If EnableNetworkConfiguration was enabled ap.c required that
APRanges also be set. This prevents IWD from starting which
effects a perfectly valid station configuration. Instead if
APRanges is not provided IWD still allows ap_init to pass but
DHCP just will not be enabled.
Code was added with commit 04487f575b which passes a radio object
to the Interface class constructor and stores it in the Interface
object. The radio class also stores each Interface object which
creates a circular reference and causes the Radio to stick around
long after the tests finishes.
I cannot see why the Interface needs to keep track of the Radio
object. None of the wpa_supplicant utilities use this so it has
been removed.
Users can now supply an AP provisioning file containing an [IPv4]
section and define various DHCP settings:
[IPv4]
Address=<address>
Netmask=<netmask>
Gateway=<gateway>
IPRange=<start_address>,<end_address>
DNSList=<dns1>,<dns2>,...<dnsN>
LeaseTime=<lease_time>
There are a few notes/requirements to keep in mind when using a
provisioning file:
- All settings are optional but [IPv4].Address is required if the
interface does not already have an address set.
- If no [IPv4].Address is defined in the provisioning file and the AP
interface does not already have an address set, StartWithConfig()
will fail with -EINVAL.
- If a provisioning file is provided it will take precedence, and the
AP will not pull from the IP pool.
- A provisioning file containing an IPv4 section assumes DHCP is being
enabled and will override [General].EnableNetworkConfiguration.
- Any address that AP sets on the interface will be deleted when the AP
is stopped.
Users can now start an AP from settings based on a profile
on disk. The only argument is the SSID which will be used to
lookup the profile. If no profile is found a NotFound error
will be returned. Any invalid profiles will result in an
Invalid return.
This seems to happen occationally with testAP (potentially others).
The invalid read appears to happen when the frame_xchg_tx_cb detects
an early status and no ACK. In this particular case there is no
retry interval so we reach the retry limit and 'done' the frame.
This frees the 'fx' data all before the destroy callback can get
called. Once we finally return and the destroy callback is called
'fx' is freed and we see the invalid write.
==206== Memcheck, a memory error detector
==206== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==206== Using Valgrind-3.16.1 and LibVEX; rerun with -h for copyright info
==206== Command: iwd -p rad1,rad2,rad3,rad4 -d
==206== Parent PID: 140
==206==
==206== Invalid write of size 4
==206== at 0x4493A0: frame_xchg_tx_destroy (frame-xchg.c:941)
==206== by 0x46DAF6: destroy_request (genl.c:673)
==206== by 0x46DAF6: process_unicast (genl.c:1002)
==206== by 0x46DAF6: received_data (genl.c:1101)
==206== by 0x46AA4B: io_callback (io.c:118)
==206== by 0x469D6C: l_main_iterate (main.c:477)
==206== by 0x469E1B: l_main_run (main.c:524)
==206== by 0x469E1B: l_main_run (main.c:506)
==206== by 0x46A02B: l_main_run_with_signal (main.c:646)
==206== by 0x403E78: main (main.c:490)
==206== Address 0x4c59c6c is 172 bytes inside a block of size 176 free'd
==206== at 0x483B9F5: free (vg_replace_malloc.c:538)
==206== by 0x40F14C: destroy_work (wiphy.c:248)
==206== by 0x40F14C: wiphy_radio_work_done (wiphy.c:1578)
==206== by 0x44A916: frame_xchg_tx_cb (frame-xchg.c:930)
==206== by 0x46DAD9: process_unicast (genl.c:993)
==206== by 0x46DAD9: received_data (genl.c:1101)
==206== by 0x46AA4B: io_callback (io.c:118)
==206== by 0x469D6C: l_main_iterate (main.c:477)
==206== by 0x469E1B: l_main_run (main.c:524)
==206== by 0x469E1B: l_main_run (main.c:506)
==206== by 0x46A02B: l_main_run_with_signal (main.c:646)
==206== by 0x403E78: main (main.c:490)
==206== Block was alloc'd at
==206== at 0x483A809: malloc (vg_replace_malloc.c:307)
==206== by 0x4643CD: l_malloc (util.c:61)
==206== by 0x44AF8C: frame_xchg_startv (frame-xchg.c:1155)
==206== by 0x44B2A4: frame_xchg_start (frame-xchg.c:1108)
==206== by 0x42BC55: ap_send_mgmt_frame (ap.c:709)
==206== by 0x42F513: ap_probe_req_cb (ap.c:1869)
==206== by 0x449752: frame_watch_unicast_notify (frame-xchg.c:233)
==206== by 0x46DA2F: dispatch_unicast_watches (genl.c:961)
==206== by 0x46DA2F: process_unicast (genl.c:980)
==206== by 0x46DA2F: received_data (genl.c:1101)
==206== by 0x46AA4B: io_callback (io.c:118)
==206== by 0x469D6C: l_main_iterate (main.c:477)
==206== by 0x469E1B: l_main_run (main.c:524)
==206== by 0x469E1B: l_main_run (main.c:506)
==206== by 0x46A02B: l_main_run_with_signal (main.c:646)
==206==
The existing AP tests needed to be modified to start IWD from
python since the DHCP test uses a different main.conf.
Also removed some stale hw.conf options that are no longer used.
The DHCP server can be enabled by enabling network configuration
with [General].EnableNetworkConfiguration. If an IP is not set
on the interface before the AP is started a valid IP range must
also be provided under [General].APRanges in IP prefix format e.g.
[General]
EnableNetworkConfiguration=true
APRanges=192.168.1.1/24
Each AP started will get assigned a new subnet within the range
specified by APRanges as to not conflict with other AP interfaces.
If there are no subnets left in the pool when an AP is started
it will fail with -EEXIST. Any AP's that are stopped will release
their subnet back into the pool to be used with other APs.
The DHCP IP pool will be automatically chosen by the ELL DHCP
implementation (+1 the AP's IP to *.254). The remaining DHCP
settings will be defaults chosen by ELL (DNS, lease time, etc).
If the caller specifies the number of devices only return that many.
Some sub-tests may only need a subset of the total number of devices
for the test. If the number of devices expected is less than the total
being returned, python would throw an exception.
If a test does not need any hostapd instances but still loads
hostapd.py for some reason we want to gracefully throw an
exception rather than fail in some other manor.
Add the new wpas.Wpas class roughly based on hostapd.HostapdCLI but only
adding methods for the P2P-related stuff.
Adding "wpa_supplicant" to -v will enable output from the wpa_supplicant
process to be printed and "wpa_supplicant-dbg" will make it more verbose
("wpa_supplicant" is not needed because it seems to be automatically
enabled because of the glob matching in ctx.is_verbose)
Add support for a WPA_SUPPLICANT section in hw.conf where
'radN=<config_path>' lines will only reserve radios and create
interfaces for the autotest to be able to start wpa_supplicant on them,
i.e. this prevents iwd or hostapd from being started on them but doesn't
start a wpa_supplicant instance by itself.
The host systems configuration directories for IWD/EAD were
being mounted in the virtual machine. This required that the
host create these directories before hand. Instead we can
just set up the system and IWD/EAD to use directories in /tmp
that we create when we start the VM. This avoids the need for
any host configuration.
When the SignalLevelAgent doc blurb was moved to station-api.txt it
seems the interface was changed to Station.SignalLevelAgent in some
places but not in most and not in the code. Also fix the pointers to
the doc file.
periodic_scan_stop is called whenever we exit the autoscan state but a
periodic scan may not be running at the time. If we have a
user-triggered scan running, or the autoconnect_quick scan, and we reset
Scanning to false before that scan finished, a client could en up
calling GetOrderedNetwork too early and not receiving the scan results.
ConnectHiddenNetwork can be seen a triggering this sequence:
1. the active scan,
2. the optional agent request,
3. the Authentication/Association/4-Way Handshake/netconfig,
4. connected state
Currently Disconnect() interrupts 3 and 4, allow it to also interrupt
state 1. It's difficult to tell whether we're in state 2 from within
station.c.
Allow the "hwsim_medium=no" setting in hw.conf's SETUP section to
disable starting hwsim. It looks like the packets going through
userspace add enough latency that active scans don't work, probe
responses don't arrive within the "dwell time" or probe requests are not
ACKed on time. I've tried modifying tools/hwsim.c to respond with the
HWSIM_CMD_TX_INFO_FRAME cmd as the first thing after receiving a
HWSIM_CMD_FRAME and even skipping the queue in ell/genl.c by writing the
command synchronously, but neither helped enough to make the scans work.
This does not rule out that hwsim or the way our scans are done can be
fixed and that would obviously be better than what I did in this patch.
Since our DBus API and our use cases only support initiating connections
and not accepting incoming connections we don't really need to reply to
Probe Requests on the P2P-Device interface. Start doing it firstly so
that we can test the scenario where we get discovered and pre-authorized
to connect in an autotest (wpa_supplicant doesn't seem to have a way to
authorize everyone, which is probably why most Wi-Fi Display dongles
don't do it and instead reply with "Fail: Information not available" and
then restart connection from their side) and secondly because the spec
wants us to do it.
Make sure dev->peer_list is non-NULL before using l_queue_push_tail()
same as we do when the peer info comes from a Probe Response (active
scan in Find Phase). Otherwise peers discovered through Probe Requests
before any Probe Responses are received will be lost.
The device type category array is indexed by the category ID so if we're
skipping i == 0 in the iteration, we should also skip the 0'th element
in device_type_categories.
The callback for the FRAME command was causing a crash in
wiphy_radio_work_done when not cancelled when the wiphy was being
removed from the system. This was likely to happen if this radio work
item was waiting for another item to finish. When the first one was
being cancelled due to the wiphy being removed, this one would be
started and immediately stopped by the radio work queue.
Now this crash could be fixed by dropping all frame exchange instances
on an interface that is being removed which is easy to do, but properly
cancelling the commands saves us the headache of analysing whether
there's a race condition in other situations where a frame exchange is
being aborted.
We want to use this flag only on the interfaces with one of the three
P2P iftypes so set the flag automatically depending on the iftype from
the last 'config' notification.
This extends test-runner to also use iwmon if --log is enabled.
For this case the iwmon log will be found inside each test
log directory.
A new option, --monitor <file> was added in case full logging isn't
desired (potentially for timing issues) but a iwmon log is needed.
Be aware that when --monitor is used test-runner will mount the
entire parent directory. test-runner itself will only write to the
file specified, but just know that the parent directory is available
as read-write inside the VM.
--log takes precedence over --monitor, meaning the iwmon log will
be written to <logdir>/<test>/iwmon instead of the file specified
with --monitor if both options are provided.
Convert ap_send_mgmt_frame() to use frame_xchg_start for sending frames,
this fixes among other things the ACK-received checks.
One side effect is that we're no longer sending Probe Responses with the
don't-wait-for-ack flag because frame-xchg doesn't support it, but other
AP implementations don't use that flag either.
Another side-effect is that we do use the no-cck-rate flag
unconditionally, something we may want to fix but would need to add
another parameter to frame-xchg.