The handshake object had 4 setters for authenticator/supplicant IE.
Since the IE ultimately gets put into the same buffer, there really
only needs to be a single setter for authenticator/supplicant. The
handshake object can deal with parsing to decide what kind of IE it
is (WPA or RSN).
The Hotspot 2.0 spec introduces 'Anonymous EAP-TLS' as a new EAP method
to be used with OSEN/Hotspot. The protocol details of this aren't
relevant to this patch, but one major difference is that it uses the
expanded EAP type rather than the TLS type. Since the common TLS code
was written with only EAP_TYPE_TLS in mind the vendor ID/type cause the
EAP packet to be malformed when using the expanded EAP type.
To handle this the common TLS code now checks the EAP type, and if its
expanded we shift the payload 7 bytes further to account for the extra
header data.
802.11 defines GAS (generic advertisement service) which can be used
to query supported advertisement protocols from an AP before
authentication/association. Hotspot/OSEN only care about the ANQP
protocol, but the way the IE is structured potentially requires
iterating through several tuples before you reach the ANQP protocol
identifier. Because of this we define all protocol identifiers.
This adds some checks for the FT_OVER_FILS AKMs in station and netdev
allowing the FILS-FT AKMs to be selected during a connection.
Inside netdev_connect_event we actually have to skip parsing the IEs
because FILS itself takes care of this (needs to handle them specially)
FILS unfortunately is a special case when it comes to fast transition.
We have to process the FT IEs internally since we cannot trigger the
same initial mobility association code path (via netdev).
FT over FILS-SHA384 uses a 24 byte FT MIC rather than the 16 byte MIC
used for all other AKMs. This change allows both the FT builder/parser
to handle both lengths of MIC. The mic length is now passed directly
into ie_parse_fast_bss_transition and ie_build_fast_bss_transition
FILS-FT is a special case with respect to the PTK keys. The KCK getter
was updated to handle both FT-FILS AKMs, by returning the offset in
the PTK to the special KCK generated during FILS. A getter for the KCK
length was added, which handles the SHA384 variant. The PTK size was
also updated since FILS-FT can generate an additional 56 bytes of PTK
ifaddr is not guaranteed to be initialized, I'm not sure why there was
no compiler warning. Also replace a | with a || for boolean conditions
and merge the wiphy check with that line.
When handling a scan finished event for a scan we haven't started check
that we were not halfway through a scan request that would have its
results flushed by the external scan.
FT-over-DS is a way to do a Fast BSS Transition using action frames for
the authenticate step. This allows a station to start a fast transition
to a target AP while still being connected to the original AP. This,
in theory, can result in less carrier downtime.
The existing ft_sm_new was removed, and two new constructors were added;
one for over-air, and another for over-ds. The internals of ft.c mostly
remain the same. A flag to distinguish between air/ds was added along
with a new parser to parse the action frames rather than authenticate
frames. The IE parsing is identical.
Netdev now just initializes the auth-proto differently depending on if
its doing over-air or over-ds. A new TX authenticate function was added
and used for over-ds. This will send out the IEs from ft.c with an
FT Request action frame.
The FT Response action frame is then recieved from the AP and fed into
the auth-proto state machine. After this point ft-over-ds behaves the
same as ft-over-air (associate to the target AP).
Some simple code was added in station.c to determine if over-air or
over-ds should be used. FT-over-DS can be beneficial in cases where the
AP is directing us to roam, or if the RSSI falls below a threshold.
It should not be used if we have lost communication to the AP all
(beacon lost) as it only works while we can still talk to the original
AP.