ConnectHiddenNetwork creates a temporary network object and initiates a
connection with it. If the connection fails (due to an incorrect
passphrase or other reasons), then this temporary object is destroyed.
Delay its destruction until network_disconnected() since
network_connect_failed is called too early. Also, re-order the sequence
in station_reset_connection_state() in order to avoid using the network
object after it has been freed by network_disconnected().
Fixes: 85d9d6461f ("network: Hide hidden networks on connection error")
If a user connection fails on a freshly scanned psk or open hidden
network, during passphrase request or after, it shall be removed from
the network list. Otherwise, it would be possible to directly connect
to that known network, which will appear as not hidden.
The logic here assumed any BSS's in the roam scan were identical to
ones in station's bss_list with the same address. Usually this is true
but, for example, if the BSS changed frequency the one in station's
list is invalid.
Instead when a match is found remove the old BSS and re-insert the new
one.
This adds checks if MFP is set to 0 or 1:
0 - Always fail if the frequency is 6GHz
1 - Fail if MFPC=0 and the frequency is 6GHz.
If HW is capable set MFPR=1 for 6GHz
This debug print was before any checks which could bail out prior to
autoconnect starting. This was confusing because debug logs would
contain multiple "station_autoconnect_start()" prints making you think
autoconnect was started several times.
station_set_scan_results takes an autoconnect flag which was being
set true in both regular/quick autoconnect scans. Since OWE networks
are processed after setting the scan results IWD could end up
connecting to a network before all the OWE hidden networks are
populated.
To fix this regular/quick autoconnect results will set the flag to
false, then process OWE networks, then start autoconnect. If any
OWE network scans are pending station_autoconnect_start will fail
but will pick back up after the hidden OWE scan.
- Mostly problems with whitespace:
- Use of spaces instead of tabs
- Stray spaces before closing ')
- Missing spaces
- Missing 'void' from function declarations & definitions that
take no arguments.
- Wrong indentation level
There is an unchecked NULL pointer access in network_has_open_pair.
open_info can be NULL, when out of multiple APs in range that advertise
the same SSID some advertise OWE transition elments and some don't.
The Hotspot 2.0 spec has some requirements that IWD was missing depending
on a few bits in extended capabilities and the HS2.0 indication element.
These requirements correspond to a few sysfs options that can be set in
the kernel which are now set on CONNECTED and unset on DISCONNECTED.
Add netconfig_enabled() and use that in all places that want to know
whether network configuration is enabled. Drop the enable_network_config
deprecated setting, which was only being handled in one of these 5 or so
places.
It was seen during testing that several offload-capable cards
were not including the OCI in the 4-way handshake. This made
any OCV capable AP unconnectable.
To be safe disable OCV on any cards that support offloading.
netconfig_load_settings is called when establishing a new initial
association to a network. This function tries to update dhcp/dhcpv6
clients with the MAC address of the netdev being used. However, it is
too early to update the MAC here since netdev might need to powercycle
the underlying network device in order to update the MAC (i.e. when
AddressRandomization="network" is used).
If the MAC is set incorrectly, DHCP clients are unable to obtain the
lease properly and station is stuck in "connecting" mode indefinitely.
Fix this by delaying MAC address update until netconfig_configure() is
invoked.
Fixes: ad228461ab ("netconfig: Move loading settings to new method, refactor")
If the AP advertises FT-over-DS support it likely wants us to use
it. Additionally signal_low is probably going to be true since IWD
has started a roam attempt.
When netdev goes down so does station, but prior to netdev calling
the neighbor report callback. The way the logic was written station
is dereferenced prior to checking for any errors, causing a use
after free.
Since -ENODEV is used in this case check for that early before
accessing station.
This changes scan_bss from using separate members for each
OWE transition element data type (ssid, ssid_len, and bssid)
to a structure that holds them all.
This is being done because OWE transition has option operating
class and channel bytes which will soon be parsed. This would
end up needing 5 separate members in scan_bss which is a bit
much for a single IE that needs to be parsed.
This makes checking the presense of the IE more convenient
as well since it can be done with a simple NULL pointer check
rather than having to l_memeqzero the BSSID.
OWE Transition is described in the WiFi Alliance OWE Specification
version 1.1. The idea behind it is to support both legacy devices
without any concept of OWE as well as modern ones which support the
OWE protocol.
OWE is a somewhat special type of network. Where it advertises an
RSN element but is still "open". This apparently confuses older
devices so the OWE transition procedure was created.
The idea is simple: have two BSS's, one open, and one as a hidden
OWE network. Each network advertises a vendor IE which points to the
other. A device sees the open network and can connect (legacy) or
parse the IE, scan for the hidden OWE network, and connect to that
instead.
Care was taken to handle connections to hidden networks directly.
The policy is being set that any hidden network with the WFA OWE IE
is not connectable via ConnectHiddenNetwork(). These networks are
special, and can only be connected to via the network object for
the paired open network.
When scan results come in from any source (DBus, quick, autoconnect)
each BSS is checked for the OWE Transition IE. A few paths can be
taken here when the IE is found:
1. The BSS is open. The BSSID in the IE is checked against the
current scan results (excluding hidden networks). If a match is
found we should already have the hidden OWE BSS and nothing
else needs to be done (3).
2. The BSS is open. The BSSID in the IE is not found in the
current scan results, and the open network also has no OWE BSS
in it. This will be processed after scan results.
3. The BSS is not open and contains the OWE IE. This BSS will
automatically get added to the network object and nothing else
needs to be done.
After the scan results each network is checked for any non-paired
open BSS's. If found a scan is started for these BSS's per-network.
Once these scan results come in the network is notified.
From here network.c can detect that this is an OWE transition
network and connect to the OWE BSS rather than the open one.
DBus scan is performed in several subsets. In certain corner-case
circumstances it would be possible for autoconnect to run after each
subset scan. Instead, trigger autoconnect only after the dbus scan
completes.
This also works around a condition where ANQP results could trigger
autoconnect too early.
Several invocations of station_set_scan_results() base the
'add_to_autoconnect' parameter on station_is_autoconnecting(). Simplify
the code by having station_set_scan_results() invoke that itself.
'add_to_autoconnect' now becomes an 'intent' parameter, specifying
whether autoconnect path should be invoked as a result of these scan
results or not when station is in an appropriate state. Rename
'add_to_autoconnect' parameter to make this clearer.
If the frequency of the bss is not in the list of frequencies for the
current scan, then this is a cached bss. It was likely already
processed for ANQP before, so skip it.
IWD has restricted SSIDs to only utf8 so they can be displayed but
with the addition of OWE transition networks this is an unneeded
restriction (for these networks). The SSID of an OWE transition
network is never displayed to the user so limiting to utf8 isn't
required.
Allow non-utf8 SSIDs to be scanned for by including the length in
the scan parameters and not relying on strlen().
With the addition of OWE transition network needs to be notified
of the hidden OWE scan which is quite similar to how it is notified
of ANQP. The ANQP event watch can be made generic and reused to
allow other events besides ANQP.
This is being added to support OWE transition mode. For these
type of networks the OWE BSS may contain a different SSID than
that of the network, but the WFA spec requires this be hidden
from the user. This means we need to set the handshake SSID based
on the BSS rather than the network object.
Send and receive the FILS IP Address Assignment IEs during association.
As implemented this would work independently of FILS although the only
AP software handling this mechanism without FILS is likely IWD itself.
No support is added for handling the IP assignment information sent from
the server after the initial Association Request/Response frames, i.e.
the information is only used if it is received directly in the
Association Response without the "response pending" bit, otherwise the
DHCP client will be started.