8(encoded); // bytes to/from hex var bytes = forge.util.hexToBytes(hex); var hex = forge.util.bytesToHex(bytes); // create an empty byte buffer var buffer = forge.util.createBuffer(); // create a byte buffer from raw binary bytes var buffer = forge.util.createBuffer(input, 'raw'); // create a byte buffer from utf8 bytes var buffer = forge.util.createBuffer(input, 'utf8'); // get the length of the buffer in bytes .length(); buffer// put bytes into the buffer .putBytes(bytes); buffer// put a 32-bit integer into the buffer .putInt32(10); buffer// buffer to hex .toHex(); buffer// get a copy of the bytes in the buffer .bytes(/* count */); bytes// empty this buffer and get its contents .getBytes(/* count */); bytes // convert a forge buffer into a Node.js Buffer // make sure you specify the encoding as 'binary' var forgeBuffer = forge.util.createBuffer(); var nodeBuffer = Buffer.from(forgeBuffer.getBytes(), 'binary'); // convert a Node.js Buffer into a forge buffer // make sure you specify the encoding as 'binary' var nodeBuffer = Buffer.from('CAFE', 'hex'); var forgeBuffer = forge.util.createBuffer(nodeBuffer.toString('binary')); // parse a URL var parsed = forge.util.parseUrl('http://example.com/foo?bar=baz'); // parsed.scheme, parsed.host, parsed.port, parsed.path, parsed.fullHost
Logging
Provides logging to a javascript console using various categories and levels of verbosity.
Examples
Debugging
Provides storage of debugging information normally inaccessible in closures for viewing/investigation.
Examples
Flash Networking Support
The flash README provides details on rebuilding the optional Flash component used for networking. It also provides details on Policy Server support.
Security Considerations
When using this code please keep the following in mind:
- Cryptography is hard. Please review and test this code before depending on it for critical functionality.
- The nature of JavaScript is that execution of this code depends on trusting a very large set of JavaScript tools and systems. Consider runtime variations, runtime characteristics, runtime optimization, code optimization, code minimization, code obfuscation, bundling tools, possible bugs, the Forge code itself, and so on.
- If using pre-built bundles from Bower or similar be aware someone else ran the tools to create those files.
- Use a secure transport channel such as TLS to load scripts and consider using additional security mechanisms such as Subresource Integrity script attributes.
- Use “native” functionality where possible. This can be critical when dealing with performance and random number generation. Note that the JavaScript random number algorithms should perform well if given suitable entropy.
- Understand possible attacks against cryptographic systems. For instance side channel and timing attacks may be possible due to the difficulty in implementing constant time algorithms in pure JavaScript.
- Certain features in this library are less susceptible to attacks depending on usage. This primarily includes features that deal with data format manipulation or those that are not involved in communication.
Library Background
- https://digitalbazaar.com/2010/07/20/javascript-tls-1/
- https://digitalbazaar.com/2010/07/20/javascript-tls-2/
Contact
- Code: https://github.com/digitalbazaar/forge
- Bugs: https://github.com/digitalbazaar/forge/issues
- Email: support@digitalbazaar.com
- IRC: #forgejs on freenode
Donations
Financial support is welcome and helps contribute to futher development:
- For PayPal please send to paypal@digitalbazaar.com.
- Something else? Please contact support@digitalbazaar.com.