The Crypto Binding TLV is used to ensure that the EAP peer and the
EAP server participated in both the inner and the outer EAP
authentications of a PEAP authentication by cryptographically associating
the phase 1 and phase 2 authentications.
The usage of Crypto-Binding in PEAPv0 is optional and is triggered by
the reception of the Crypto-Binding TLV from the server.
The handler for EAP Extensions has been modified to support multiple
TLV types instead of the single Result TLV. This will allow to handle
the other TLVs such as Crypto-Binding TLV.
There are some server implementations that send requests that are
not "Password" but still want us send password. This commit modify
the behavior to send a warning and still try to auth with password.
This makes me able to auth with server in my school which sends
"Enter Aruba Login".
wpa_supplicant does not check if it is "Password".
The kernel uses -EOPNOTSUPP in the case of change_station operation not
being provided. On most systems -EOPNOTSUPP is defined to be the same
as -ENOTSUPP, but seemingly not all systems.
Previously, the key was installed once the tunnel was created
despite the outcome of the second authentication phase. Now, the
key installation is delayed until the successful completion of
the second authentication phase. This excludes the unnecessary
operations in the case of a failure and key reinstallation with
cypro-binding in use.
Commit 1057d8aa74 changed the device interface creation logic
from being unconditional inside netdev.c to instead use NETDEV_WATCH_*
events. However, this broke the assumption that the device interface
was created before all others. The effect is that the scan_wdev_add
might no longer be called prior to station interface being created. Fix
this by moving scan_wdev_add/remove calls to netdev.c instead.
Fixes: 1057d8aa74 ("device: Move device creation from netdev.c to event watch")
#0 0x000055555558ee5d in scan_notify (msg=0x55555560b640, user_data=0x0) at src/scan.c:1706
#1 0x00007ffff7f2c78c in ?? () from /usr/lib/libell.so.0
#2 0x00007ffff7f299ec in ?? () from /usr/lib/libell.so.0
#3 0x00007ffff7f28e4a in l_main_iterate () from /usr/lib/libell.so.0
#4 0x00007ffff7f28efc in l_main_run () from /usr/lib/libell.so.0
#5 0x00007ffff7f290b9 in l_main_run_with_signal () from /usr/lib/libell.so.0
#6 0x00005555555639c4 in main (argc=1, argv=0x7fffffffec18) at src/main.c:497
Save the source frame type in struct scan_bss as it may affect how some
of the data in the struct will be parsed. Also replace the P2P IE
payload data in that struct with a union containing pre-parsed p2p
attributes corresponding to the frame type.
This means users don't have to call the parsers in p2putil.c on that
data, which wouldn't have worked anyway because those parsers assume
input is the raw IE sequence rather than just the "payload".
All these functions free up the resources used by the struct but don't
free the struct itself (allowing it to be static) so rename the
functions to avoid confusion.
The kernel sends NL80211_ATTR_SCAN_START_TIME_TSF with CMD_TRIGGER and
RRM requires this value for beacon measurement reports.
The start time is parsed during CMD_TRIGGER and set into the scan request.
A getter was added to obtain this time value for an already triggered
scan.
After making the change, the SCAN_ABORTED case was cleaned up a bit to
remove the local scan_request usage in favor of the one used for all the
other cases.
Create and destroy the device state struct and the DBus interfaces in a
way more similar to the Station, AdHoc and AP interfaces. Drop
netdev_get_device() and the device specific code in netdev that as far
as I can tell wasn't needed.
Check the iftype before registering ANQP on new interface.
Not that the check here and in rrm.c (which already checks the iftype)
may need to be extended to run on NETDEV_WATCH_EVENT_UP because a device
could be created with a different iftype and then have the iftype changed
before powering up.
The RCPI value was using floating point values as per the spec. But instead
we can just use the signal strength coming from the kernel in mili mdm and
scale the hard coded values by a factor of 100.