Add a utility for setting the OCI obtained from the hardware (prior to
handshake starting) as well as a utility to validate the OCI obtained
from the peer.
Calling handshake_state_setup_own_ciphers from within
handshate_state_set_authenticator_ie was misleading. In all cases the
supplicant chooses the AKM. This worked since our AP code only ever
advertises a single AKM, but would not work in the general case.
Similarly, the supplicant would choose which authentication type to use
by either sending the WPA1 or WPA2 IE (or OSEN). Thus the setting of
the related variables in handshake_state_set_authenticator_ie was also
incorrect. In iwd, the supplicant_ie would be set after the
authenticator_ie, so these settings would be overwritten in most cases.
Refactor these two setters so that the supplicant's chosen rsn_info
would be used to drive the handshake.
handshake_util_ap_ie_matches() is used to make sure that the RSN element
received from the Authenticator during handshake / association response
is the same as the one advertised in Beacon/Probe Response frames. This
utility tries to bitwise compare the element first, and only if that
fails, compares RSN members individually.
For FT, bitwise comparison will always fail since the PMKID has to be
included by the Authenticator in any RSN IEs included in Authenticate
& Association Response frames.
Perform the bitwise comparison as an optimization only during processing
of eapol message 3/4. Also keep the parsed rsn information for future
use and to possibly avoid re-parsing it during later checks.
Send and receive the FILS IP Address Assignment IEs during association.
As implemented this would work independently of FILS although the only
AP software handling this mechanism without FILS is likely IWD itself.
No support is added for handling the IP assignment information sent from
the server after the initial Association Request/Response frames, i.e.
the information is only used if it is received directly in the
Association Response without the "response pending" bit, otherwise the
DHCP client will be started.
Some connections, like Hotspot require additional IEs to be used during
the Association. These are now passed as 'extra_ies' when invoking
netdev_connect, however they are also needed during ReAssociation and FT
to such APs.
Additionally, it may be that Hotspot-enabled APs will start utilizing
FILS or SAE. In these cases the extra_ies need to be accounted for
somehow, either by making a copy in handshake_state, netdev, or the
auth_proto itself. Similarly, P2P which heavily uses vendor IEs can be
used over SAE in the future.
Since a copy of these IEs is needed, might as well store them in
handshake_state itself for easy book-keeping by network/station.
During processing of Connect events by netdev, some of these elements
might be updated even when already set. Instead of issuing
l_free/l_memdup each time, check and see whether the elements are
bitwise identical first.
This bug has been in here since OWE was written, but a similar bug also
existed in hostapd which allowed the PTK derivation to be identical.
In January 2020 hostapd fixed this bug, which now makes IWD incompatible
when using group 20 or 21.
This patch fixes the bug for IWD, so now OWE should be compatible with
recent hostapd version. This will break compatibility with old hostapd
versions which still have this bug.
Convert the handshake event callback type to use variable argument
list to allow for more flexibility in event-specific arguments
passed to the callbacks.
Note the uint16_t reason code is promoted to an int when using variable
arguments so va_arg(args, int) has to be used.
The handshake object had 4 setters for authenticator/supplicant IE.
Since the IE ultimately gets put into the same buffer, there really
only needs to be a single setter for authenticator/supplicant. The
handshake object can deal with parsing to decide what kind of IE it
is (WPA or RSN).
FILS-FT is a special case with respect to the PTK keys. The KCK getter
was updated to handle both FT-FILS AKMs, by returning the offset in
the PTK to the special KCK generated during FILS. A getter for the KCK
length was added, which handles the SHA384 variant. The PTK size was
also updated since FILS-FT can generate an additional 56 bytes of PTK
For FILS rekeys, we still derive the PTK using the 4-way handshake.
And for FILS-SHA384 we need the SHA384 KDF variant when deriving.
This change adds both FILS-SHA256 and FILS-SHA384 to the checks
for determining the SHA variant.
crypto_derive_pairwise_ptk was taking a boolean to decide whether to
use SHA1 or SHA256, but for FILS SHA384 may also be required for
rekeys depending on the AKM.
crypto_derive_pairwise_ptk was changed to take l_checksum_type instead
of a boolean to allow for all 3 SHA types.
With FILS support coming there needs to be a way to set the PTK directly.
Other AKMs derive the PTK via the 4-way handshake, but FILS computes the
PTK on its own.
OWE defines KEK/KCK lengths depending on group. This change adds a
case into handshake_get_key_sizes. With OWE we can determine the
key lengths based on the PMK length in the handshake.
Right now the PMK is hard coded to 32 bytes, which works for the vast
majority of cases. The only outlier is OWE which can generate a PMK
of 32, 48 or 64 bytes depending on the ECC group used. The PMK length
is already stored in the handshake, so now we can just pass that to
crypto_derive_pairwise_ptk
The crypto_ptk was hard coded for 16 byte KCK/KEK. Depending on the
AKM these can be up to 32 bytes. This changes completely removes the
crypto_ptk struct and adds getters to the handshake object for the
kck and kek. Like before the PTK is derived into a continuous buffer,
and the kck/kek getters take care of returning the proper key offset
depending on AKM.
To allow for larger than 16 byte keys aes_unwrap needed to be
modified to take the kek length.
Non-802.11 AKMs can define their own key lengths. Currently only OWE does
this, and the MIC/KEK/KCK lengths will be determined by the PMK length so
we need to save it.
Add places to store the GTK data, index and RSC in struct
handshake_state and add a setter function for these fields. We may want
to also convert install_gtk to use these fields similar to install_ptk.
To avoid confusion in case of an authenticator side handshake_state
structure and eapol_sm structure, rename own_ie to supplicant_ie and
ap_ie to authenticator_ie. Also rename
handshake_state_set_{own,ap}_{rsn,wpa} and fix when we call
handshake_state_setup_own_ciphers. As a result
handshake_state_set_authenticator, if needed, should be called before
handshake_state_set_{own,ap}_{rsn,wpa}.
Both SAE and adhoc can benefit from knowing whether the handshake state
is an authenticator or a supplicant. It will allow both to easily
obtain the remote address rather than sorting out if aa/spa match the
devices own address.
SAE generates the PMKID during the authentication process, rather than
generating it on-the-fly using the PMK. For this reason SAE needs to be
able to set the PMKID once its generated. A new flag was also added
(has_pmkid) which signifies if the PMKID was set or if it should be
generated.
SAE needs access to the raw passphrase, not the PSK which network
saves. This changes saves the passphrase in network and handshake
objects, as well as adds getters to both objects so SAE can retrieve
the passphrase.
Handshake related netdev events were removed in favor of
handshake events. Now events will be emitted on the handshake
object related to the 4-way handshake and key settings. Events
are:
HANDSHAKE_EVENT_STARTED
HANDSHAKE_EVENT_SETTING_KEYS
HANDSHAKE_EVENT_COMPLETE
HANDSHAKE_EVENT_FAILED
Right now, since netdev only operates in station mode, nothing
listens for COMPLETE/FAILED, as device/wsc gets notified by the
connect_cb when the connection was successful. The COMPLETE/
FAILED were added in preperation for AP moving into eapol/netdev.