Instead of copy-pasting the same basic operation (memcpy & assignment),
use a goto and a common path instead. This should also make it easier
for the compiler to optimize this function.
Commit c7640f8346 was meant to fix a sign compare warning
in clang because NLMSG_NEXT internally compares the length
with nlmsghdr->nlmsg_len which is a u32. The problem is the
NLMSG_NEXT can underflow an unsigned value, hence why it
expects an int type to be passed in.
To work around this we can instead pass a larger sized
int64_t which the compiler allows since it can upgrade the
unsigned nlmsghdr->nlmsg_len. There is no underflow risk
with an int64_t either because the buffer used is much
smaller than what can fit in an int64_t.
Fixes: c7640f8346 ("monitor: fix integer comparison error (clang)")
In nearly all cases the auto-line breaks can be on spaces in the
string. The only exception (so far) is DPP which displays a very
long URI without any spaces. When this is displayed a single
character was lost on each break. This was due to the current line
being NULL terminated prior to the next line string being returned.
To handle both cases the next line is copied prior to terminating
the current line. The offsets were modified slightly so the line
will be broken *after* the space, not on the space. This leaves
the space at the end of the current line which is invisible to the
user but allows the no-space case to also work without loss of
the last character (since that last character is where the space
normally would be).
Each color escape is tracked and the new_width is adjusted
accordingly. But if the color escape comes after a space which breaks
the line, the adjusted width ends up being too long since that escape
sequence isn't appearing on the current line. This causes the next
column to be shifted over.
The old 'max' parameter was being used both as an input and output
parameter which was confusing. Instead have next_line take the
column width as input, and output a new width which includes any
color escapes and wide characters.
In theory any input to this function should have valid utf-8 but
just in case the strings should be validated. This removes the
need to check the return of l_utf8_get_codepoint which is useful
since there is no graceful failure path at this point.
The known frequency list may include frequencies that once were
allowed but are now disabled due to regulatory restrictions. Don't
include these frequencies in the roam scan.
The utf-8 bytes were being counted as normal ascii so the
width maximum was not being increased to include
non-printable bytes like it is for color escape sequences.
This lead to the row not printing enough characters which
effected the text further down the line.
Fix this by increasing 'max' when non-codepoint utf-8
characters are found.
This test was taking about 5 minutes to run, specifically
the requested scan test. One slight optimization is to
remove the duplicate hidden network, since there is no
need for two. In addition the requested scan test was
changed so it does not periodic scan and only issues a dbus
scan.
The CI was sometimes taking ~10-15 minutes to run just this
test. This is likely due to the test having 7 radios and
which is a lot of beacons/probes to process.
Disabling the unused hostapd instances drops the runtime down
to about 1 minute.
If a rule was disabled it would cause hwsim to not continue processing
frames using rules further in the queue. _Most_ tests only use one
rule so this shouldn't have changed their behavior but others which
use multiple rules may be effected and the tests have not been
running properly.
These events are sent if IWD fails to authentiate
(ft-over-air-roam-failed) or if it falls back to over air after
failing to use FT-over-DS (try-ft-over-air)
If IPv4 setup fails and the netconfig logic gives up, continue as if the
connection had failed at earlier stages so that autoconnect can try the
next available network.
Certain drivers support/require probe response offloading which
IWD did not check for or properly handle. If probe response
offloading is required the probe response frame watch will not
be added and instead the ATTR_PROBE_RESP will be included with
START_AP.
The head/tail builders were reused but slightly modified to check
if the probe request frame is NULL, since it will be for use with
START_AP.
Parse the AP probe response offload attribute during the dump. If
set this indicates the driver expects the probe response attribute
to be included with START_AP.
Clearing all authentications during ft_authenticate was a very large
hammer and may remove cached authentications that could be used if
the current auth attempt fails.
For example the best BSS may have a problem and fail to authenticate
early with FT-over-DS, then fail with FT-over-Air. But another BSS
may have succeeded early with FT-over-DS. If ft_authenticate clears
all ft_infos that successful authentication will be lost.
This tests the new behavior where the roam request does not
indicate disassociation is imminent. In this case if no
candidates are found IWD should not roam.
Instead of requiring the initial condition be met when calling
wait_for_object_change, wait for it.
This is how every caller of this function uses it, specifically
with roaming where we first wait for DeviceState.roaming, then
call wait_for_object_change. This can be simplified for the caller
so the initial condition is first waited for.
AP roaming was structured such that any AP roam request would
force IWD to roam (assuming BSS's were found in scan results).
This isn't always the best behavior since IWD may be connected
to the best BSS in range.
Only force a roam if the AP includes one of the 3 disassociation/
termination bits. Otherwise attempt to roam but don't set the
ap_directed_roaming flag which will allows IWD to stay with the
current BSS if no better candidates are found.
There are a few checks that can be done prior to parsing the
request, in addition the explicit check for preparing_roam was
removed since this is taken care of by station_cannot_roam().
Once offchannel completes we can check if the info structure was
parsed, indicating authentication succeeded. If not there is no
reason to keep it around since IWD will either try another BSS or
fail.
This both adds proper handling to the new roaming logic and fixes
a potential bug with firmware roams.
The new way roaming works doesn't use a connect callback. This
means that any disconnect event or call to netdev_connect_failed
will result in the event handler being called, where before the
connect callback would. This means we need to handle the ROAMING
state in the station disconnect event so IWD properly disassociates
and station goes out of ROAMING.
With firmware roams netdev gets an event which transitions station
into ROAMING. Then netdev issues GET_SCAN. During this time a
disconnect event could come in which would end up in
station_disconnect_event since there is no connect callback. This
needs to be handled the same and let IWD transition out of the
ROAMING state.
This finalizes the refactor by moving all the handshake prep
into FT itself (most was already in there). The netdev-specific
flags and state were added into netdev_ft_tx_associate which
now avoids any need for a netdev API related to FT.
The NETDEV_EVENT_FT_ROAMED event is now emitted once FT completes
(netdev_connect_ok). This did require moving the 'in_ft' flag
setting until after the keys are set into the kernel otherwise
netdev_connect_ok has no context as to if this was FT or some
other connection attempt.
In addition the prev_snonce was removed from netdev. Restoring
the snonce has no value once association begins. If association
fails it will result in a disconnect regardless which requires
a new snonce to be generated
This converts station to using ft_action/ft_authenticate and
ft_associate and dropping the use of the netdev-only/auth-proto
logic.
Doing this allows for more flexibility if FT fails by letting
IWD try another roam candidate instead of disconnecting.
Now the full action frame including the header is provided to ft
which breaks the existing parser since it assumes the buffer starts
at the body of the message.