There is special handling for buggy OWE APs which set a network flag
to use the default OWE group. Utilize the more persistent setting
within known-networks as well as the network object (in case there
is no profile).
This also renames the get/set APIs to be generic to ECC groups rather
than only OWE.
In order to support an ordered list of known frequencies the list
should be in order of last seen BSS frequencies with the highest
ranked ones first. To accomplish this without adding a lot of
complexity the frequencies can be pushed into the list as long as
they are pushed in reverse rank order (lowest rank first, highest
last). This ensures that very high ranked BSS's will always get
superseded by subsequent scans if not seen.
This adds a new network API to update the known frequency list
based on the current newtork->bss_list. This assumes that station
always wipes the BSS list on scans and populates with only fresh
BSS entries. After the scan this API can be called and it will
reverse the list, then add each frequency.
If a OWE network is buggy and requires the default group this info
needs to be stored in network in order for it to set this into the
handshake on future connect attempts.
This is being added to support OWE transition mode. For these
type of networks the OWE BSS may contain a different SSID than
that of the network, but the WFA spec requires this be hidden
from the user. This means we need to set the handshake SSID based
on the BSS rather than the network object.
This refactors some code to eliminate getting the ERP entry twice
by simply returning it from network_has_erp_identity (now renamed
to network_get_erp_cache). In addition this code was moved into
station_build_handshake_rsn and properly cleaned up in case there
was an error or if a FILS AKM was not chosen.
Transition Disable indications and information stored in the network
profile needs to be enforced. Since Transition Disable information is
now stored inside the network object, add a new method
'network_can_connect_bss' that will take this information into account.
wiphy_can_connect method is thus deprecated and removed.
Transition Disable can also result in certain AKMs and pairwise ciphers
being disabled, so wiphy_select_akm method's signature is changed and
takes the (possibly overriden) ie_rsn_info as input.
This indication can come in via EAPoL message 3 or during
FILS Association. It carries information as to whether certain
transition mode options should be disabled. See WPA3 Specification,
version 3 for more details.
Most parameters set into the handshake object are actually known by the
network object itself and not station. This includes address
randomization settings, EAPoL settings, passphrase/psk/8021x settings,
etc. Since the number of these settings will only keep growing, move
the handshake setup into network itself. This also helps keep network
internals better encapsulated.
There will be additional security-related settings that will be
introduced for settings files. In particular, Hash-to-Curve PT
elements, Transition Disable settings and potentially others in the
future. Since PSK is now not the only element that would require
update, rename this function to better reflect this.
This will swap out a scan_bss object with a duplicate that may
exist in a networks bss_list. The duplicate will be removed by
since the object is owned by station it is assumed that it will
be freed elsewhere.
If we forget a hidden network, then make sure to remove it from the
network list completely. Otherwise it would be possible to still
issue a Network.Connect to that particular object, but the fact that the
network is hidden would be lost.
Rework the logic slightly so that this function returns an error message
on error and NULL on success, just like other D-Bus method
implementations. This also simplifies the code slightly.
Right now, if the connection fails, then network always thinks that the
password should be re-asked. Loosen this to only do so if the
connection failed at least in the handshake phase. If the connection
failed due to Association / Authentication timeout, it is likely that
something is wrong with the AP and it can't respond.
Change signature of network_connect_new_hidden_network to take
reference to the caller's l_dbus_message struct. This allows to
set the caller's l_dbus_message struct to NULL after replying in
the case of a failure.
==201== at 0x467C15: l_dbus_message_unref (dbus-message.c:412)
==201== by 0x412A51: station_hidden_network_scan_results (station.c:2504)
==201== by 0x41EAEA: scan_finished (scan.c:1505)
==201== by 0x41EC10: get_scan_done (scan.c:1535)
==201== by 0x462592: destroy_request (genl.c:673)
==201== by 0x462987: process_unicast (genl.c:988)
==201== by 0x462987: received_data (genl.c:1087)
==201== by 0x45F5A2: io_callback (io.c:126)
==201== by 0x45E8FD: l_main_iterate (main.c:474)
==201== by 0x45E9BB: l_main_run (main.c:521)
==201== by 0x45EBCA: l_main_run_with_signal (main.c:643)
==201== by 0x403B15: main (main.c:512)
This lets other modules (like WSC) to set a plain text passphrase
as opposed to only allowing a PSK to be set. network_get_psk was
also updated to generate a PSK on-the-fly if required. Since WPA3
requires the raw passphrase to work, it makes sense to just store
the passphrase if we have it.
networks queue was intended to share basic network information between
multiple adapters running simultaneously. The network_info object was
also serving double duty to carry known network information. This made
things overly complicated and really didn't result in much savings.
This setup also made managing hotspot networks challenging as we would
have ended up with multiple network_info objects for each known hotspot
network.
So get rid of the networks queue and the is_known bit from the
network_info structure.
This is duplicated when the first scan_bss is added to a network
object that contains the IE. Any future BSS's added will not re-add
the IE. Its assumed that all BSS's under a network will contain the
same roaming consortium OIs.
Hotspot networks are supposed to include an HESSID in the scan
results. This is more or less an identifier for the overall
network. In addition, the NAI Realms can be obtained via ANQP
and should be the same for each BSS. Since both HESSID and NAI
realms should be the same for a given network in range we can
store these values in the network object itself. This also allows
us to easily find hotspot configuration files by looking at
the HESSID/NAI Realms directly in the network object as opposed
to individual scan_bss's.
Each known network (previously connected) will have a set
of known frequencies associated with it, e.g. a set of
frequencies from all BSSs observed. The list of known
frequencies is sorted with the most recently observed
frequency in the head.
Certain error conditions require that a BSS be blacklisted only for
the duration of the current connection. The existing blacklist
does not allow for this, and since this blacklist is shared between
all interfaces it doesnt make sense to use it for this purpose.
Instead, each network object can contain its own blacklist of
scan_bss elements. New elements can be added with network_blacklist_add.
The blacklist is cleared when the connection completes, either
successfully or not.
Now inside network_bss_select both the per-network blacklist as well as
the global blacklist will be checked before returning a BSS.
If we have a BSS list where all BSS's have been blacklisted we still
need a way to force a connection to that network, instead of having
to wait for the blacklist entry to expire. network_bss_select now
takes a boolean 'fallback_to_blacklist' which causes the selection
to still return a connectable BSS even if the entire list was
blacklisted.
In most cases this is set to true, as these cases are initiated by
DBus calls. The only case where this is not true is inside
station_try_next_bss, where we do want to honor the blacklist.
This both prevents an explicit connect call (where all BSS's are
blacklisted) from trying all the blacklisted BSS's, as well as the
autoconnect case where we simply should not try to connect if all
the BSS's are blacklisted.
There are is some implied behavior here that may not be obvious:
On an explicit DBus connect call IWD will attempt to connect to
any non-blacklisted BSS found under the network. If unsuccessful,
the current BSS will be blacklisted and IWD will try the next
in the list. This will repeat until all BSS's are blacklisted,
and in this case the connect call will fail.
If a connect is tried again when all BSS's are blacklisted IWD
will attempt to connect to the first connectable blacklisted
BSS, and if this fails the connect call will fail. No more
connection attempts will happen until the next DBus call.
Refactor the network->psk and network->passphrase loading and saving
logic to not require the PreSharedKey entry in the psk config file and
to generate network->psk lazily on request. Still cache the computed
PSK in memory and in the .psk file to avoid recomputing it which uses
many syscalls. While there update the ask_psk variable to
ask_passphrase because we're specifically asking for the passphrase.
Update the known networks list and network properties on file creations,
removals and modifications. We watch for these filesystem events using
ell's fswatch and react accordingly.
SAE needs access to the raw passphrase, not the PSK which network
saves. This changes saves the passphrase in network and handshake
objects, as well as adds getters to both objects so SAE can retrieve
the passphrase.
Drop the corresponding network_info field, function and D-Bus property.
The last seen times didn't seem useful but if a client needs them it can
probably implement the same logic with the information already available
through DBus.
Until now network.c managed the list of network_info structs including
for known networks and networks that are seen in at least one device's
scan results, with the is_known flag to distinguish known networks.
Each time the list was processed though the code was either interested
in one subset of networks or the other. Split the list into a Known
Networks list and the list of other networks seen in scans. Move all
code related to Known Networks to knownnetworks.c, this simplifies
network.h. It also gets rid of network_info_get_known which actually
returned the list of all network_infos (not just for known networks),
which logically should have been private to network.c. Update device.c
and scan.c to use functions specific to Known Networks instead of
filtering the lists by the is_known flag.
This will also allow knownnetworks.c to export DBus objects and/or
properties for the Known Networks information because it now knows when
Known Networks are added, removed or modified by IWD.