Since we use git ls-files to produce the list of all tests for -A, if
the source directory is owned by somebody other than root one might
get:
fatal: unsafe repository ('/home/balrog/repos/iwd' is owned by someone else)
To add an exception for this directory, call:
git config --global --add safe.directory /home/balrog/repos/iwd
Starting
/home/balrog/repos/iwd/tools/..//autotests/ threw an uncaught exception
Traceback (most recent call last):
File "/home/balrog/repos/iwd/tools/run-tests", line 966, in run_auto_tests
subtests = pre_test(ctx, test, copied)
File "/home/balrog/repos/iwd/tools/run-tests", line 814, in pre_test
raise Exception("No hw.conf found for %s" % test)
Exception: No hw.conf found for /home/balrog/repos/iwd/tools/..//autotests/
Mark args.testhome as a safe directory on every run.
The kernel will not let us test some scenarios of communication between
two hwsim radios (e.g. STA and AP) if they're in the same net namespace.
For example, when connected, you can't add normal IPv4 subnet routes for
the same subnet on two different interfaces in one namespace (you'd
either get an EEXIST or you'd replace the other route), you can set
different metrics on the routes but that won't fix IP routing. For
testNetconfig the result is that communication works for DHCP before we
get the inital lease but renewals won't work because they're unicast.
Allow hostapd to run on a radio that has been moved to a different
namespace in hw.conf so we don't have to work around these issues.
The --start option was directly passed to the kernel init parameter,
preventing any environment setup from happening.
Intead always use 'run-tests' as the init process but detect --start
and execute that binary/script once inside the environment.
In UML if any process dies while test-runner is waiting for the DBus
service or some socket to be available it will block forever. This
is due to the way the non_block_wait works.
Its not optimal but it essentially polls over some input function
until the conditions are met. And, depending on the input function,
this can cause UML to hang since it never has a chance to go idle
and advance the time clock.
This can be fixed, at least for services/sockets, by sleeping in
the input function allowing time to pass. This will then allow
test-runner to bail out with an exception.
This patch adds a new wait_for_service function which handles this
automatically, and wait_for_socket was refactored to behave
similarly.
This function was checking if the process object exists, which can
persist long after a process is killed, or dies unexpectedly. Check
that the actual PID exists by sending signal 0.
An earlier commit fixed several options but ended up breaking others. The
result_parent/monitor_parent options are hidden from the user and only meant
to be passed to the kernel but they relied on the fact that the underscore
was present, not a dash. This updates the argument to use a dash:
--result-parent
--monitor-parent
Fixes: 00e41eb0ff ("test-runner: Fix parsing for some arguments")
The new regex match update was actually matching way more than it should
have due to how python's 'match' API works. 'match' will return successfully
if zero or more characters match from the beginning of the string. In this
case we actually need the entire regex to match otherwise we start matching
all prefixes, for example:
"--verbose iwd" will match iwd, iwd-dhcp, iwd-acd, iwd-genl and iwd-tls.
Instead use re.fullmatch which requires the entire string to match the
regex.
Enabling this ends up dumping so much logging and, at least with namespaces,
seems to break the logger module and cause really weird behavior, worst of
which is that all processes start dumping to stdout.
This can still be enabled explicitly with --verbose iwd-rtnl, but is turned
off by default when --log is used.
Currently the parameter values reach run-tests by first being parsed by
runner.py's RunnerArgParser, then the resulting object members being
encoded as a commandline string, then as environment variables, then the
environment being converted to a python string list and passed to
RunnerCoreArgParser again. Where argument names (like --sub-tests) had
dashes, the object members had underscores (.sub_tests), this wasn't
taken into account when building the python string list from environment
variables so convert all underscores to dashes and hope that all the
names match now.
Additionally some arguments used nargs='1' or nargs='*' which resulted
in their python values becoming lists. They were converted back to command
line arguments such as: --sub_tests ['static_test.py'], and when parsed
by RunnerCoreArgParser again, the values ended up being lists of lists.
In all three cases it seems the actual user of the parsed value actually
expects a single string with comma-separated substrings in it so just drop
the nargs= uses.
This was lazily copied from UML but really made no sense in the context
of QEMU. First QEMU needs the virtfs option to define the mount tag and
in addition a 9p mount should be used rather than 'hostfs'.
The glob match was completely broken for --verbose because globs
are actually path matches, not generally for strings. Instead
match based on regular expressions.
First the verbose option was fixed to store it as an array as well
as write any list arguments into the kernel command line properly
(str() would include []). This has worked up until now because the
'in' keyword in python will work on strings just as well
as lists, for example:
>>> 'test' in 'this,is,a,test'
True
Then, the glob match was replaced with a regex match. Any exceptions
are caught and somewhat ignored (printed, but only seen with --debug).
This only guards against fatal exceptions from a user passing an
invalid expression.
This bit of code was throwing exceptions if a test cleaned up files that
test-runner was expecting to clean up. Specifically testHotspot swaps out
main.conf and PSK files many times. This led to the exception being thrown,
caught, and ignored but further on test-runner would print:
"File _X_ not cleaned up!"
Now the files will be checked if they exist before trying to remove it.
Similarly to ofono/phonesim allow tests to be skipped if wpa_supplicant
is not found on the system.
This required some changes to DPP/P2P where Wpas() should be called first
since this can now throw a SkipTest exception.
The Wpas class was also made to allow __del__ to be called without
throwing additional exceptions in case wpa_supplicant was not found.
If the user specifies the same parent directory for several outfiles
skip mounting since it already exists. For example:
--monitor /outfiles/monitor.txt --result /outfiles/result.txt
Inside the virtual environments /tmp is mounted as its own FS and not
taken from the host. This poses issues if any output files are directly
under /tmp since test-runner tries to mount the parent directory (/tmp).
The can be fixed by ensuring these output files are either not under
/tmp or at least one folder down the tree (e.g. /tmp/outputs/outfile.txt).
Now this requirement is enforced and test-runner will not start if any
output files parent directory is /tmp.
Usually the test home directory is a git repo somewhere e.g. under
/home. But if the home directory is located under /tmp this poses
a problem since UML remounts /tmp. To handle both cases mount
the home directory explicity.
Certain aspects of QEMU like mounting host directories may still require
root access but for UML this is not the case. To handle both cases first
check if SUDO_UID/GID are set and use those to obtain the actual users
ID's. Otherwise if running as non-root use the UID/GID of the user
directly.
This only posed a problem oddly if the kernel binary was in the same
directory as test-runner. Resolving the absolute path with the
argument parser resolves the issue.
The TIOCSTTY ioctl was not shared between UML and QEMU which prevented
any console input from making it into UML. This fixes that, and now
ctrl-c can be used to stop UML test execution.
The MountInfo tuple was changed to explicitly take a source string. This
is redundant for UML and system mounts since the fstype/source are the same,
but it allows QEMU to specify the '9p' fstype and use MountInfo rather than
calling mount() explicitly.
This also moves logging cleanup into _prepare_mounts so both UML and QEMU
can use it.
Many processes are not long running (e.g. hostapd_cli, ip, iw, etc)
and the separators written to log files don't show up for these which
makes debugging difficult. This is even true for IWD/Hostapd for tests
with start_iwd=0.
After writing separators for long running processes write them out for
any additional log files too.
Way too many classes have a dependency on the TestContext class, in
most cases only for is_verbose. This patch removes the dependency from
Process and Namespace classes.
For Process, the test arguments can be parsed in the class itself which
will allow for this class to be completely isolated into its own file.
The Namespace class was already relatively isolated. Both were moved
into utils.py which makes 'run-tests' quite a bit nicer to look at and
more fitting to its name.
This commonizes some mounting code between QEMU and UML to allow exporting
of files to the host environment. UML does this with a hostfs mount while
QEMU still uses 9p.
The common code sanitizing the inputs has been put into _prepare_outfiles
and _prepare_mounts was modified to take an 'extra' arugment containing
additional mount points.
The results and monitor parent directories are now passed into the environment
via arguments, and these are hidden from the help text (in addition to testhome)
If --help or unknown options were supplied to test-runner python
would thrown a maximum recusion depth exception. This was due to
the way ArgumentParser was subclassed.
To fix this call ArgumentParser.__init__() rather than using the
super() method. And do this also for the RunnerCoreArgParse
subclass as well. In addition the namespace argument was removed
from parse_args since its not used, and instead supplied directly
to the parents parse_args method.
With how fast UML is hostapd events were being sent out prior to
ever calling wait_for_event. Instead set an IO watch on the control
socket and cache all events as they come. Then, when wait_for_event
is called, it can reference this list. If the event is found any
older events are purged from the list.
The AP-ENABLED event needed a special case because hostapd gets
started before the IO watch can be registered. To fix this an
enabled property was added which queries the state directly. This
is checked first, and if not enabled wait_for_event continues normally.
This allows the callers condition to be checked immediately without
the mainloop running. In addition may_block=True allows the mainloop
to poll/sleep rather than immediately return back to the caller. This
handles async IO much better than may_block=False, at least for our
use-case.
Namespace process logs were appearing under 'ip' (and also overwriting
actual 'ip' logs) since they were executed with 'ip netns exec <namespace>'.
Instead special case this and append '-<namespace>' to the log file name.
In addition processes executed prior to any tests were being put under
a folder (name of testhome directory). Now this case is detected and these
logs are put at the top level log directory.
This allows test-runner to run inside a UML binary which has some
advantages, specifically time-travel/infinite CPU speed. This should
fix any scheduler related failures we have on slower systems.
Currently this runner does not suppor the same features as the Qemu
runner, specifically:
- No hardware passthrough
- No logging/monitor (UML -> host mounting isn't implemented yet)
In order to keep all test-runner dev scripts working and to work with
the new runner.py system some file renaming was required.
test-runner was renamed to run-tests
A new test-runner was added which only creates the Runner() class.
This (as well as subsequent commits) will separate test-runner into two
parts:
1. Environment setup
2. Running tests
Spurred by interest in adding UML/host support, test-runner was in need
of a refactor to separate out the environment setup and actually running
the tests.
The environment (currently only Qemu) requires quite a bit of special
handling (ctypes mounting/reboot, 9p mounts, tons of kernel options etc)
which nobody writing tests should need to see or care about. This has all
been moved into 'runner.py'.
Running the tests (inside test-runner) won't change much.
The new 'runner.py' module adds an abstraction class which allows different
Runner's to be implemented, and setup their own environment as they see
fit. This is in preparation for UML and Host runners.