3
0
mirror of https://git.kernel.org/pub/scm/network/wireless/iwd.git synced 2024-11-24 16:49:25 +01:00
iwd/src/ap.c

4847 lines
124 KiB
C
Raw Normal View History

/*
*
* Wireless daemon for Linux
*
* Copyright (C) 2017-2019 Intel Corporation. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <errno.h>
#include <linux/if_ether.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <linux/if.h>
#include <ell/ell.h>
#include "linux/nl80211.h"
2021-03-12 04:46:09 +01:00
#include "ell/useful.h"
#include "src/missing.h"
#include "src/iwd.h"
#include "src/module.h"
#include "src/scan.h"
#include "src/netdev.h"
#include "src/wiphy.h"
#include "src/crypto.h"
#include "src/ie.h"
#include "src/mpdu.h"
#include "src/util.h"
2017-09-22 05:06:41 +02:00
#include "src/eapol.h"
#include "src/handshake.h"
#include "src/dbus.h"
#include "src/nl80211util.h"
2020-01-06 13:39:39 +01:00
#include "src/frame-xchg.h"
#include "src/wscutil.h"
#include "src/eap-wsc.h"
#include "src/ip-pool.h"
#include "src/netconfig.h"
#include "src/ap.h"
#include "src/storage.h"
#include "src/diagnostic.h"
#include "src/band.h"
2022-02-28 19:49:37 +01:00
#include "src/common.h"
struct ap_state {
struct netdev *netdev;
2019-05-28 21:43:42 +02:00
struct l_genl_family *nl80211;
const struct ap_ops *ops;
ap_stopped_func_t stopped_func;
void *user_data;
char ssid[SSID_MAX_SIZE + 1];
char passphrase[64];
uint8_t psk[32];
enum band_freq band;
uint8_t channel;
struct band_chandef chandef;
uint8_t *authorized_macs;
unsigned int authorized_macs_num;
char wsc_name[33];
struct wsc_primary_device_type wsc_primary_device_type;
unsigned int ciphers;
enum ie_rsn_cipher_suite group_cipher;
uint32_t beacon_interval;
struct l_uintset *rates;
uint32_t start_stop_cmd_id;
uint32_t mlme_watch;
uint8_t gtk[CRYPTO_MAX_GTK_LEN];
uint8_t gtk_index;
struct l_queue *wsc_pbc_probes;
struct l_timeout *wsc_pbc_timeout;
uint16_t wsc_dpid;
uint8_t wsc_uuid_r[16];
uint16_t last_aid;
struct l_queue *sta_states;
struct l_dhcp_server *netconfig_dhcp;
struct l_rtnl_address *netconfig_addr4;
uint32_t rtnl_add_cmd;
uint32_t rtnl_get_gateway4_mac_cmd;
uint32_t rtnl_get_dns4_mac_cmd;
uint8_t netconfig_gateway4_mac[6];
uint8_t netconfig_dns4_mac[6];
2022-02-28 19:49:37 +01:00
uint32_t scan_id;
struct l_dbus_message *scan_pending;
struct l_queue *networks;
struct l_timeout *rekey_timeout;
unsigned int rekey_time;
bool started : 1;
bool gtk_set : 1;
bool netconfig_set_addr4 : 1;
bool in_event : 1;
bool free_pending : 1;
2022-02-28 19:49:37 +01:00
bool scanning : 1;
bool supports_ht : 1;
};
struct sta_state {
uint8_t addr[6];
bool associated;
bool rsna;
uint16_t aid;
struct mmpdu_field_capability capability;
uint16_t listen_interval;
struct l_uintset *rates;
uint32_t assoc_resp_cmd_id;
struct ap_state *ap;
uint8_t *assoc_ies;
size_t assoc_ies_len;
uint8_t *assoc_rsne;
struct eapol_sm *sm;
struct handshake_state *hs;
uint32_t gtk_query_cmd_id;
struct l_idle *stop_handshake_work;
struct l_settings *wsc_settings;
uint8_t wsc_uuid_e[16];
bool wsc_v2;
struct l_dhcp_lease *ip_alloc_lease;
bool ip_alloc_sent;
uint64_t rekey_time;
bool ht_support : 1;
bool ht_greenfield : 1;
};
struct ap_wsc_pbc_probe_record {
uint8_t mac[6];
uint8_t uuid_e[16];
uint64_t timestamp;
};
2022-02-28 19:49:37 +01:00
struct ap_network {
char ssid[SSID_MAX_SIZE + 1];
2022-02-28 19:49:37 +01:00
int16_t signal;
enum security security;
};
static char **global_addr4_strs;
static uint32_t netdev_watch;
2021-05-13 20:47:10 +02:00
static struct l_netlink *rtnl;
2022-02-28 19:49:37 +01:00
static bool network_match_ssid(const void *a, const void *b)
{
const struct ap_network *network = a;
const char *ssid = b;
return !strcmp(network->ssid, ssid);
}
static int network_signal_compare(const void *a, const void *b, void *user)
{
const struct ap_network *new_network = a;
const struct ap_network *network = b;
return (network->signal > new_network->signal) ? 1 : -1;
}
static struct ap_network *ap_network_find(struct ap_state *ap,
struct scan_bss *bss)
{
char ssid[SSID_MAX_SIZE + 1];
2022-02-28 19:49:37 +01:00
memcpy(ssid, bss->ssid, bss->ssid_len);
ssid[bss->ssid_len] = '\0';
return l_queue_find(ap->networks, network_match_ssid, ssid);
}
static void ap_network_append(struct ap_state *ap, struct scan_bss *bss)
{
struct ap_network *network;
enum security security;
if (util_ssid_is_hidden(bss->ssid_len, bss->ssid))
return;
network = ap_network_find(ap, bss);
if (!network) {
if (scan_bss_get_security(bss, &security) < 0)
return;
network = l_new(struct ap_network, 1);
network->signal = bss->signal_strength;
network->security = security;
memcpy(network->ssid, bss->ssid, bss->ssid_len);
network->ssid[bss->ssid_len] = '\0';
goto insert;
}
if (bss->signal_strength <= network->signal)
return;
l_queue_remove(ap->networks, network);
network->signal = bss->signal_strength;
insert:
l_queue_insert(ap->networks, network, network_signal_compare, NULL);
}
static void ap_stop_handshake(struct sta_state *sta)
{
if (sta->sm) {
eapol_sm_free(sta->sm);
sta->sm = NULL;
}
if (sta->hs) {
handshake_state_free(sta->hs);
sta->hs = NULL;
}
if (sta->wsc_settings) {
l_settings_free(sta->wsc_settings);
sta->wsc_settings = NULL;
}
if (sta->stop_handshake_work) {
l_idle_remove(sta->stop_handshake_work);
sta->stop_handshake_work = NULL;
}
}
static void ap_stop_handshake_work(struct l_idle *idle, void *user_data)
{
struct sta_state *sta = user_data;
ap_stop_handshake(sta);
}
static void ap_sta_free(void *data)
{
struct sta_state *sta = data;
2019-05-28 21:43:42 +02:00
struct ap_state *ap = sta->ap;
if (sta->rates)
l_uintset_free(sta->rates);
l_free(sta->assoc_ies);
if (sta->assoc_resp_cmd_id)
2019-05-28 21:43:42 +02:00
l_genl_family_cancel(ap->nl80211, sta->assoc_resp_cmd_id);
if (sta->gtk_query_cmd_id)
2019-05-28 21:43:42 +02:00
l_genl_family_cancel(ap->nl80211, sta->gtk_query_cmd_id);
if (sta->ip_alloc_lease && ap->netconfig_dhcp)
l_dhcp_server_lease_remove(ap->netconfig_dhcp,
sta->ip_alloc_lease);
ap_stop_handshake(sta);
2017-09-30 04:28:10 +02:00
l_free(sta);
}
static void ap_reset(struct ap_state *ap)
{
struct netdev *netdev = ap->netdev;
explicit_bzero(ap->passphrase, sizeof(ap->passphrase));
explicit_bzero(ap->psk, sizeof(ap->psk));
if (ap->authorized_macs_num) {
l_free(ap->authorized_macs);
ap->authorized_macs_num = 0;
}
if (ap->mlme_watch) {
l_genl_family_unregister(ap->nl80211, ap->mlme_watch);
ap->mlme_watch = 0;
}
2020-01-06 13:39:39 +01:00
frame_watch_wdev_remove(netdev_get_wdev_id(netdev));
if (ap->start_stop_cmd_id) {
2019-05-28 21:43:42 +02:00
l_genl_family_cancel(ap->nl80211, ap->start_stop_cmd_id);
ap->start_stop_cmd_id = 0;
}
if (ap->rtnl_add_cmd) {
l_netlink_cancel(rtnl, ap->rtnl_add_cmd);
ap->rtnl_add_cmd = 0;
}
if (ap->rtnl_get_gateway4_mac_cmd) {
l_netlink_cancel(rtnl, ap->rtnl_get_gateway4_mac_cmd);
ap->rtnl_get_gateway4_mac_cmd = 0;
}
if (ap->rtnl_get_dns4_mac_cmd) {
l_netlink_cancel(rtnl, ap->rtnl_get_dns4_mac_cmd);
ap->rtnl_get_dns4_mac_cmd = 0;
}
l_queue_destroy(l_steal_ptr(ap->sta_states), ap_sta_free);
if (ap->rates)
l_uintset_free(l_steal_ptr(ap->rates));
l_queue_destroy(l_steal_ptr(ap->wsc_pbc_probes), l_free);
2021-06-04 03:50:40 +02:00
l_timeout_remove(ap->wsc_pbc_timeout);
ap->started = false;
/* Delete IP if one was set by IWD */
if (ap->netconfig_set_addr4) {
l_rtnl_ifaddr_delete(rtnl, netdev_get_ifindex(netdev),
ap->netconfig_addr4, NULL, NULL, NULL);
ap->netconfig_set_addr4 = false;
}
l_rtnl_address_free(l_steal_ptr(ap->netconfig_addr4));
if (ap->netconfig_dhcp) {
l_dhcp_server_destroy(ap->netconfig_dhcp);
ap->netconfig_dhcp = NULL;
}
2022-02-28 19:49:37 +01:00
if (ap->scan_id) {
scan_cancel(netdev_get_wdev_id(ap->netdev), ap->scan_id);
ap->scan_id = 0;
}
if (ap->networks) {
l_queue_destroy(ap->networks, l_free);
ap->networks = NULL;
}
if (ap->rekey_timeout) {
l_timeout_remove(ap->rekey_timeout);
ap->rekey_timeout = NULL;
}
}
static bool ap_event_done(struct ap_state *ap, bool prev_in_event)
{
ap->in_event = prev_in_event;
if (!prev_in_event && ap->free_pending) {
l_genl_family_free(ap->nl80211);
l_free(ap);
return true;
}
return ap->free_pending;
}
/*
* Returns true if the AP is considered freed and the caller must avoid
* accessing @ap.
*/
static bool ap_event(struct ap_state *ap, enum ap_event_type event,
const void *event_data)
{
bool prev = ap->in_event;
if (ap->free_pending)
return true;
ap->in_event = true;
ap->ops->handle_event(event, event_data, ap->user_data);
return ap_event_done(ap, prev);
}
static void ap_check_rekeys(struct ap_state *ap);
static void ap_del_station(struct sta_state *sta, uint16_t reason,
bool disassociate)
{
2019-05-28 21:43:42 +02:00
struct ap_state *ap = sta->ap;
uint32_t ifindex = netdev_get_ifindex(ap->netdev);
struct ap_event_station_removed_data event_data;
bool send_event = false;
struct l_genl_msg *msg;
uint8_t subtype = disassociate ?
MPDU_MANAGEMENT_SUBTYPE_DISASSOCIATION :
MPDU_MANAGEMENT_SUBTYPE_DEAUTHENTICATION;
msg = nl80211_build_del_station(ifindex, sta->addr, reason, subtype);
l_genl_family_send(ap->nl80211, msg, NULL, NULL, NULL);
2019-05-28 21:43:42 +02:00
sta->associated = false;
if (sta->rsna) {
if (ap->ops->handle_event) {
memset(&event_data, 0, sizeof(event_data));
event_data.mac = sta->addr;
event_data.reason = reason;
send_event = true;
}
sta->rsna = false;
}
if (sta->assoc_resp_cmd_id) {
l_genl_family_cancel(ap->nl80211, sta->assoc_resp_cmd_id);
sta->assoc_resp_cmd_id = 0;
}
if (sta->gtk_query_cmd_id) {
2019-05-28 21:43:42 +02:00
l_genl_family_cancel(ap->nl80211, sta->gtk_query_cmd_id);
sta->gtk_query_cmd_id = 0;
}
ap_stop_handshake(sta);
/*
* If the event handler tears the AP down, we've made sure above that
* a subsequent ap_sta_free(sta) has no need to access sta->ap.
*/
if (send_event)
if (ap_event(ap, AP_EVENT_STATION_REMOVED, &event_data))
return;
/*
* Expire any DHCP leases owned by this client when it disconnects to
* make it harder for somebody to DoS the IP pool. If the client
* comes back and the lease is still in the expired leases list they
* will get their IP back.
*/
if (ap->netconfig_dhcp) {
bool prev = ap->in_event;
/*
* If the LEASE_EXPIRED event in ap_dhcp_event_cb triggers an
* ap_free(), delay cleanup to avoid destroying the DHCP
* server midway through l_dhcp_server_expire_by_mac().
*/
ap->in_event = true;
sta->ip_alloc_lease = NULL;
l_dhcp_server_expire_by_mac(ap->netconfig_dhcp, sta->addr);
if (ap_event_done(ap, prev))
return;
}
/*
* Set the rekey time to zero which will skip this station when
* determining the next rekey.
*/
sta->rekey_time = 0;
ap_check_rekeys(ap);
}
static void ap_start_rekey(struct ap_state *ap, struct sta_state *sta)
{
l_debug("Rekey STA "MAC, MAC_STR(sta->addr));
eapol_start(sta->sm);
}
static void ap_rekey_timeout(struct l_timeout *timeout, void *user_data)
{
struct ap_state *ap = user_data;
ap_check_rekeys(ap);
}
/*
* Used to check/start any rekeys which are due and reset the rekey timer to the
* next soonest station needing a rekey.
*
* TODO: Could adapt this to also take into account the next GTK rekey and
* service that as well. But GTK rekeys are not yet supported in AP mode.
*/
static void ap_check_rekeys(struct ap_state *ap)
{
const struct l_queue_entry *e;
uint64_t now = l_time_now();
uint64_t next = 0;
if (!ap->rekey_time)
return;
/* Find the station(s) that need a rekey and start it */
for (e = l_queue_get_entries(ap->sta_states); e; e = e->next) {
struct sta_state *sta = e->data;
if (!sta->associated || !sta->rsna || sta->rekey_time == 0)
continue;
if (l_time_before(now, sta->rekey_time)) {
uint64_t diff = l_time_diff(now, sta->rekey_time);
/* Finding the next rekey time */
if (next < diff)
next = diff;
continue;
}
ap_start_rekey(ap, sta);
}
/*
* Set the next rekey to the station needing it the soonest, or remove
* if a single station and wait until the rekey is complete to reset
* the timer.
*/
if (next)
l_timeout_modify(ap->rekey_timeout, l_time_to_secs(next));
else {
l_timeout_remove(ap->rekey_timeout);
ap->rekey_timeout = NULL;
}
}
static void ap_set_sta_rekey_timer(struct ap_state *ap, struct sta_state *sta)
{
if (!ap->rekey_time)
return;
sta->rekey_time = l_time_now() + ap->rekey_time - 1;
/*
* First/only station authenticated, set rekey timer. Any more stations
* will just set their rekey time and be serviced by the single callback
*/
if (!ap->rekey_timeout)
ap->rekey_timeout = l_timeout_create(
l_time_to_secs(ap->rekey_time),
ap_rekey_timeout, ap, NULL);
}
static bool ap_sta_match_addr(const void *a, const void *b)
{
const struct sta_state *sta = a;
return !memcmp(sta->addr, b, 6);
}
static void ap_remove_sta(struct sta_state *sta)
{
if (!l_queue_remove(sta->ap->sta_states, sta)) {
l_error("tried to remove station that doesn't exist");
return;
}
ap_sta_free(sta);
}
static void ap_set_sta_cb(struct l_genl_msg *msg, void *user_data)
{
if (l_genl_msg_get_error(msg) < 0)
l_error("SET_STATION failed: %i", l_genl_msg_get_error(msg));
}
static void ap_del_key_cb(struct l_genl_msg *msg, void *user_data)
{
if (l_genl_msg_get_error(msg) < 0)
l_debug("DEL_KEY failed: %i", l_genl_msg_get_error(msg));
}
static void ap_new_rsna(struct sta_state *sta)
{
struct ap_state *ap = sta->ap;
struct ap_event_station_added_data event_data = {};
l_debug("STA "MAC" authenticated", MAC_STR(sta->addr));
sta->rsna = true;
ap_set_sta_rekey_timer(ap, sta);
event_data.mac = sta->addr;
event_data.assoc_ies = sta->assoc_ies;
event_data.assoc_ies_len = sta->assoc_ies_len;
ap_event(ap, AP_EVENT_STATION_ADDED, &event_data);
}
static void ap_drop_rsna(struct sta_state *sta)
{
2019-05-28 21:43:42 +02:00
struct ap_state *ap = sta->ap;
struct l_genl_msg *msg;
uint32_t ifindex = netdev_get_ifindex(sta->ap->netdev);
uint8_t key_id = 0;
struct ap_event_station_removed_data event_data = {};
sta->rsna = false;
msg = nl80211_build_set_station_unauthorized(ifindex, sta->addr);
l_genl_msg_append_attr(msg, NL80211_ATTR_STA_AID, 2, &sta->aid);
2019-05-28 21:43:42 +02:00
if (!l_genl_family_send(ap->nl80211, msg, ap_set_sta_cb, NULL, NULL)) {
l_genl_msg_unref(msg);
l_error("Issuing SET_STATION failed");
}
msg = l_genl_msg_new_sized(NL80211_CMD_DEL_KEY, 64);
l_genl_msg_append_attr(msg, NL80211_ATTR_IFINDEX, 4, &ifindex);
l_genl_msg_append_attr(msg, NL80211_ATTR_KEY_IDX, 1, &key_id);
l_genl_msg_append_attr(msg, NL80211_ATTR_MAC, 6, sta->addr);
2019-05-28 21:43:42 +02:00
if (!l_genl_family_send(ap->nl80211, msg, ap_del_key_cb, NULL, NULL)) {
l_genl_msg_unref(msg);
l_error("Issuing DEL_KEY failed");
}
ap_stop_handshake(sta);
event_data.mac = sta->addr;
ap_event(ap, AP_EVENT_STATION_REMOVED, &event_data);
}
static void ap_set_rsn_info(struct ap_state *ap, struct ie_rsn_info *rsn)
{
memset(rsn, 0, sizeof(*rsn));
rsn->akm_suites = IE_RSN_AKM_SUITE_PSK;
rsn->pairwise_ciphers = ap->ciphers;
rsn->group_cipher = ap->group_cipher;
}
static void ap_wsc_exit_pbc(struct ap_state *ap)
{
if (!ap->wsc_pbc_timeout)
return;
l_timeout_remove(ap->wsc_pbc_timeout);
ap->wsc_dpid = 0;
ap_update_beacon(ap);
ap_event(ap, AP_EVENT_PBC_MODE_EXIT, NULL);
}
struct ap_pbc_record_expiry_data {
uint64_t min_time;
const uint8_t *mac;
};
static bool ap_wsc_pbc_record_expire(void *data, void *user_data)
{
struct ap_wsc_pbc_probe_record *record = data;
const struct ap_pbc_record_expiry_data *expiry_data = user_data;
if (record->timestamp > expiry_data->min_time &&
memcmp(record->mac, expiry_data->mac, 6))
return false;
l_free(record);
return true;
}
#define AP_WSC_PBC_MONITOR_TIME 120
#define AP_WSC_PBC_WALK_TIME 120
static void ap_process_wsc_probe_req(struct ap_state *ap, const uint8_t *from,
const uint8_t *wsc_data,
size_t wsc_data_len)
{
struct wsc_probe_request req;
struct ap_pbc_record_expiry_data expiry_data;
struct ap_wsc_pbc_probe_record *record;
uint64_t now;
bool empty;
uint8_t first_sta_addr[6] = {};
const struct l_queue_entry *entry;
if (wsc_parse_probe_request(wsc_data, wsc_data_len, &req) < 0)
return;
if (!(req.config_methods & WSC_CONFIGURATION_METHOD_PUSH_BUTTON))
return;
if (req.device_password_id != WSC_DEVICE_PASSWORD_ID_PUSH_BUTTON)
return;
/* Save the address of the first enrollee record */
record = l_queue_peek_head(ap->wsc_pbc_probes);
if (record)
memcpy(first_sta_addr, record->mac, 6);
now = l_time_now();
/*
* Expire entries older than PBC Monitor Time. While there also drop
* older entries from the same Enrollee that sent us this new Probe
* Request. It's unclear whether we should also match by the UUID-E.
*/
expiry_data.min_time = now - AP_WSC_PBC_MONITOR_TIME * 1000000;
expiry_data.mac = from;
l_queue_foreach_remove(ap->wsc_pbc_probes, ap_wsc_pbc_record_expire,
&expiry_data);
empty = l_queue_isempty(ap->wsc_pbc_probes);
if (!ap->wsc_pbc_probes)
ap->wsc_pbc_probes = l_queue_new();
/* Add new record */
record = l_new(struct ap_wsc_pbc_probe_record, 1);
memcpy(record->mac, from, 6);
memcpy(record->uuid_e, req.uuid_e, sizeof(record->uuid_e));
record->timestamp = now;
l_queue_push_tail(ap->wsc_pbc_probes, record);
/*
* If queue was non-empty and we've added one more record then we
* now have seen more than one PBC enrollee during the PBC Monitor
* Time and must exit "active PBC mode" due to "session overlap".
* WSC v2.0.5 Section 11.3:
* "Within the PBC Monitor Time, if the Registrar receives PBC
* probe requests from more than one Enrollee [...] then the
* Registrar SHALL signal a "session overlap" error. As a result,
* the Registrar shall refuse to enter active PBC mode and shall
* also refuse to perform a PBC-based Registration Protocol
* exchange [...]"
*/
if (empty)
return;
if (ap->wsc_pbc_timeout) {
l_debug("Exiting PBC mode due to Session Overlap");
ap_wsc_exit_pbc(ap);
}
/*
* "If the Registrar is engaged in PBC Registration Protocol
* exchange with an Enrollee and receives a Probe Request or M1
* Message from another Enrollee, then the Registrar should
* signal a "session overlap" error".
*
* For simplicity just interrupt the handshake with that enrollee.
*/
for (entry = l_queue_get_entries(ap->sta_states); entry;
entry = entry->next) {
struct sta_state *sta = entry->data;
if (!sta->associated || sta->assoc_rsne)
continue;
/*
* Check whether this enrollee is in PBC Registration
* Protocol by comparing its mac with the first (and only)
* record we had in ap->wsc_pbc_probes. If we had more
* than one record we wouldn't have been in
* "active PBC mode".
*/
if (memcmp(sta->addr, first_sta_addr, 6) ||
!memcmp(sta->addr, from, 6))
continue;
l_debug("Interrupting handshake with %s due to Session Overlap",
util_address_to_string(sta->addr));
if (sta->hs) {
netdev_handshake_failed(sta->hs,
MMPDU_REASON_CODE_DISASSOC_AP_BUSY);
sta->sm = NULL;
}
ap_remove_sta(sta);
}
}
static void ap_write_authorized_macs(struct ap_state *ap,
size_t out_len, uint8_t *out)
{
size_t len = ap->authorized_macs_num * 6;
if (!len)
return;
if (len > out_len)
len = out_len;
memcpy(out, ap->authorized_macs, len);
}
static size_t ap_get_wsc_ie_len(struct ap_state *ap,
enum mpdu_management_subtype type,
const struct mmpdu_header *client_frame,
size_t client_frame_len)
{
return 256;
}
static size_t ap_write_wsc_ie(struct ap_state *ap,
enum mpdu_management_subtype type,
const struct mmpdu_header *client_frame,
size_t client_frame_len,
uint8_t *out_buf)
{
uint8_t *wsc_data;
size_t wsc_data_size;
uint8_t *wsc_ie;
size_t wsc_ie_size;
size_t len = 0;
/* WSC IE */
if (type == MPDU_MANAGEMENT_SUBTYPE_PROBE_RESPONSE && client_frame) {
const uint8_t *from = client_frame->address_2;
struct wsc_probe_response wsc_pr = {};
const struct mmpdu_probe_request *req =
mmpdu_body(client_frame);
size_t req_ies_len = (void *) client_frame + client_frame_len -
(void *) req->ies;
ssize_t req_wsc_data_size;
/*
* Process the client Probe Request WSC IE first as it may
* cause us to exit "active PBC mode" and that will be
* immediately reflected in our Probe Response WSC IE.
*/
wsc_data = ie_tlv_extract_wsc_payload(req->ies, req_ies_len,
&req_wsc_data_size);
if (wsc_data) {
ap_process_wsc_probe_req(ap, from, wsc_data,
req_wsc_data_size);
l_free(wsc_data);
}
wsc_pr.version2 = true;
wsc_pr.state = WSC_STATE_CONFIGURED;
if (ap->wsc_pbc_timeout) {
wsc_pr.selected_registrar = true;
wsc_pr.device_password_id = ap->wsc_dpid;
wsc_pr.selected_reg_config_methods =
WSC_CONFIGURATION_METHOD_PUSH_BUTTON;
}
wsc_pr.response_type = WSC_RESPONSE_TYPE_AP;
memcpy(wsc_pr.uuid_e, ap->wsc_uuid_r, sizeof(wsc_pr.uuid_e));
wsc_pr.primary_device_type = ap->wsc_primary_device_type;
if (ap->wsc_name[0] != '\0')
l_strlcpy(wsc_pr.device_name, ap->wsc_name,
sizeof(wsc_pr.device_name));
wsc_pr.config_methods =
WSC_CONFIGURATION_METHOD_PUSH_BUTTON;
ap_write_authorized_macs(ap, sizeof(wsc_pr.authorized_macs),
wsc_pr.authorized_macs);
wsc_data = wsc_build_probe_response(&wsc_pr, &wsc_data_size);
} else if (type == MPDU_MANAGEMENT_SUBTYPE_BEACON) {
struct wsc_beacon wsc_beacon = {};
wsc_beacon.version2 = true;
wsc_beacon.state = WSC_STATE_CONFIGURED;
if (ap->wsc_pbc_timeout) {
wsc_beacon.selected_registrar = true;
wsc_beacon.device_password_id = ap->wsc_dpid;
wsc_beacon.selected_reg_config_methods =
WSC_CONFIGURATION_METHOD_PUSH_BUTTON;
}
ap_write_authorized_macs(ap, sizeof(wsc_beacon.authorized_macs),
wsc_beacon.authorized_macs);
wsc_data = wsc_build_beacon(&wsc_beacon, &wsc_data_size);
} else if (L_IN_SET(type, MPDU_MANAGEMENT_SUBTYPE_ASSOCIATION_RESPONSE,
MPDU_MANAGEMENT_SUBTYPE_REASSOCIATION_RESPONSE)) {
const uint8_t *from = client_frame->address_2;
struct wsc_association_response wsc_resp = {};
struct sta_state *sta =
l_queue_find(ap->sta_states, ap_sta_match_addr, from);
if (!sta || sta->assoc_rsne)
return 0;
wsc_resp.response_type = WSC_RESPONSE_TYPE_AP;
wsc_resp.version2 = sta->wsc_v2;
wsc_data = wsc_build_association_response(&wsc_resp,
&wsc_data_size);
} else
return 0;
if (!wsc_data) {
l_error("wsc_build_<mgmt-subtype> error (stype 0x%x)", type);
return 0;
}
wsc_ie = ie_tlv_encapsulate_wsc_payload(wsc_data, wsc_data_size,
&wsc_ie_size);
l_free(wsc_data);
if (!wsc_ie) {
l_error("ie_tlv_encapsulate_wsc_payload error (stype 0x%x)",
type);
return 0;
}
memcpy(out_buf + len, wsc_ie, wsc_ie_size);
len += wsc_ie_size;
l_free(wsc_ie);
return len;
}
static size_t ap_build_supported_rates(struct ap_state *ap,
uint8_t *rates)
{
uint32_t minr, maxr, count, r;
minr = l_uintset_find_min(ap->rates);
maxr = l_uintset_find_max(ap->rates);
count = 0;
for (r = minr; r <= maxr && count < 8; r++)
if (l_uintset_contains(ap->rates, r)) {
uint8_t flag = 0;
/* Mark only the lowest rate as Basic Rate */
if (count == 0)
flag = 0x80;
*rates++ = r | flag;
count++;
}
return count;
}
static size_t ap_get_extra_ies_len(struct ap_state *ap,
enum mpdu_management_subtype type,
const struct mmpdu_header *client_frame,
size_t client_frame_len)
{
size_t len = 0;
len += ap_get_wsc_ie_len(ap, type, client_frame, client_frame_len);
/* WMM IE length */
if (ap->supports_ht)
len += 50;
if (ap->ops->get_extra_ies_len)
len += ap->ops->get_extra_ies_len(type, client_frame,
client_frame_len,
ap->user_data);
return len;
}
/* WMM Specification 2.2.2 WMM Parameter Element */
struct ap_wmm_ac_record {
#if defined(__LITTLE_ENDIAN_BITFIELD)
uint8_t aifsn : 4;
uint8_t acm : 1;
uint8_t aci : 2;
uint8_t reserved : 1;
uint8_t ecw_min : 4;
uint8_t ecw_max : 4;
#elif defined (__BIG_ENDIAN_BITFIELD)
uint8_t reserved : 1;
uint8_t aci : 2;
uint8_t acm : 1;
uint8_t aifsn : 4;
2023-01-23 16:45:22 +01:00
uint8_t ecw_max : 4;
uint8_t ecw_min : 4;
#else
#error "Please fix <asm/byteorder.h"
#endif
__le16 txop_limit;
} __attribute__((packed));
static size_t ap_write_wmm_ies(struct ap_state *ap, uint8_t *out_buf)
{
unsigned int i;
struct wiphy *wiphy = netdev_get_wiphy(ap->netdev);
/*
* Linux kernel requires APs include WMM Information element if
* supporting HT/VHT/etc.
*
* The only value we can actually get from the kernel is UAPSD. The
* remaining values (AC parameter records) are made up or defaults
* defined in the WMM spec are used.
*/
*out_buf++ = IE_TYPE_VENDOR_SPECIFIC;
*out_buf++ = 24;
memcpy(out_buf, microsoft_oui, sizeof(microsoft_oui));
out_buf += sizeof(microsoft_oui);
*out_buf++ = 2; /* WMM OUI Type */
*out_buf++ = 1; /* WMM Parameter subtype */
*out_buf++ = 1; /* WMM Version */
*out_buf++ = wiphy_supports_uapsd(wiphy) ? 1 << 7 : 0;
*out_buf++ = 0; /* reserved */
for (i = 0; i < 4; i++) {
struct ap_wmm_ac_record ac = { 0 };
ac.aifsn = 2;
ac.acm = 0;
ac.aci = i;
ac.ecw_min = 1;
ac.ecw_max = 15;
l_put_le16(0, &ac.txop_limit);
memcpy(out_buf + (i * 4), &ac, sizeof(struct ap_wmm_ac_record));
}
return 26;
}
static size_t ap_write_extra_ies(struct ap_state *ap,
enum mpdu_management_subtype type,
const struct mmpdu_header *client_frame,
size_t client_frame_len,
uint8_t *out_buf)
{
size_t len = 0;
len += ap_write_wsc_ie(ap, type, client_frame, client_frame_len,
out_buf + len);
if (ap->supports_ht)
len += ap_write_wmm_ies(ap, out_buf + len);
if (ap->ops->write_extra_ies)
len += ap->ops->write_extra_ies(type,
client_frame, client_frame_len,
out_buf + len, ap->user_data);
return len;
}
static size_t ap_build_ht_capability(struct ap_state *ap, uint8_t *buf)
{
struct wiphy *wiphy = netdev_get_wiphy(ap->netdev);
size_t ht_capa_len;
const uint8_t *ht_capa = wiphy_get_ht_capabilities(wiphy, ap->band,
&ht_capa_len);
memcpy(buf, ht_capa, ht_capa_len);
return ht_capa_len;
}
static size_t ap_build_ht_operation(struct ap_state *ap, uint8_t *buf)
{
const struct l_queue_entry *e;
unsigned int non_ht = false;
unsigned int non_greenfield = false;
memset(buf, 0, 22);
*buf++ = ap->channel;
/*
* If 40MHz set 'Secondary Channel Offset' (bits 0-1) to above/below
* and set 'STA Channel Width' (bit 2) to indicate non-20Mhz.
*/
if (ap->chandef.channel_width == BAND_CHANDEF_WIDTH_20)
goto check_stas;
else if (ap->chandef.frequency < ap->chandef.center1_frequency)
*buf |= 1 & 0x3;
else
*buf |= 3 & 0x3;
*buf |= 1 << 2;
check_stas:
for (e = l_queue_get_entries(ap->sta_states); e; e = e->next) {
struct sta_state *sta = e->data;
if (!sta->associated)
continue;
if (!sta->ht_support)
non_ht = true;
else if (!sta->ht_greenfield)
non_greenfield = true;
}
if (non_greenfield)
set_bit(buf, 10);
if (non_ht)
set_bit(buf, 12);
/*
* TODO: Basic MCS set for all associated STAs
*/
return 22;
}
/*
* Build a Beacon frame or a Probe Response frame's header and body until
* the TIM IE. Except for the optional TIM IE which is inserted by the
* kernel when needed, our contents for both frames are the same.
* See Beacon format in 8.3.3.2 and Probe Response format in 8.3.3.10.
*
* 802.11-2016, Section 9.4.2.1:
* "The frame body components specified for many management subtypes result
* in elements ordered by ascending values of the Element ID field and then
* the Element ID Extension field (when present), with the exception of the
* MIC Management element (9.4.2.55)."
*/
static size_t ap_build_beacon_pr_head(struct ap_state *ap,
enum mpdu_management_subtype stype,
const uint8_t *dest, uint8_t *out_buf,
size_t out_len)
{
struct mmpdu_header *mpdu = (void *) out_buf;
uint16_t capability = IE_BSS_CAP_ESS | IE_BSS_CAP_PRIVACY;
const uint8_t *bssid = netdev_get_address(ap->netdev);
size_t len;
struct ie_tlv_builder builder;
memset(mpdu, 0, 36); /* Zero out header + non-IE fields */
/* Header */
mpdu->fc.protocol_version = 0;
mpdu->fc.type = MPDU_TYPE_MANAGEMENT;
mpdu->fc.subtype = stype;
memcpy(mpdu->address_1, dest, 6); /* DA */
memcpy(mpdu->address_2, bssid, 6); /* SA */
memcpy(mpdu->address_3, bssid, 6); /* BSSID */
/* Body non-IE fields */
l_put_le16(ap->beacon_interval, out_buf + 32); /* Beacon Interval */
l_put_le16(capability, out_buf + 34); /* Capability Info */
ie_tlv_builder_init(&builder, out_buf + 36, out_len - 36);
/* SSID IE */
ie_tlv_builder_next(&builder, IE_TYPE_SSID);
ie_tlv_builder_set_data(&builder, ap->ssid, strlen(ap->ssid));
/* Supported Rates IE */
ie_tlv_builder_next(&builder, IE_TYPE_SUPPORTED_RATES);
len = ap_build_supported_rates(ap, ie_tlv_builder_get_data(&builder));
ie_tlv_builder_set_length(&builder, len);
/* DSSS Parameter Set IE for DSSS, HR, ERP and HT PHY rates */
ie_tlv_builder_next(&builder, IE_TYPE_DSSS_PARAMETER_SET);
ie_tlv_builder_set_data(&builder, &ap->channel, 1);
if (ap->supports_ht) {
ie_tlv_builder_next(&builder, IE_TYPE_HT_CAPABILITIES);
len = ap_build_ht_capability(ap,
ie_tlv_builder_get_data(&builder));
ie_tlv_builder_set_length(&builder, len);
ie_tlv_builder_next(&builder, IE_TYPE_HT_OPERATION);
len = ap_build_ht_operation(ap,
ie_tlv_builder_get_data(&builder));
ie_tlv_builder_set_length(&builder, len);
}
ie_tlv_builder_finalize(&builder, &out_len);
return 36 + out_len;
}
static size_t ap_build_country_ie(struct ap_state *ap, uint8_t *out_buf,
size_t buf_len)
{
size_t len;
size_t i;
int spacing;
uint8_t *pos = out_buf;
uint8_t nchans = 1;
struct wiphy *wiphy = netdev_get_wiphy(ap->netdev);
const struct band_freq_attrs *last = NULL;
const struct band_freq_attrs *list = wiphy_get_frequency_info_list(
wiphy, ap->band, &len);
if (!list || wiphy_country_is_unknown(wiphy))
return 0;
if (L_WARN_ON(buf_len < 5))
goto no_space;
*pos++ = IE_TYPE_COUNTRY;
/* length not yet known */
pos++;
wiphy_get_reg_domain_country(wiphy, (char *)pos);
pos += 2;
*pos++ = ' ';
buf_len -= 5;
if (ap->band == BAND_FREQ_2_4_GHZ)
spacing = 1;
else
spacing = 4;
/*
* Construct a list of subband triplet entries. Each entry contains a
* starting channel and a number of channels which are spaced evenly
* and use the same TX power. Any deviation from this results in a new
* channel group.
*
* TODO: 6GHz requires operating triplets, not subband triplets.
*/
for (i = 0; i < len; i++) {
const struct band_freq_attrs *attr = &list[i];
if (!attr->supported || attr->disabled)
continue;
if (!last) {
/* Room for one complete triplet */
if (L_WARN_ON(buf_len < 3))
goto no_space;
*pos++ = i;
last = attr;
continue;
}
if (spacing != attr - last ||
attr->tx_power != last->tx_power) {
/* finish current group */
*pos++ = nchans;
*pos++ = last->tx_power;
buf_len -= 3;
/* start a new group */
if (L_WARN_ON(buf_len < 3))
goto no_space;
*pos++ = i;
nchans = 1;
} else
nchans++;
last = attr;
}
/* finish final group */
if (last) {
*pos++ = nchans;
*pos++ = last->tx_power;
}
len = pos - out_buf - 2;
/* Pad to even byte */
if (len & 1) {
if (L_WARN_ON(buf_len < 1))
goto no_space;
*pos++ = 0;
len++;
}
out_buf[1] = len;
return out_buf[1] + 2;
no_space:
return 0;
}
/* Beacon / Probe Response frame portion after the TIM IE */
static size_t ap_build_beacon_pr_tail(struct ap_state *ap,
enum mpdu_management_subtype stype,
const struct mmpdu_header *req,
size_t req_len, uint8_t *out_buf,
size_t buf_len)
{
size_t len;
struct ie_rsn_info rsn;
len = ap_build_country_ie(ap, out_buf, buf_len);
/* RSNE */
ap_set_rsn_info(ap, &rsn);
if (!ie_build_rsne(&rsn, out_buf + len))
return 0;
len += 2 + out_buf[len + 1];
len += ap_write_extra_ies(ap, stype, req, req_len, out_buf + len);
return len;
}
static void ap_set_beacon_cb(struct l_genl_msg *msg, void *user_data)
{
int error = l_genl_msg_get_error(msg);
if (error < 0)
l_error("SET_BEACON failed: %s (%i)", strerror(-error), -error);
}
void ap_update_beacon(struct ap_state *ap)
{
struct l_genl_msg *cmd;
uint8_t head[256];
size_t tail_len = 256 + ap_get_extra_ies_len(ap,
MPDU_MANAGEMENT_SUBTYPE_BEACON,
NULL, 0);
L_AUTO_FREE_VAR(uint8_t *, tail) = malloc(tail_len);
size_t head_len;
uint64_t wdev_id = netdev_get_wdev_id(ap->netdev);
static const uint8_t bcast_addr[6] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
if (L_WARN_ON(!ap->started))
return;
head_len = ap_build_beacon_pr_head(ap, MPDU_MANAGEMENT_SUBTYPE_BEACON,
bcast_addr, head, sizeof(head));
tail_len = ap_build_beacon_pr_tail(ap, MPDU_MANAGEMENT_SUBTYPE_BEACON,
NULL, 0, tail, tail_len);
if (L_WARN_ON(!head_len || !tail_len))
return;
cmd = l_genl_msg_new_sized(NL80211_CMD_SET_BEACON,
32 + head_len + tail_len);
l_genl_msg_append_attr(cmd, NL80211_ATTR_WDEV, 8, &wdev_id);
l_genl_msg_append_attr(cmd, NL80211_ATTR_BEACON_HEAD, head_len, head);
l_genl_msg_append_attr(cmd, NL80211_ATTR_BEACON_TAIL, tail_len, tail);
l_genl_msg_append_attr(cmd, NL80211_ATTR_IE, 0, "");
l_genl_msg_append_attr(cmd, NL80211_ATTR_IE_PROBE_RESP, 0, "");
l_genl_msg_append_attr(cmd, NL80211_ATTR_IE_ASSOC_RESP, 0, "");
if (l_genl_family_send(ap->nl80211, cmd, ap_set_beacon_cb, NULL, NULL))
return;
l_genl_msg_unref(cmd);
l_error("Issuing SET_BEACON failed");
}
static uint32_t ap_send_mgmt_frame(struct ap_state *ap,
const struct mmpdu_header *frame,
size_t frame_len,
frame_xchg_cb_t callback,
void *user_data)
{
uint32_t ch_freq = band_channel_to_freq(ap->channel, ap->band);
uint64_t wdev_id = netdev_get_wdev_id(ap->netdev);
struct iovec iov[2];
iov[0].iov_base = (void *) frame;
iov[0].iov_len = frame_len;
iov[1].iov_base = NULL;
return frame_xchg_start(wdev_id, iov, ch_freq, 0, 0, 0, 0,
callback, user_data, NULL, NULL);
}
#define IP4_FROM_STR(str) \
(__extension__ ({ \
struct in_addr ia; \
inet_pton(AF_INET, str, &ia) == 1 ? ia.s_addr : 0; \
}))
static void ap_start_handshake(struct sta_state *sta, bool use_eapol_start,
const uint8_t *gtk_rsc)
{
struct ap_state *ap = sta->ap;
const uint8_t *own_addr = netdev_get_address(ap->netdev);
struct ie_rsn_info rsn;
uint8_t bss_rsne[64];
handshake_state_set_ssid(sta->hs, (void *) ap->ssid, strlen(ap->ssid));
handshake_state_set_authenticator_address(sta->hs, own_addr);
handshake_state_set_supplicant_address(sta->hs, sta->addr);
ap_set_rsn_info(ap, &rsn);
/*
* Note: This assumes the length that ap_set_rsn_info() requires. If
* ap_set_rsn_info() changes then this will need to be updated.
*/
ie_build_rsne(&rsn, bss_rsne);
handshake_state_set_authenticator_ie(sta->hs, bss_rsne);
if (gtk_rsc)
handshake_state_set_gtk(sta->hs, sta->ap->gtk,
sta->ap->gtk_index, gtk_rsc);
if (ap->netconfig_dhcp)
sta->hs->support_ip_allocation = true;
sta->sm = eapol_sm_new(sta->hs);
if (!sta->sm) {
ap_stop_handshake(sta);
l_error("could not create sm object");
goto error;
}
eapol_sm_set_listen_interval(sta->sm, sta->listen_interval);
eapol_sm_set_use_eapol_start(sta->sm, use_eapol_start);
eapol_register(sta->sm);
eapol_start(sta->sm);
return;
error:
ap_del_station(sta, MMPDU_REASON_CODE_UNSPECIFIED, true);
}
static bool ap_sta_get_dhcp4_lease(struct sta_state *sta)
{
if (sta->ip_alloc_lease)
return true;
if (!sta->ap->netconfig_dhcp)
return false;
sta->ip_alloc_lease = l_dhcp_server_discover(sta->ap->netconfig_dhcp,
0, NULL, sta->addr);
if (!sta->ip_alloc_lease) {
l_error("l_dhcp_server_discover() failed, see IWD_DHCP_DEBUG "
"output");
return false;
}
return true;
}
static void ap_handshake_event(struct handshake_state *hs,
enum handshake_event event, void *user_data, ...)
{
struct sta_state *sta = user_data;
struct ap_state *ap = sta->ap;
va_list args;
va_start(args, user_data);
switch (event) {
case HANDSHAKE_EVENT_COMPLETE:
if (sta->ip_alloc_lease) {
if (hs->support_ip_allocation)
sta->ip_alloc_sent = true;
/*
* Move the lease from offered to active state if the
* client has actually used it. In any case drop our
* reference to the lease, the server owns the lease
* and if we want to keep our reference we'd need to
* react to relevant server events.
*/
if (sta->ip_alloc_sent)
l_dhcp_server_request(ap->netconfig_dhcp,
sta->ip_alloc_lease);
sta->ip_alloc_lease = NULL;
}
ap_new_rsna(sta);
break;
case HANDSHAKE_EVENT_FAILED:
netdev_handshake_failed(hs, va_arg(args, int));
/* fall through */
case HANDSHAKE_EVENT_SETTING_KEYS_FAILED:
sta->sm = NULL;
ap_remove_sta(sta);
break;
case HANDSHAKE_EVENT_P2P_IP_REQUEST:
{
char own_addr_str[INET_ADDRSTRLEN];
if (!ap_sta_get_dhcp4_lease(sta))
break;
2021-10-14 00:38:44 +02:00
sta->hs->client_ip_addr =
l_dhcp_lease_get_address_u32(sta->ip_alloc_lease);
sta->hs->subnet_mask =
l_dhcp_lease_get_netmask_u32(sta->ip_alloc_lease);
l_rtnl_address_get_address(ap->netconfig_addr4, own_addr_str);
sta->hs->go_ip_addr = IP4_FROM_STR(own_addr_str);
break;
}
case HANDSHAKE_EVENT_REKEY_COMPLETE:
ap_set_sta_rekey_timer(ap, sta);
break;
default:
break;
}
va_end(args);
}
static void ap_start_rsna(struct sta_state *sta, const uint8_t *gtk_rsc)
{
/* this handshake setup assumes PSK network */
sta->hs = netdev_handshake_state_new(sta->ap->netdev);
handshake_state_set_authenticator(sta->hs, true);
handshake_state_set_event_func(sta->hs, ap_handshake_event, sta);
handshake_state_set_supplicant_ie(sta->hs, sta->assoc_rsne);
handshake_state_set_pmk(sta->hs, sta->ap->psk, 32);
ap_start_handshake(sta, false, gtk_rsc);
}
static void ap_gtk_query_cb(struct l_genl_msg *msg, void *user_data)
{
struct sta_state *sta = user_data;
const void *gtk_rsc;
uint8_t zero_gtk_rsc[6];
int err;
sta->gtk_query_cmd_id = 0;
err = l_genl_msg_get_error(msg);
if (err == -ENOTSUP)
goto zero_rsc;
else if (err < 0)
goto error;
gtk_rsc = nl80211_parse_get_key_seq(msg);
if (!gtk_rsc) {
zero_rsc:
memset(zero_gtk_rsc, 0, 6);
gtk_rsc = zero_gtk_rsc;
}
ap_start_rsna(sta, gtk_rsc);
return;
error:
ap_del_station(sta, MMPDU_REASON_CODE_UNSPECIFIED, true);
}
static void ap_stop_handshake_schedule(struct sta_state *sta)
{
if (sta->stop_handshake_work)
return;
sta->stop_handshake_work = l_idle_create(ap_stop_handshake_work,
sta, NULL);
}
static void ap_wsc_handshake_event(struct handshake_state *hs,
enum handshake_event event, void *user_data, ...)
{
struct sta_state *sta = user_data;
va_list args;
struct ap_event_registration_success_data event_data;
struct ap_pbc_record_expiry_data expiry_data;
va_start(args, user_data);
switch (event) {
case HANDSHAKE_EVENT_FAILED:
sta->sm = NULL;
ap_stop_handshake_schedule(sta);
/*
* Some diagrams in WSC v2.0.5 indicate we should
* automatically deauthenticate the Enrollee. The text
* generally indicates the Enrollee may disassociate
* meaning that we should neither deauthenticate nor
* disassociate it automatically. Some places indicate
* that the enrollee can send a new EAPoL-Start right away
* on an unsuccessful registration, we don't implement
* this for now. STA remains associated but not authorized
* and basically has no other option than to re-associate
* or disassociate/deauthenticate.
*/
break;
case HANDSHAKE_EVENT_EAP_NOTIFY:
if (va_arg(args, unsigned int) != EAP_WSC_EVENT_CREDENTIAL_SENT)
break;
/*
* WSC v2.0.5 Section 11.3:
* "If the Registrar successfully runs the PBC method to
* completion with an Enrollee, that Enrollee's probe requests
* are removed from the Monitor Time check the next time the
* Registrar's PBC button is pressed."
*/
expiry_data.min_time = 0;
expiry_data.mac = sta->addr;
l_queue_foreach_remove(sta->ap->wsc_pbc_probes,
ap_wsc_pbc_record_expire,
&expiry_data);
event_data.mac = sta->addr;
ap_event(sta->ap, AP_EVENT_REGISTRATION_SUCCESS, &event_data);
break;
default:
break;
}
va_end(args);
}
static void ap_start_eap_wsc(struct sta_state *sta)
{
struct ap_state *ap = sta->ap;
/*
* WSC v2.0.5 Section 8.2: "The AP is allowed to send
* EAP-Request/Identity to the station before EAPOL-Start is received
* if a WSC IE is included in the (re)association request and the
* WSC IE is version 2.0 or higher.
*/
bool wait_for_eapol_start = !sta->wsc_v2;
sta->wsc_settings = l_settings_new();
l_settings_set_string(sta->wsc_settings, "Security", "EAP-Method",
"WSC-R");
l_settings_set_string(sta->wsc_settings, "WSC", "EnrolleeMAC",
util_address_to_string(sta->addr));
l_settings_set_bytes(sta->wsc_settings, "WSC", "UUID-R",
ap->wsc_uuid_r, 16);
l_settings_set_bytes(sta->wsc_settings, "WSC", "UUID-E",
sta->wsc_uuid_e, 16);
l_settings_set_uint(sta->wsc_settings, "WSC", "RFBand",
WSC_RF_BAND_2_4_GHZ);
l_settings_set_uint(sta->wsc_settings, "WSC", "ConfigurationMethods",
WSC_CONFIGURATION_METHOD_PUSH_BUTTON);
l_settings_set_string(sta->wsc_settings, "WSC", "WPA2-SSID", ap->ssid);
if (ap->passphrase[0])
l_settings_set_string(sta->wsc_settings,
"WSC", "WPA2-Passphrase",
ap->passphrase);
else
l_settings_set_bytes(sta->wsc_settings,
"WSC", "WPA2-PSK", ap->psk, 32);
sta->hs = netdev_handshake_state_new(ap->netdev);
handshake_state_set_authenticator(sta->hs, true);
handshake_state_set_event_func(sta->hs, ap_wsc_handshake_event, sta);
handshake_state_set_8021x_config(sta->hs, sta->wsc_settings);
ap_start_handshake(sta, wait_for_eapol_start, NULL);
}
static struct l_genl_msg *ap_build_cmd_del_key(struct ap_state *ap)
{
uint32_t ifindex = netdev_get_ifindex(ap->netdev);
struct l_genl_msg *msg;
msg = l_genl_msg_new_sized(NL80211_CMD_DEL_KEY, 128);
l_genl_msg_append_attr(msg, NL80211_ATTR_IFINDEX, 4, &ifindex);
l_genl_msg_enter_nested(msg, NL80211_ATTR_KEY);
l_genl_msg_append_attr(msg, NL80211_KEY_IDX, 1, &ap->gtk_index);
l_genl_msg_leave_nested(msg);
return msg;
}
static struct l_genl_msg *ap_build_cmd_new_station(struct sta_state *sta)
{
struct l_genl_msg *msg;
uint32_t ifindex = netdev_get_ifindex(sta->ap->netdev);
struct nl80211_sta_flag_update flags = {
.mask = (1 << NL80211_STA_FLAG_AUTHORIZED) |
(1 << NL80211_STA_FLAG_MFP),
.set = (1 << NL80211_STA_FLAG_AUTHENTICATED) |
(1 << NL80211_STA_FLAG_ASSOCIATED),
};
/*
* Without this feature nl80211 rejects NEW_STATION if the mask contains
* auth/assoc flags
*/
if (wiphy_has_feature(netdev_get_wiphy(sta->ap->netdev),
NL80211_FEATURE_FULL_AP_CLIENT_STATE))
flags.mask |= (1 << NL80211_STA_FLAG_ASSOCIATED) |
(1 << NL80211_STA_FLAG_AUTHENTICATED);
msg = l_genl_msg_new_sized(NL80211_CMD_NEW_STATION, 300);
l_genl_msg_append_attr(msg, NL80211_ATTR_IFINDEX, 4, &ifindex);
l_genl_msg_append_attr(msg, NL80211_ATTR_MAC, 6, sta->addr);
l_genl_msg_append_attr(msg, NL80211_ATTR_STA_FLAGS2, 8, &flags);
return msg;
}
static void ap_gtk_op_cb(struct l_genl_msg *msg, void *user_data)
{
if (l_genl_msg_get_error(msg) < 0) {
uint8_t cmd = l_genl_msg_get_command(msg);
const char *cmd_name =
cmd == NL80211_CMD_NEW_KEY ? "NEW_KEY" :
cmd == NL80211_CMD_SET_KEY ? "SET_KEY" :
"DEL_KEY";
l_error("%s failed for the GTK: %i",
cmd_name, l_genl_msg_get_error(msg));
}
}
static void ap_associate_sta_cb(struct l_genl_msg *msg, void *user_data)
{
struct sta_state *sta = user_data;
struct ap_state *ap = sta->ap;
if (l_genl_msg_get_error(msg) < 0) {
l_error("NEW_STATION/SET_STATION failed: %i",
l_genl_msg_get_error(msg));
return;
}
/*
* WSC v2.0.5 Section 8.2:
* "Therefore if a WSC IE is present in the (re)association request,
* the AP shall engage in EAP-WSC with the station and shall not
* attempt any other security handshake."
*
* So no need for group traffic, skip the GTK setup below.
*/
if (!sta->assoc_rsne) {
ap_start_eap_wsc(sta);
return;
}
/*
* Set up the group key. If this is our first STA then we have
* to add the new GTK to the kernel. In theory we should be
* able to supply our own RSC (e.g. generated randomly) and use it
* immediately for our 4-Way Handshake without querying the kernel.
* However NL80211_CMD_NEW_KEY only lets us set the receive RSC --
* the Rx PN for CCMP and the Rx IV for TKIP -- and the
* transmit RSC always starts as all zeros. There's effectively
* no way to set the Tx RSC or query the Rx RSC through nl80211.
* So we query the Tx RSC in both scenarios just in case some
* driver/hardware uses a different initial Tx RSC.
*
* Optimally we would get called back by the EAPoL state machine
* only when building the step 3 of 4 message to query the RSC as
* late as possible but that would complicate EAPoL.
*/
if (ap->group_cipher != IE_RSN_CIPHER_SUITE_NO_GROUP_TRAFFIC &&
!ap->gtk_set) {
enum crypto_cipher group_cipher =
ie_rsn_cipher_suite_to_cipher(ap->group_cipher);
int gtk_len = crypto_cipher_key_len(group_cipher);
/*
* Generate our GTK. Not following the example derivation
* method in 802.11-2016 section 12.7.1.4 because a simple
* l_getrandom is just as good.
*/
l_getrandom(ap->gtk, gtk_len);
ap->gtk_index = 1;
msg = nl80211_build_new_key_group(
netdev_get_ifindex(ap->netdev),
group_cipher, ap->gtk_index,
ap->gtk, gtk_len, NULL,
0, NULL);
2019-05-28 21:43:42 +02:00
if (!l_genl_family_send(ap->nl80211, msg, ap_gtk_op_cb, NULL,
NULL)) {
l_genl_msg_unref(msg);
l_error("Issuing NEW_KEY failed");
goto error;
}
msg = nl80211_build_set_key(netdev_get_ifindex(ap->netdev),
ap->gtk_index);
2019-05-28 21:43:42 +02:00
if (!l_genl_family_send(ap->nl80211, msg, ap_gtk_op_cb, NULL,
NULL)) {
l_genl_msg_unref(msg);
l_error("Issuing SET_KEY failed");
goto error;
}
/*
* Set the flag now because any new associating STA will
* just use NL80211_CMD_GET_KEY from now.
*/
ap->gtk_set = true;
}
if (ap->group_cipher == IE_RSN_CIPHER_SUITE_NO_GROUP_TRAFFIC)
ap_start_rsna(sta, NULL);
else {
msg = nl80211_build_get_key(netdev_get_ifindex(ap->netdev),
ap->gtk_index);
2019-05-28 21:43:42 +02:00
sta->gtk_query_cmd_id = l_genl_family_send(ap->nl80211, msg,
ap_gtk_query_cb,
sta, NULL);
if (!sta->gtk_query_cmd_id) {
l_genl_msg_unref(msg);
l_error("Issuing GET_KEY failed");
goto error;
}
}
return;
error:
ap_del_station(sta, MMPDU_REASON_CODE_UNSPECIFIED, true);
}
static void ap_associate_sta(struct ap_state *ap, struct sta_state *sta)
{
struct l_genl_msg *msg;
uint32_t ifindex = netdev_get_ifindex(ap->netdev);
uint8_t rates[256];
uint32_t r, minr, maxr, count = 0;
uint16_t capability = l_get_le16(&sta->capability);
if (sta->associated)
msg = nl80211_build_set_station_associated(ifindex, sta->addr);
else
msg = ap_build_cmd_new_station(sta);
sta->associated = true;
sta->rsna = false;
minr = l_uintset_find_min(sta->rates);
maxr = l_uintset_find_max(sta->rates);
for (r = minr; r <= maxr; r++)
if (l_uintset_contains(sta->rates, r))
rates[count++] = r;
l_genl_msg_append_attr(msg, NL80211_ATTR_STA_AID, 2, &sta->aid);
l_genl_msg_append_attr(msg, NL80211_ATTR_STA_SUPPORTED_RATES,
count, &rates);
l_genl_msg_append_attr(msg, NL80211_ATTR_STA_LISTEN_INTERVAL, 2,
&sta->listen_interval);
l_genl_msg_append_attr(msg, NL80211_ATTR_STA_CAPABILITY, 2,
&capability);
2019-05-28 21:43:42 +02:00
if (!l_genl_family_send(ap->nl80211, msg, ap_associate_sta_cb,
sta, NULL)) {
l_genl_msg_unref(msg);
if (l_genl_msg_get_command(msg) == NL80211_CMD_NEW_STATION)
l_error("Issuing NEW_STATION failed");
else
l_error("Issuing SET_STATION failed");
}
}
static bool ap_common_rates(struct l_uintset *ap_rates,
struct l_uintset *sta_rates)
{
uint32_t minr = l_uintset_find_min(ap_rates);
/* Our lowest rate is a Basic Rate so must be supported */
if (l_uintset_contains(sta_rates, minr))
return true;
return false;
}
static void ap_success_assoc_resp_cb(int err, void *user_data)
{
struct sta_state *sta = user_data;
struct ap_state *ap = sta->ap;
sta->assoc_resp_cmd_id = 0;
if (err) {
if (err == -ECOMM)
l_error("AP (Re)Association Response received no ACK");
else
l_error("AP (Re)Association Response not sent %s (%i)",
strerror(-err), -err);
/* If we were in State 3 or 4 go to back to State 2 */
if (sta->associated)
ap_del_station(sta, MMPDU_REASON_CODE_UNSPECIFIED,
true);
return;
}
/* If we were in State 2, 3 or 4 also go to State 3 */
ap_associate_sta(ap, sta);
l_info("AP (Re)Association Response ACK received");
}
static void ap_fail_assoc_resp_cb(int err, void *user_data)
{
if (err == -ECOMM)
l_error("AP (Re)Association Response with an error status "
"received no ACK");
else if (err)
l_error("AP (Re)Association Response with an error status "
"not sent: %s (%i)", strerror(-err), -err);
else
l_info("AP (Re)Association Response with an error status "
"delivered OK");
}
static uint32_t ap_assoc_resp(struct ap_state *ap, struct sta_state *sta,
const uint8_t *dest,
enum mmpdu_reason_code status_code,
bool reassoc, const struct mmpdu_header *req,
size_t req_len,
const struct ie_fils_ip_addr_request_info *
ip_req_info, frame_xchg_cb_t callback)
{
const uint8_t *addr = netdev_get_address(ap->netdev);
enum mpdu_management_subtype stype = reassoc ?
MPDU_MANAGEMENT_SUBTYPE_REASSOCIATION_RESPONSE :
MPDU_MANAGEMENT_SUBTYPE_ASSOCIATION_RESPONSE;
L_AUTO_FREE_VAR(uint8_t *, mpdu_buf) =
l_malloc(256 + ap_get_extra_ies_len(ap, stype, req, req_len));
struct mmpdu_header *mpdu = (void *) mpdu_buf;
struct mmpdu_association_response *resp;
size_t ies_len = 0;
size_t len;
uint16_t capability = IE_BSS_CAP_ESS | IE_BSS_CAP_PRIVACY;
memset(mpdu, 0, sizeof(*mpdu));
/* Header */
mpdu->fc.protocol_version = 0;
mpdu->fc.type = MPDU_TYPE_MANAGEMENT;
mpdu->fc.subtype = stype;
memcpy(mpdu->address_1, dest, 6); /* DA */
memcpy(mpdu->address_2, addr, 6); /* SA */
memcpy(mpdu->address_3, addr, 6); /* BSSID */
/* Association Response body */
resp = (void *) mmpdu_body(mpdu);
l_put_le16(capability, &resp->capability);
resp->status_code = L_CPU_TO_LE16(status_code);
resp->aid = sta ? L_CPU_TO_LE16(sta->aid | 0xc000) : 0;
/* Supported Rates IE */
resp->ies[ies_len++] = IE_TYPE_SUPPORTED_RATES;
len = ap_build_supported_rates(ap, resp->ies + ies_len + 1);
resp->ies[ies_len++] = len;
ies_len += len;
if (ap->supports_ht) {
resp->ies[ies_len++] = IE_TYPE_HT_CAPABILITIES;
len = ap_build_ht_capability(ap, resp->ies + ies_len + 1);
resp->ies[ies_len++] = len;
ies_len += len;
resp->ies[ies_len++] = IE_TYPE_HT_OPERATION;
len = ap_build_ht_operation(ap, resp->ies + ies_len + 1);
resp->ies[ies_len++] = len;
ies_len += len;
}
ies_len += ap_write_extra_ies(ap, stype, req, req_len,
resp->ies + ies_len);
if (ip_req_info) {
struct ie_fils_ip_addr_response_info ip_resp_info = {};
if (ip_req_info->ipv4 && sta && ap_sta_get_dhcp4_lease(sta)) {
uint32_t lease_lifetime =
l_dhcp_lease_get_lifetime(sta->ip_alloc_lease);
2021-10-14 00:38:44 +02:00
uint32_t gw =
l_dhcp_lease_get_gateway_u32(
sta->ip_alloc_lease);
char **lease_dns_str_list =
l_dhcp_lease_get_dns(sta->ip_alloc_lease);
2021-10-14 00:38:44 +02:00
ip_resp_info.ipv4_addr = l_dhcp_lease_get_address_u32(
sta->ip_alloc_lease);
ip_resp_info.ipv4_prefix_len =
2021-10-14 00:01:33 +02:00
l_dhcp_lease_get_prefix_length(
sta->ip_alloc_lease);
if (lease_lifetime != 0xffffffff)
ip_resp_info.ipv4_lifetime = lease_lifetime;
2021-10-14 00:38:44 +02:00
if (gw) {
ip_resp_info.ipv4_gateway = gw;
memcpy(ip_resp_info.ipv4_gateway_mac,
ap->netconfig_gateway4_mac, 6);
}
if (lease_dns_str_list && lease_dns_str_list[0]) {
ip_resp_info.ipv4_dns =
IP4_FROM_STR(lease_dns_str_list[0]);
memcpy(ip_resp_info.ipv4_dns_mac,
ap->netconfig_dns4_mac, 6);
}
l_strv_free(lease_dns_str_list);
sta->ip_alloc_sent = true;
} else if (ip_req_info->ipv4 || ip_req_info->ipv6) {
/*
* 802.11ai-2016 Section 11.47.3.3: "If the AP is unable
* to assign an IP address in the (Re)Association
* Response frame, then the AP sets the IP address
* assignment pending flag in the IP Address Response
* Control field of the FILS IP Address Assignment
* element to 1 and sets the IP address request timeout
* to 0 in (Re)Association Response frame."
*/
ip_resp_info.response_pending = 1;
ip_resp_info.response_timeout = 0;
}
ie_build_fils_ip_addr_response(&ip_resp_info,
resp->ies + ies_len);
ies_len += 2 + resp->ies[ies_len + 1];
}
return ap_send_mgmt_frame(ap, mpdu, resp->ies + ies_len - mpdu_buf,
callback, sta);
}
static int ap_parse_supported_rates(struct ie_tlv_iter *iter,
struct l_uintset **set)
{
const uint8_t *rates;
unsigned int len;
unsigned int i;
len = ie_tlv_iter_get_length(iter);
if (ie_tlv_iter_get_tag(iter) == IE_TYPE_SUPPORTED_RATES && len == 0)
return -EINVAL;
rates = ie_tlv_iter_get_data(iter);
if (!*set)
*set = l_uintset_new(108);
for (i = 0; i < len; i++) {
if (rates[i] == 0xff)
continue;
l_uintset_put(*set, rates[i] & 0x7f);
}
return 0;
}
/*
* This handles both the Association and Reassociation Request frames.
* Association Request is documented in 802.11-2016 9.3.3.6 (frame format),
* 802.11-2016 11.3.5.3 (MLME/SME) and Reassociation in 802.11-2016
* 9.3.3.8 (frame format), 802.11-2016 11.3.5.3 (MLME/SME).
*
* The difference between Association and Reassociation procedures is
* documented in 11.3.5.1 "General" but seems inconsistent with specific
* instructions in 11.3.5.3 vs. 11.3.5.5 and 11.3.5.2 vs. 11.3.5.4.
* According to 11.3.5.1:
* 1. Reassociation requires the STA to be already associated in the ESS,
* Association doesn't.
* 2. Unsuccessful Reassociation should not cause a state transition of
* the authentication state between the two STAs.
*
* The first requirement is not present in 11.3.5.5 which is virtually
* identical with 11.3.5.3, but we do implement it. Number 2 is also not
* reflected in 11.3.5.5 where the state transitions are the same as in
* 11.3.5.3 and 11.3.5.4 where the state transitions are the same as in
* 11.3.5.2 including f) "If a Reassociation Response frame is received
* with a status code other than SUCCESS [...] 1. [...] the state for
* the AP [...] shall be set to State 2 [...]"
*
* For the record here are the apparent differences between 802.11-2016
* 11.3.5.2 and 11.3.5.4 ignoring the s/Associate/Reassociate/ changes
* and the special case of Reassociation during a Fast Transition.
* o Points c) and d) are switched around.
* o On success, the STA is disassociated from all other APs in 11.3.5.2,
* and from the previous AP in 11.3.5.4 c). (Shouldn't make a
* difference as there seems to be no way for the STA to become
* associated with more than one AP)
* o After Association a 4-Way Handshake is always performed, after
* Reassociation it is only performed if STA was in State 3 according
* to 11.3.5.4 g). This is not reflected in 11.3.5.5 though.
* Additionally 11.3.5.4 and 11.3.5.5 require the STA and AP
* respectively to delete current PTKSA/GTKSA/IGTKSA at the beginning
* of the procedure independent of the STA state so without a 4-Way
* Handshake the two stations end up with no encryption keys.
*
* The main difference between 11.3.5.3 and 11.3.5.5 is presence of p).
*/
static void ap_assoc_reassoc(struct sta_state *sta, bool reassoc,
const struct mmpdu_field_capability *capability,
uint16_t listen_interval,
const uint8_t *ies, size_t ies_len,
const struct mmpdu_header *req)
{
struct ap_state *ap = sta->ap;
const char *ssid = NULL;
const uint8_t *rsn = NULL;
size_t ssid_len = 0;
_auto_(l_uintset_free) struct l_uintset *rates = NULL;
struct ie_rsn_info rsn_info;
int err;
struct ie_tlv_iter iter;
_auto_(l_free) uint8_t *wsc_data = NULL;
ssize_t wsc_data_len;
bool fils_ip_req = false;
struct ie_fils_ip_addr_request_info fils_ip_req_info;
if (sta->assoc_resp_cmd_id)
return;
if (reassoc && !sta->associated) {
err = MMPDU_REASON_CODE_CLASS3_FRAME_FROM_NONASSOC_STA;
goto unsupported;
}
wsc_data = ie_tlv_extract_wsc_payload(ies, ies_len, &wsc_data_len);
ie_tlv_iter_init(&iter, ies, ies_len);
while (ie_tlv_iter_next(&iter))
switch (ie_tlv_iter_get_tag(&iter)) {
case IE_TYPE_SSID:
ssid = (const char *) ie_tlv_iter_get_data(&iter);
ssid_len = ie_tlv_iter_get_length(&iter);
break;
case IE_TYPE_SUPPORTED_RATES:
case IE_TYPE_EXTENDED_SUPPORTED_RATES:
if (ap_parse_supported_rates(&iter, &rates) < 0) {
err = MMPDU_REASON_CODE_INVALID_IE;
goto bad_frame;
}
break;
case IE_TYPE_RSN:
/*
* WSC v2.0.5 Section 8.2:
* "Note that during the WSC association [...] the
* RSN IE and the WPA IE are irrelevant and shall be
* ignored by both the station and AP."
*/
if (wsc_data)
break;
if (ie_parse_rsne(&iter, &rsn_info) < 0) {
err = MMPDU_REASON_CODE_INVALID_IE;
goto bad_frame;
}
rsn = (const uint8_t *) ie_tlv_iter_get_data(&iter) - 2;
break;
case IE_TYPE_FILS_IP_ADDRESS:
if (fils_ip_req || ie_parse_fils_ip_addr_request(&iter,
&fils_ip_req_info) < 0) {
l_debug("Can't parse FILS IP Address Assignment"
" IE, ignoring it");
break;
}
fils_ip_req = true;
break;
case IE_TYPE_HT_CAPABILITIES:
if (ie_tlv_iter_get_length(&iter) != 26) {
err = MMPDU_REASON_CODE_INVALID_IE;
goto bad_frame;
}
if (test_bit(ie_tlv_iter_get_data(&iter), 4))
sta->ht_greenfield = true;
sta->ht_support = true;
break;
}
if (!rates || !ssid || (!wsc_data && !rsn) ||
ssid_len != strlen(ap->ssid) ||
memcmp(ssid, ap->ssid, ssid_len)) {
err = MMPDU_REASON_CODE_INVALID_IE;
goto bad_frame;
}
if (!ap_common_rates(ap->rates, rates)) {
err = MMPDU_REASON_CODE_UNSPECIFIED;
goto unsupported;
}
/* Is the client requesting RSNA establishment or WSC registration */
if (!rsn) {
struct wsc_association_request wsc_req;
struct ap_event_registration_start_data event_data;
struct ap_wsc_pbc_probe_record *record;
if (wsc_parse_association_request(wsc_data, wsc_data_len,
&wsc_req) < 0) {
err = MMPDU_REASON_CODE_INVALID_IE;
goto bad_frame;
}
if (wsc_req.request_type !=
WSC_REQUEST_TYPE_ENROLLEE_OPEN_8021X) {
err = MMPDU_REASON_CODE_INVALID_IE;
goto bad_frame;
}
if (!ap->wsc_pbc_timeout) {
l_debug("WSC association from %s but we're not in "
"PBC mode", util_address_to_string(sta->addr));
err = MMPDU_REASON_CODE_UNSPECIFIED;
goto bad_frame;
}
if (l_queue_isempty(ap->wsc_pbc_probes)) {
l_debug("%s tried to register as enrollee but we "
"don't have their Probe Request record",
util_address_to_string(sta->addr));
err = MMPDU_REASON_CODE_UNSPECIFIED;
goto bad_frame;
}
/*
* For PBC, the Enrollee must have sent the only PBC Probe
* Request within the monitor time and walk time.
*/
record = l_queue_peek_head(ap->wsc_pbc_probes);
if (memcmp(sta->addr, record->mac, 6)) {
l_debug("Session overlap during %s's attempt to "
"register as WSC enrollee",
util_address_to_string(sta->addr));
err = MMPDU_REASON_CODE_UNSPECIFIED;
goto bad_frame;
}
memcpy(sta->wsc_uuid_e, record->uuid_e, 16);
sta->wsc_v2 = wsc_req.version2;
event_data.mac = sta->addr;
event_data.assoc_ies = ies;
event_data.assoc_ies_len = ies_len;
if (ap_event(ap, AP_EVENT_REGISTRATION_START, &event_data))
return;
/*
* Since we're starting the PBC Registration Protocol
* we can now exit the "active PBC mode".
*/
ap_wsc_exit_pbc(ap);
} else {
if (rsn_info.mfpr && rsn_info.spp_a_msdu_required) {
err = MMPDU_REASON_CODE_UNSPECIFIED;
goto unsupported;
}
if (__builtin_popcount(rsn_info.pairwise_ciphers) != 1 ||
!(rsn_info.pairwise_ciphers & ap->ciphers)) {
err = MMPDU_REASON_CODE_INVALID_PAIRWISE_CIPHER;
goto unsupported;
}
if (rsn_info.akm_suites != IE_RSN_AKM_SUITE_PSK) {
err = MMPDU_REASON_CODE_INVALID_AKMP;
goto unsupported;
}
if (rsn_info.group_cipher != ap->group_cipher) {
err = MMPDU_REASON_CODE_INVALID_GROUP_CIPHER;
goto unsupported;
}
}
/* 802.11-2016 11.3.5.3 j) */
if (sta->rsna)
ap_drop_rsna(sta);
else if (sta->associated)
ap_stop_handshake(sta);
if (!sta->associated) {
/*
* Everything fine so far, assign an AID, send response.
* According to 802.11-2016 11.3.5.3 l) we will only go to
* State 3 (set sta->associated) once we receive the station's
* ACK or gave up on resends.
*/
sta->aid = ++ap->last_aid;
}
sta->capability = *capability;
sta->listen_interval = listen_interval;
if (sta->rates)
l_uintset_free(sta->rates);
sta->rates = l_steal_ptr(rates);
l_free(sta->assoc_ies);
if (rsn) {
sta->assoc_ies = l_memdup(ies, ies_len);
sta->assoc_ies_len = ies_len;
sta->assoc_rsne = sta->assoc_ies + (rsn - ies);
} else {
sta->assoc_ies = NULL;
sta->assoc_rsne = NULL;
}
sta->assoc_resp_cmd_id = ap_assoc_resp(ap, sta, sta->addr, 0, reassoc,
req, (void *) ies + ies_len -
(void *) req, fils_ip_req ?
&fils_ip_req_info : NULL,
ap_success_assoc_resp_cb);
if (!sta->assoc_resp_cmd_id)
l_error("Sending success (Re)Association Response failed");
return;
unsupported:
bad_frame:
/*
* TODO: MFP
*
* 802.11-2016 11.3.5.3 m)
* "If the ResultCode in the MLME-ASSOCIATE.response primitive is
* not SUCCESS and management frame protection is in use the state
* for the STA shall be left unchanged. If the ResultCode is not
* SUCCESS and management frame protection is not in use the state
* for the STA shall be set to State 3 if it was State 4."
*
* For now, we need to drop the RSNA.
*/
if (sta->rsna)
ap_drop_rsna(sta);
else if (sta->associated)
ap_stop_handshake(sta);
if (!ap_assoc_resp(ap, sta, sta->addr, err, reassoc,
req, (void *) ies + ies_len - (void *) req,
NULL, ap_fail_assoc_resp_cb))
l_error("Sending error (Re)Association Response failed");
}
/* 802.11-2016 9.3.3.6 */
2020-01-06 13:39:39 +01:00
static void ap_assoc_req_cb(const struct mmpdu_header *hdr, const void *body,
size_t body_len, int rssi, void *user_data)
{
struct ap_state *ap = user_data;
struct sta_state *sta;
const uint8_t *from = hdr->address_2;
const struct mmpdu_association_request *req = body;
const uint8_t *bssid = netdev_get_address(ap->netdev);
l_info("AP Association Request from %s", util_address_to_string(from));
if (memcmp(hdr->address_1, bssid, 6) ||
memcmp(hdr->address_3, bssid, 6))
return;
sta = l_queue_find(ap->sta_states, ap_sta_match_addr, from);
if (!sta) {
if (!ap_assoc_resp(ap, NULL, from,
MMPDU_REASON_CODE_STA_REQ_ASSOC_WITHOUT_AUTH,
false, hdr, body + body_len - (void *) hdr,
NULL, ap_fail_assoc_resp_cb))
l_error("Sending error Association Response failed");
return;
}
ap_assoc_reassoc(sta, false, &req->capability,
L_LE16_TO_CPU(req->listen_interval),
req->ies, body_len - sizeof(*req), hdr);
}
/* 802.11-2016 9.3.3.8 */
2020-01-06 13:39:39 +01:00
static void ap_reassoc_req_cb(const struct mmpdu_header *hdr, const void *body,
size_t body_len, int rssi, void *user_data)
{
struct ap_state *ap = user_data;
struct sta_state *sta;
const uint8_t *from = hdr->address_2;
const struct mmpdu_reassociation_request *req = body;
const uint8_t *bssid = netdev_get_address(ap->netdev);
int err;
l_info("AP Reassociation Request from %s",
util_address_to_string(from));
if (memcmp(hdr->address_1, bssid, 6) ||
memcmp(hdr->address_3, bssid, 6))
return;
sta = l_queue_find(ap->sta_states, ap_sta_match_addr, from);
if (!sta) {
err = MMPDU_REASON_CODE_STA_REQ_ASSOC_WITHOUT_AUTH;
goto bad_frame;
}
if (memcmp(req->current_ap_address, bssid, 6)) {
err = MMPDU_REASON_CODE_UNSPECIFIED;
goto bad_frame;
}
ap_assoc_reassoc(sta, true, &req->capability,
L_LE16_TO_CPU(req->listen_interval),
req->ies, body_len - sizeof(*req), hdr);
return;
bad_frame:
if (!ap_assoc_resp(ap, NULL, from, err, true,
hdr, body + body_len - (void *) hdr,
NULL, ap_fail_assoc_resp_cb))
l_error("Sending error Reassociation Response failed");
}
static void ap_probe_resp_cb(int err, void *user_data)
{
if (err == -ECOMM)
l_error("AP Probe Response received no ACK");
else if (err)
l_error("AP Probe Response not sent: %s (%i)",
strerror(-err), -err);
else
l_info("AP Probe Response delivered OK");
}
/*
* Parse Probe Request according to 802.11-2016 9.3.3.10 and act according
* to 802.11-2016 11.1.4.3
*/
2020-01-06 13:39:39 +01:00
static void ap_probe_req_cb(const struct mmpdu_header *hdr, const void *body,
size_t body_len, int rssi, void *user_data)
{
struct ap_state *ap = user_data;
const struct mmpdu_probe_request *req = body;
const char *ssid = NULL;
const uint8_t *ssid_list = NULL;
size_t ssid_len = 0, ssid_list_len = 0, len;
uint8_t dsss_channel = 0;
struct ie_tlv_iter iter;
const uint8_t *bssid = netdev_get_address(ap->netdev);
bool match = false;
uint32_t resp_len;
uint8_t *resp;
l_info("AP Probe Request from %s",
util_address_to_string(hdr->address_2));
ie_tlv_iter_init(&iter, req->ies, body_len - sizeof(*req));
while (ie_tlv_iter_next(&iter))
switch (ie_tlv_iter_get_tag(&iter)) {
case IE_TYPE_SSID:
ssid = (const char *) ie_tlv_iter_get_data(&iter);
ssid_len = ie_tlv_iter_get_length(&iter);
break;
case IE_TYPE_SSID_LIST:
ssid_list = ie_tlv_iter_get_data(&iter);
ssid_list_len = ie_tlv_iter_get_length(&iter);
break;
case IE_TYPE_DSSS_PARAMETER_SET:
if (ie_tlv_iter_get_length(&iter) != 1)
return;
dsss_channel = ie_tlv_iter_get_data(&iter)[0];
break;
}
/*
* Check if we should reply to this Probe Request according to
* 802.11-2016 section 11.1.4.3.2.
*/
if (memcmp(hdr->address_1, bssid, 6) &&
!util_is_broadcast_address(hdr->address_1))
return;
if (memcmp(hdr->address_3, bssid, 6) &&
!util_is_broadcast_address(hdr->address_3))
return;
if (!ssid || ssid_len == 0) /* Wildcard SSID */
match = true;
else if (ssid && ssid_len == strlen(ap->ssid) && /* One SSID */
!memcmp(ssid, ap->ssid, ssid_len))
match = true;
else if (ssid && ssid_len == 7 && !memcmp(ssid, "DIRECT-", 7) &&
!memcmp(ssid, ap->ssid, 7)) /* P2P wildcard */
match = true;
else if (ssid_list) { /* SSID List */
ie_tlv_iter_init(&iter, ssid_list, ssid_list_len);
while (ie_tlv_iter_next(&iter)) {
if (ie_tlv_iter_get_tag(&iter) != IE_TYPE_SSID)
return;
ssid = (const char *) ie_tlv_iter_get_data(&iter);
ssid_len = ie_tlv_iter_get_length(&iter);
if (ssid_len == strlen(ap->ssid) &&
!memcmp(ssid, ap->ssid, ssid_len)) {
match = true;
break;
}
}
}
if (dsss_channel != 0 && dsss_channel != ap->channel)
match = false;
if (!match)
return;
resp_len = 512 + ap_get_extra_ies_len(ap,
MPDU_MANAGEMENT_SUBTYPE_PROBE_RESPONSE,
hdr, body + body_len - (void *) hdr);
resp = l_new(uint8_t, resp_len);
len = ap_build_beacon_pr_head(ap,
MPDU_MANAGEMENT_SUBTYPE_PROBE_RESPONSE,
hdr->address_2, resp, resp_len);
len += ap_build_beacon_pr_tail(ap,
MPDU_MANAGEMENT_SUBTYPE_PROBE_RESPONSE,
hdr, body + body_len - (void *) hdr,
resp + len, resp_len - len);
ap_send_mgmt_frame(ap, (struct mmpdu_header *) resp, len,
ap_probe_resp_cb, NULL);
l_free(resp);
}
/* 802.11-2016 9.3.3.5 (frame format), 802.11-2016 11.3.5.9 (MLME/SME) */
2020-01-06 13:39:39 +01:00
static void ap_disassoc_cb(const struct mmpdu_header *hdr, const void *body,
size_t body_len, int rssi, void *user_data)
{
struct ap_state *ap = user_data;
struct sta_state *sta;
const struct mmpdu_disassociation *disassoc = body;
const uint8_t *bssid = netdev_get_address(ap->netdev);
l_info("AP Disassociation from %s, reason %i",
util_address_to_string(hdr->address_2),
(int) L_LE16_TO_CPU(disassoc->reason_code));
if (memcmp(hdr->address_1, bssid, 6) ||
memcmp(hdr->address_3, bssid, 6))
return;
sta = l_queue_find(ap->sta_states, ap_sta_match_addr, hdr->address_2);
if (sta && sta->assoc_resp_cmd_id) {
2019-05-28 21:43:42 +02:00
l_genl_family_cancel(ap->nl80211, sta->assoc_resp_cmd_id);
sta->assoc_resp_cmd_id = 0;
}
if (!sta || !sta->associated)
return;
ap_del_station(sta, L_LE16_TO_CPU(disassoc->reason_code), true);
}
static void ap_auth_reply_cb(int err, void *user_data)
{
if (err == -ECOMM)
l_error("AP Authentication frame 2 received no ACK");
else if (err)
l_error("AP Authentication frame 2 not sent: %s (%i)",
strerror(-err), -err);
else
l_info("AP Authentication frame 2 ACKed by STA");
}
static void ap_auth_reply(struct ap_state *ap, const uint8_t *dest,
enum mmpdu_reason_code status_code)
{
const uint8_t *addr = netdev_get_address(ap->netdev);
uint8_t mpdu_buf[64];
struct mmpdu_header *mpdu = (struct mmpdu_header *) mpdu_buf;
struct mmpdu_authentication *auth;
memset(mpdu, 0, sizeof(*mpdu));
/* Header */
mpdu->fc.protocol_version = 0;
mpdu->fc.type = MPDU_TYPE_MANAGEMENT;
mpdu->fc.subtype = MPDU_MANAGEMENT_SUBTYPE_AUTHENTICATION;
memcpy(mpdu->address_1, dest, 6); /* DA */
memcpy(mpdu->address_2, addr, 6); /* SA */
memcpy(mpdu->address_3, addr, 6); /* BSSID */
/* Authentication body */
auth = (void *) mmpdu_body(mpdu);
auth->algorithm = L_CPU_TO_LE16(MMPDU_AUTH_ALGO_OPEN_SYSTEM);
auth->transaction_sequence = L_CPU_TO_LE16(2);
auth->status = L_CPU_TO_LE16(status_code);
ap_send_mgmt_frame(ap, mpdu, (uint8_t *) auth + 6 - mpdu_buf,
ap_auth_reply_cb, NULL);
}
/*
* 802.11-2016 9.3.3.12 (frame format), 802.11-2016 11.3.4.3 and
* 802.11-2016 12.3.3.2 (MLME/SME)
*/
2020-01-06 13:39:39 +01:00
static void ap_auth_cb(const struct mmpdu_header *hdr, const void *body,
size_t body_len, int rssi, void *user_data)
{
struct ap_state *ap = user_data;
const struct mmpdu_authentication *auth = body;
const uint8_t *from = hdr->address_2;
const uint8_t *bssid = netdev_get_address(ap->netdev);
struct sta_state *sta;
l_info("AP Authentication from %s", util_address_to_string(from));
if (memcmp(hdr->address_1, bssid, 6) ||
memcmp(hdr->address_3, bssid, 6))
return;
if (ap->authorized_macs_num) {
unsigned int i;
2020-08-04 16:53:03 +02:00
for (i = 0; i < ap->authorized_macs_num; i++)
if (!memcmp(from, ap->authorized_macs + i * 6,
6))
2020-08-04 16:53:03 +02:00
break;
if (i == ap->authorized_macs_num) {
2020-08-04 16:53:03 +02:00
ap_auth_reply(ap, from, MMPDU_REASON_CODE_UNSPECIFIED);
return;
}
}
/* Only Open System authentication implemented here */
if (L_LE16_TO_CPU(auth->algorithm) !=
MMPDU_AUTH_ALGO_OPEN_SYSTEM) {
ap_auth_reply(ap, from, MMPDU_REASON_CODE_UNSPECIFIED);
return;
}
if (L_LE16_TO_CPU(auth->transaction_sequence) != 1) {
ap_auth_reply(ap, from, MMPDU_REASON_CODE_UNSPECIFIED);
return;
}
sta = l_queue_find(ap->sta_states, ap_sta_match_addr, from);
/*
* Figure 11-13 in 802.11-2016 11.3.2 shows a transition from
* States 3 / 4 to State 2 on "Successful 802.11 Authentication"
* however 11.3.4.2 and 11.3.4.3 clearly say the connection goes to
* State 2 only if it was in State 1:
*
* "c) [...] the state for the indicated STA shall be set to State 2
* if it was State 1; the state shall remain unchanged if it was other
* than State 1."
*/
if (sta)
goto done;
/*
* Per 12.3.3.2.3 with Open System the state change is immediate,
* no waiting for the response to be ACKed as with the association
* frames.
*/
sta = l_new(struct sta_state, 1);
memcpy(sta->addr, from, 6);
sta->ap = ap;
if (!ap->sta_states)
ap->sta_states = l_queue_new();
l_queue_push_tail(ap->sta_states, sta);
/*
* Nothing to do here netlink-wise as we can't receive any data
* frames until after association anyway. We do need to add a
* timeout for the authentication and possibly the kernel could
* handle that if we registered the STA with NEW_STATION now (TODO)
*/
done:
ap_auth_reply(ap, from, 0);
}
/* 802.11-2016 9.3.3.13 (frame format), 802.11-2016 11.3.4.5 (MLME/SME) */
2020-01-06 13:39:39 +01:00
static void ap_deauth_cb(const struct mmpdu_header *hdr, const void *body,
size_t body_len, int rssi, void *user_data)
{
struct ap_state *ap = user_data;
const struct mmpdu_deauthentication *deauth = body;
const uint8_t *bssid = netdev_get_address(ap->netdev);
l_info("AP Deauthentication from %s, reason %i",
util_address_to_string(hdr->address_2),
(int) L_LE16_TO_CPU(deauth->reason_code));
if (memcmp(hdr->address_1, bssid, 6) ||
memcmp(hdr->address_3, bssid, 6))
return;
ap_station_disconnect(ap, hdr->address_2,
L_LE16_TO_CPU(deauth->reason_code));
}
static void do_debug(const char *str, void *user_data)
{
const char *prefix = user_data;
l_info("%s%s", prefix, str);
}
static void ap_start_failed(struct ap_state *ap, int err)
{
struct ap_event_start_failed_data data = { err };
ap->in_event = true;
ap->ops->handle_event(AP_EVENT_START_FAILED, &data, ap->user_data);
ap_reset(ap);
l_genl_family_free(ap->nl80211);
l_free(ap);
}
static void ap_dhcp_event_cb(struct l_dhcp_server *server,
enum l_dhcp_server_event event, void *user_data,
const struct l_dhcp_lease *lease)
{
struct ap_state *ap = user_data;
switch (event) {
case L_DHCP_SERVER_EVENT_NEW_LEASE:
ap_event(ap, AP_EVENT_DHCP_NEW_LEASE, lease);
break;
case L_DHCP_SERVER_EVENT_LEASE_EXPIRED:
ap_event(ap, AP_EVENT_DHCP_LEASE_EXPIRED, lease);
break;
default:
break;
}
}
static void ap_start_cb(struct l_genl_msg *msg, void *user_data)
{
struct ap_state *ap = user_data;
ap->start_stop_cmd_id = 0;
if (l_genl_msg_get_error(msg) < 0) {
l_error("START_AP failed: %i", l_genl_msg_get_error(msg));
ap_start_failed(ap, l_genl_msg_get_error(msg));
return;
}
if (ap->netconfig_dhcp) {
if (!l_dhcp_server_start(ap->netconfig_dhcp)) {
l_error("DHCP server failed to start");
ap_start_failed(ap, -EINVAL);
return;
}
if (!l_dhcp_server_set_event_handler(ap->netconfig_dhcp,
ap_dhcp_event_cb,
ap, NULL)) {
l_error("l_dhcp_server_set_event_handler failed");
ap_start_failed(ap, -EIO);
return;
}
}
ap->started = true;
ap_event(ap, AP_EVENT_STARTED, NULL);
}
static struct l_genl_msg *ap_build_cmd_start_ap(struct ap_state *ap)
{
struct l_genl_msg *cmd;
uint8_t head[256];
size_t tail_len = 256 + ap_get_extra_ies_len(ap,
MPDU_MANAGEMENT_SUBTYPE_BEACON,
NULL, 0);
L_AUTO_FREE_VAR(uint8_t *, tail) = l_malloc(tail_len);
size_t head_len;
uint32_t dtim_period = 3;
uint32_t ifindex = netdev_get_ifindex(ap->netdev);
struct wiphy *wiphy = netdev_get_wiphy(ap->netdev);
uint32_t hidden_ssid = NL80211_HIDDEN_SSID_NOT_IN_USE;
unsigned int nl_ciphers_cnt = __builtin_popcount(ap->ciphers);
uint32_t nl_ciphers[nl_ciphers_cnt];
uint32_t group_nl_cipher =
ie_rsn_cipher_suite_to_cipher(ap->group_cipher);
uint32_t nl_akm = CRYPTO_AKM_PSK;
uint32_t wpa_version = NL80211_WPA_VERSION_2;
uint32_t auth_type = NL80211_AUTHTYPE_OPEN_SYSTEM;
unsigned int i;
static const uint8_t bcast_addr[6] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
static const uint8_t zero_addr[6] = { 0 };
for (i = 0, nl_ciphers_cnt = 0; i < 8; i++)
if (ap->ciphers & (1 << i))
nl_ciphers[nl_ciphers_cnt++] =
ie_rsn_cipher_suite_to_cipher(1 << i);
head_len = ap_build_beacon_pr_head(ap, MPDU_MANAGEMENT_SUBTYPE_BEACON,
bcast_addr, head, sizeof(head));
tail_len = ap_build_beacon_pr_tail(ap, MPDU_MANAGEMENT_SUBTYPE_BEACON,
NULL, 0, tail, tail_len);
if (!head_len || !tail_len)
return NULL;
cmd = l_genl_msg_new_sized(NL80211_CMD_START_AP, 256 + head_len +
tail_len + strlen(ap->ssid));
/* SET_BEACON attrs */
l_genl_msg_append_attr(cmd, NL80211_ATTR_BEACON_HEAD, head_len, head);
l_genl_msg_append_attr(cmd, NL80211_ATTR_BEACON_TAIL, tail_len, tail);
l_genl_msg_append_attr(cmd, NL80211_ATTR_IE, 0, "");
l_genl_msg_append_attr(cmd, NL80211_ATTR_IE_PROBE_RESP, 0, "");
l_genl_msg_append_attr(cmd, NL80211_ATTR_IE_ASSOC_RESP, 0, "");
/* START_AP attrs */
l_genl_msg_append_attr(cmd, NL80211_ATTR_BEACON_INTERVAL, 4,
&ap->beacon_interval);
l_genl_msg_append_attr(cmd, NL80211_ATTR_DTIM_PERIOD, 4, &dtim_period);
l_genl_msg_append_attr(cmd, NL80211_ATTR_IFINDEX, 4, &ifindex);
l_genl_msg_append_attr(cmd, NL80211_ATTR_SSID, strlen(ap->ssid),
ap->ssid);
l_genl_msg_append_attr(cmd, NL80211_ATTR_HIDDEN_SSID, 4,
&hidden_ssid);
l_genl_msg_append_attr(cmd, NL80211_ATTR_CIPHER_SUITES_PAIRWISE,
nl_ciphers_cnt * 4, nl_ciphers);
l_genl_msg_append_attr(cmd, NL80211_ATTR_CIPHER_SUITE_GROUP, 4,
&group_nl_cipher);
l_genl_msg_append_attr(cmd, NL80211_ATTR_WPA_VERSIONS, 4, &wpa_version);
l_genl_msg_append_attr(cmd, NL80211_ATTR_AKM_SUITES, 4, &nl_akm);
l_genl_msg_append_attr(cmd, NL80211_ATTR_AUTH_TYPE, 4, &auth_type);
l_genl_msg_append_attr(cmd, NL80211_ATTR_WIPHY_FREQ, 4,
&ap->chandef.frequency);
l_genl_msg_append_attr(cmd, NL80211_ATTR_CHANNEL_WIDTH, 4,
&ap->chandef.channel_width);
if (ap->chandef.center1_frequency)
l_genl_msg_append_attr(cmd, NL80211_ATTR_CENTER_FREQ1, 4,
&ap->chandef.center1_frequency);
if (wiphy_supports_probe_resp_offload(wiphy)) {
uint8_t probe_resp[head_len + tail_len];
uint8_t *ptr = probe_resp;
ptr += ap_build_beacon_pr_head(ap,
MPDU_MANAGEMENT_SUBTYPE_PROBE_RESPONSE,
zero_addr, ptr, sizeof(probe_resp));
ptr += ap_build_beacon_pr_tail(ap,
MPDU_MANAGEMENT_SUBTYPE_PROBE_RESPONSE,
NULL, 0, ptr, sizeof(probe_resp) -
(ptr - probe_resp));
l_genl_msg_append_attr(cmd, NL80211_ATTR_PROBE_RESP,
ptr - probe_resp, probe_resp);
}
if (wiphy_has_ext_feature(wiphy,
NL80211_EXT_FEATURE_CONTROL_PORT_OVER_NL80211)) {
l_genl_msg_append_attr(cmd, NL80211_ATTR_SOCKET_OWNER, 0, NULL);
l_genl_msg_append_attr(cmd,
NL80211_ATTR_CONTROL_PORT_OVER_NL80211,
0, NULL);
}
return cmd;
}
static bool ap_start_send(struct ap_state *ap)
{
struct l_genl_msg *cmd = ap_build_cmd_start_ap(ap);
if (!cmd) {
l_error("ap_build_cmd_start_ap failed");
return false;
}
ap->start_stop_cmd_id = l_genl_family_send(ap->nl80211, cmd,
ap_start_cb, ap, NULL);
if (!ap->start_stop_cmd_id) {
l_error("AP_START l_genl_family_send failed");
l_genl_msg_unref(cmd);
return false;
}
return true;
}
static void ap_ifaddr4_added_cb(int error, uint16_t type, const void *data,
uint32_t len, void *user_data)
{
struct ap_state *ap = user_data;
ap->rtnl_add_cmd = 0;
if (error) {
l_error("Failed to set IP address");
ap_start_failed(ap, error);
return;
}
if (!ap_start_send(ap))
ap_start_failed(ap, -EIO);
}
static bool ap_parse_new_station_ies(const void *data, uint16_t len,
uint8_t **rsn_out,
struct l_uintset **rates_out)
{
struct ie_tlv_iter iter;
uint8_t *rsn = NULL;
struct l_uintset *rates = NULL;
ie_tlv_iter_init(&iter, data, len);
while (ie_tlv_iter_next(&iter)) {
switch (ie_tlv_iter_get_tag(&iter)) {
case IE_TYPE_RSN:
if (rsn || ie_parse_rsne(&iter, NULL) < 0)
goto parse_error;
rsn = l_memdup(ie_tlv_iter_get_data(&iter) - 2,
ie_tlv_iter_get_length(&iter) + 2);
break;
case IE_TYPE_EXTENDED_SUPPORTED_RATES:
if (rates || ap_parse_supported_rates(&iter, &rates) <
0)
goto parse_error;
break;
}
}
*rsn_out = rsn;
if (rates_out)
*rates_out = rates;
2021-04-30 18:38:04 +02:00
else
l_uintset_free(rates);
return true;
parse_error:
if (rsn)
l_free(rsn);
if (rates)
l_uintset_free(rates);
return false;
}
static void ap_handle_new_station(struct ap_state *ap, struct l_genl_msg *msg)
{
struct sta_state *sta;
struct l_genl_attr attr;
uint16_t type;
uint16_t len;
const void *data;
const uint8_t *mac = NULL;
uint8_t *assoc_rsne = NULL;
if (!l_genl_attr_init(&attr, msg))
return;
while (l_genl_attr_next(&attr, &type, &len, &data)) {
switch (type) {
case NL80211_ATTR_IE:
if (assoc_rsne)
goto cleanup;
if (!ap_parse_new_station_ies(data, len, &assoc_rsne,
NULL))
return;
break;
case NL80211_ATTR_MAC:
if (len != 6)
goto cleanup;
mac = data;
break;
}
}
if (!assoc_rsne || !mac)
goto cleanup;
/*
* Softmac's should already have a station created. The above check
* may also fail for softmac cards.
*/
sta = l_queue_find(ap->sta_states, ap_sta_match_addr, mac);
if (sta)
goto cleanup;
sta = l_new(struct sta_state, 1);
memcpy(sta->addr, mac, 6);
sta->ap = ap;
sta->assoc_rsne = assoc_rsne;
sta->aid = ++ap->last_aid;
sta->associated = true;
if (!ap->sta_states)
ap->sta_states = l_queue_new();
l_queue_push_tail(ap->sta_states, sta);
if (ap->supports_ht)
ap_update_beacon(ap);
msg = nl80211_build_set_station_unauthorized(
netdev_get_ifindex(ap->netdev), mac);
if (!l_genl_family_send(ap->nl80211, msg, ap_associate_sta_cb,
sta, NULL)) {
l_genl_msg_unref(msg);
l_error("Issuing SET_STATION failed");
ap_del_station(sta, MMPDU_REASON_CODE_UNSPECIFIED, true);
}
return;
cleanup:
l_free(assoc_rsne);
}
static void ap_handle_del_station(struct ap_state *ap, struct l_genl_msg *msg)
{
struct l_genl_attr attr;
uint16_t type;
uint16_t len;
const void *data;
uint8_t mac[6];
uint16_t reason = MMPDU_REASON_CODE_UNSPECIFIED;
if (!l_genl_attr_init(&attr, msg))
return;
while (l_genl_attr_next(&attr, &type, &len, &data)) {
switch (type) {
case NL80211_ATTR_MAC:
if (len != 6)
return;
memcpy(mac, data, 6);
break;
case NL80211_ATTR_REASON_CODE:
if (len != 2)
return;
reason = l_get_u16(data);
}
}
ap_station_disconnect(ap, mac, reason);
}
static void ap_mlme_notify(struct l_genl_msg *msg, void *user_data)
{
struct ap_state *ap = user_data;
uint32_t ifindex;
if (nl80211_parse_attrs(msg, NL80211_ATTR_IFINDEX, &ifindex,
NL80211_ATTR_UNSPEC) < 0 ||
ifindex != netdev_get_ifindex(ap->netdev))
return;
switch (l_genl_msg_get_command(msg)) {
case NL80211_CMD_STOP_AP:
ap->in_event = true;
if (ap->start_stop_cmd_id) {
struct ap_event_start_failed_data data = { -ECANCELED };
l_genl_family_cancel(ap->nl80211,
ap->start_stop_cmd_id);
ap->start_stop_cmd_id = 0;
ap->ops->handle_event(AP_EVENT_START_FAILED, &data,
ap->user_data);
} else if (ap->started) {
ap->started = false;
ap->ops->handle_event(AP_EVENT_STOPPING, NULL,
ap->user_data);
}
ap_reset(ap);
l_genl_family_free(ap->nl80211);
l_free(ap);
break;
case NL80211_CMD_NEW_STATION:
ap_handle_new_station(ap, msg);
break;
case NL80211_CMD_DEL_STATION:
ap_handle_del_station(ap, msg);
break;
}
}
static void ap_get_gateway4_mac_cb(int error, const uint8_t *hwaddr,
size_t hwaddr_len, void *user_data)
{
struct ap_state *ap = user_data;
ap->rtnl_get_gateway4_mac_cmd = 0;
if (error) {
l_debug("Error: %s (%i)", strerror(-error), -error);
return;
}
if (L_WARN_ON(unlikely(hwaddr_len != 6)))
return;
l_debug("Resolved mac to " MAC, MAC_STR(hwaddr));
memcpy(ap->netconfig_gateway4_mac, hwaddr, 6);
}
static void ap_get_dns4_mac_cb(int error, const uint8_t *hwaddr,
size_t hwaddr_len, void *user_data)
{
struct ap_state *ap = user_data;
ap->rtnl_get_dns4_mac_cmd = 0;
if (error) {
l_debug("Error: %s (%i)", strerror(-error), -error);
return;
}
if (L_WARN_ON(unlikely(hwaddr_len != 6)))
return;
l_debug("Resolved mac to " MAC, MAC_STR(hwaddr));
memcpy(ap->netconfig_dns4_mac, hwaddr, 6);
}
static void ap_query_macs(struct ap_state *ap, const char *addr_str,
uint8_t prefix_len, const char *gateway_str,
const char **dns_str_list)
{
uint32_t local = IP4_FROM_STR(addr_str);
uint32_t gateway = 0;
uint32_t dns = 0;
uint32_t ifindex = netdev_get_ifindex(ap->netdev);
/*
* For simplicity only check the ARP/NDP tables to see if we already
* have the MACs that we need. There doesn't seem to be an API to
* actually resolve addresses that are not in these tables other than
* by triggering IP traffic to those hosts, such as a ping. In a PC
* or mobile device scenario we're likely to have these MACs already,
* otherwise we give up as this is a pretty low-priority feature.
*/
if (gateway_str) {
gateway = IP4_FROM_STR(gateway_str);
if (L_WARN_ON(unlikely(!gateway)))
return;
if (gateway == local)
memcpy(ap->netconfig_gateway4_mac,
netdev_get_address(ap->netdev), 6);
else {
ap->rtnl_get_gateway4_mac_cmd =
l_rtnl_neighbor_get_hwaddr(rtnl, ifindex,
AF_INET, &gateway,
ap_get_gateway4_mac_cb,
ap, NULL);
if (!ap->rtnl_get_gateway4_mac_cmd)
l_debug("l_rtnl_neighbor_get_hwaddr() failed "
"for the gateway IP");
}
}
if (dns_str_list) {
dns = IP4_FROM_STR(dns_str_list[0]);
if (L_WARN_ON(unlikely(!dns)))
return;
/* TODO: can also skip query if dns == gateway */
if (dns == local)
memcpy(ap->netconfig_dns4_mac,
netdev_get_address(ap->netdev), 6);
else if (util_ip_subnet_match(prefix_len, &dns, &local)) {
ap->rtnl_get_dns4_mac_cmd =
l_rtnl_neighbor_get_hwaddr(rtnl, ifindex,
AF_INET, &dns,
ap_get_dns4_mac_cb,
ap, NULL);
if (!ap->rtnl_get_dns4_mac_cmd)
l_debug("l_rtnl_neighbor_get_hwaddr() failed "
"for the DNS IP");
}
}
}
#define AP_DEFAULT_IPV4_PREFIX_LEN 28
static int ap_setup_netconfig4(struct ap_state *ap, const char **addr_str_list,
uint8_t prefix_len, const char *gateway_str,
const char **ip_range,
const char **dns_str_list,
unsigned int lease_time)
{
uint32_t ifindex = netdev_get_ifindex(ap->netdev);
struct l_rtnl_address *existing_addr = ip_pool_get_addr4(ifindex);
struct l_rtnl_address *new_addr = NULL;
int ret;
struct in_addr ia;
struct l_dhcp_server *dhcp = NULL;
bool r;
char addr_str_buf[INET_ADDRSTRLEN];
dhcp = l_dhcp_server_new(ifindex);
if (!dhcp) {
l_error("Failed to create DHCP server on ifindex %u", ifindex);
ret = -EIO;
goto cleanup;
}
if (getenv("IWD_DHCP_DEBUG"))
l_dhcp_server_set_debug(dhcp, do_debug,
"[DHCPv4 SERV] ", NULL);
/*
* The address pool specified for this AP (if any) has the priority,
* next is the address currently set on the interface (if any) and
* last is the global AP address pool (APRanges setting).
*/
if (addr_str_list) {
if (!prefix_len)
prefix_len = AP_DEFAULT_IPV4_PREFIX_LEN;
ret = ip_pool_select_addr4(addr_str_list, prefix_len,
&new_addr);
} else if (existing_addr &&
l_rtnl_address_get_prefix_length(existing_addr) <
31) {
if (!prefix_len)
prefix_len = l_rtnl_address_get_prefix_length(
existing_addr);
if (!l_rtnl_address_get_address(existing_addr, addr_str_buf)) {
ret = -EIO;
goto cleanup;
}
new_addr = l_rtnl_address_new(addr_str_buf, prefix_len);
ret = 0;
} else {
if (!prefix_len)
prefix_len = AP_DEFAULT_IPV4_PREFIX_LEN;
ret = ip_pool_select_addr4((const char **) global_addr4_strs,
prefix_len, &new_addr);
}
if (ret)
goto cleanup;
ret = -EIO;
/*
* l_dhcp_server_start() would retrieve the current IPv4 from
* the interface but set it anyway in case there are multiple
* addresses, saves one ioctl too.
*/
if (!l_rtnl_address_get_address(new_addr, addr_str_buf)) {
l_error("l_rtnl_address_get_address failed");
goto cleanup;
}
if (!l_dhcp_server_set_ip_address(dhcp, addr_str_buf)) {
l_error("l_dhcp_server_set_ip_address failed");
goto cleanup;
}
ia.s_addr = htonl(util_netmask_from_prefix(prefix_len));
if (!l_dhcp_server_set_netmask(dhcp, inet_ntoa(ia))) {
l_error("l_dhcp_server_set_netmask failed");
goto cleanup;
}
if (gateway_str && !l_dhcp_server_set_gateway(dhcp, gateway_str)) {
l_error("l_dhcp_server_set_gateway failed");
goto cleanup;
}
if (ip_range) {
r = l_dhcp_server_set_ip_range(dhcp, ip_range[0], ip_range[1]);
if (!r) {
l_error("l_dhcp_server_set_ip_range failed");
goto cleanup;
}
}
if (dns_str_list) {
r = l_dhcp_server_set_dns(dhcp, (char **) dns_str_list);
if (!r) {
l_error("l_dhcp_server_set_dns failed");
goto cleanup;
}
}
if (lease_time && !l_dhcp_server_set_lease_time(dhcp, lease_time)) {
l_error("l_dhcp_server_set_lease_time failed");
goto cleanup;
}
ap->netconfig_set_addr4 = true;
ap->netconfig_addr4 = l_steal_ptr(new_addr);
ap->netconfig_dhcp = l_steal_ptr(dhcp);
ret = 0;
if (existing_addr && l_rtnl_address_get_prefix_length(existing_addr) >
prefix_len) {
char addr_str_buf2[INET_ADDRSTRLEN];
if (l_rtnl_address_get_address(existing_addr, addr_str_buf2) &&
!strcmp(addr_str_buf, addr_str_buf2))
ap->netconfig_set_addr4 = false;
}
ap_query_macs(ap, addr_str_buf, prefix_len, gateway_str, dns_str_list);
cleanup:
l_dhcp_server_destroy(dhcp);
l_rtnl_address_free(new_addr);
l_rtnl_address_free(existing_addr);
return ret;
}
static int ap_load_ipv4(struct ap_state *ap, const struct l_settings *config)
{
int ret = -EINVAL;
char **addr_str_list = NULL;
uint32_t static_addr = 0;
uint8_t prefix_len = 0;
char *gateway_str = NULL;
char **ip_range = NULL;
char **dns_str_list = NULL;
unsigned int lease_time = 0;
struct in_addr ia;
if (!l_settings_has_group(config, "IPv4") || !netconfig_enabled())
return 0;
if (l_settings_has_key(config, "IPv4", "Address")) {
addr_str_list = l_settings_get_string_list(config, "IPv4",
"Address", ',');
if (!addr_str_list || !*addr_str_list) {
l_error("Can't parse the profile [IPv4].Address "
"setting as a string list");
goto done;
}
/* Check for the static IP syntax: Address=<IP> */
if (l_strv_length(addr_str_list) == 1 &&
inet_pton(AF_INET, *addr_str_list, &ia) == 1)
static_addr = ntohl(ia.s_addr);
}
if (l_settings_has_key(config, "IPv4", "Netmask")) {
L_AUTO_FREE_VAR(char *, netmask_str) =
l_settings_get_string(config, "IPv4", "Netmask");
if (inet_pton(AF_INET, netmask_str, &ia) != 1) {
l_error("Can't parse the profile [IPv4].Netmask "
"setting");
goto done;
}
prefix_len = __builtin_popcount(ia.s_addr);
if (ntohl(ia.s_addr) != util_netmask_from_prefix(prefix_len)) {
l_error("Invalid profile [IPv4].Netmask value");
goto done;
}
}
if (l_settings_has_key(config, "IPv4", "Gateway")) {
gateway_str = l_settings_get_string(config, "IPv4", "Gateway");
if (!gateway_str) {
l_error("Invalid profile [IPv4].Gateway value");
goto done;
}
}
if (l_settings_get_value(config, "IPv4", "IPRange")) {
int i;
uint32_t netmask;
uint8_t tmp_len = prefix_len ?: AP_DEFAULT_IPV4_PREFIX_LEN;
ip_range = l_settings_get_string_list(config, "IPv4",
"IPRange", ',');
if (!static_addr) {
l_error("[IPv4].IPRange only makes sense in an AP "
"profile if a static local address has also "
"been specified");
goto done;
}
if (!ip_range || l_strv_length(ip_range) != 2) {
l_error("Can't parse the profile [IPv4].IPRange "
"setting as two address strings");
goto done;
}
netmask = util_netmask_from_prefix(tmp_len);
for (i = 0; i < 2; i++) {
struct in_addr range_addr;
2021-06-04 19:31:36 +02:00
if (inet_pton(AF_INET, ip_range[i], &range_addr) != 1) {
l_error("Can't parse address in "
"[IPv4].IPRange[%i]", i + 1);
goto done;
}
if ((static_addr ^ ntohl(range_addr.s_addr)) &
netmask) {
ia.s_addr = htonl(static_addr);
l_error("[IPv4].IPRange[%i] is not in the "
"%s/%i subnet", i + 1, inet_ntoa(ia),
tmp_len);
goto done;
}
}
}
if (l_settings_has_key(config, "IPv4", "DNSList")) {
dns_str_list = l_settings_get_string_list(config, "IPv4",
"DNSList", ',');
if (!dns_str_list || !*dns_str_list) {
l_error("Can't parse the profile [IPv4].DNSList "
"setting as a string list");
goto done;
}
}
if (l_settings_has_key(config, "IPv4", "LeaseTime")) {
if (!l_settings_get_uint(config, "IPv4", "LeaseTime",
&lease_time) ||
lease_time < 1) {
l_error("Error parsing [IPv4].LeaseTime as a positive "
"integer");
goto done;
}
}
ret = ap_setup_netconfig4(ap, (const char **) addr_str_list, prefix_len,
gateway_str, (const char **) ip_range,
(const char **) dns_str_list,
lease_time);
done:
l_strv_free(addr_str_list);
l_free(gateway_str);
l_strv_free(ip_range);
l_strv_free(dns_str_list);
return ret;
}
static bool ap_load_psk(struct ap_state *ap, const struct l_settings *config)
{
L_AUTO_FREE_VAR(char *, passphrase) =
l_settings_get_string(config, "Security", "Passphrase");
int err;
if (passphrase) {
if (strlen(passphrase) > 63) {
l_error("AP [Security].Passphrase must not exceed "
"63 characters");
return false;
}
strcpy(ap->passphrase, passphrase);
}
if (l_settings_has_key(config, "Security", "PreSharedKey")) {
size_t psk_len;
L_AUTO_FREE_VAR(uint8_t *, psk) = l_settings_get_bytes(config,
"Security",
"PreSharedKey",
&psk_len);
if (!psk || psk_len != 32) {
l_error("AP [Security].PreSharedKey must be a 32-byte "
"hexstring");
return false;
}
memcpy(ap->psk, psk, 32);
return true;
}
if (!passphrase) {
l_error("AP requires at least one of [Security].PreSharedKey, "
"[Security].Passphrase to be present");
return false;
}
err = crypto_psk_from_passphrase(passphrase, (uint8_t *) ap->ssid,
strlen(ap->ssid), ap->psk);
if (err < 0) {
l_error("AP couldn't generate the PSK from given "
"[Security].Passphrase value: %s (%i)",
strerror(-err), -err);
return false;
}
return true;
}
/*
* Note: only PTK/GTK ciphers are supported here since this is all these are
* used for.
*/
static enum ie_rsn_cipher_suite ap_string_to_cipher(const char *str)
{
if (!strcmp(str, "UseGroupCipher"))
return IE_RSN_CIPHER_SUITE_USE_GROUP_CIPHER;
else if (!strcmp(str, "TKIP"))
return IE_RSN_CIPHER_SUITE_TKIP;
else if (!strcmp(str, "CCMP-128") || !strcmp(str, "CCMP"))
return IE_RSN_CIPHER_SUITE_CCMP;
else if (!strcmp(str, "GCMP-128") || !strcmp(str, "GCMP"))
return IE_RSN_CIPHER_SUITE_GCMP;
else if (!strcmp(str, "GCMP-256"))
return IE_RSN_CIPHER_SUITE_GCMP_256;
else if (!strcmp(str, "CCMP-256"))
return IE_RSN_CIPHER_SUITE_CCMP_256;
else
return 0;
}
static char **ap_ciphers_to_strv(uint16_t ciphers)
{
uint16_t i;
char **list = l_strv_new();
for (i = 0; i < 16; i++) {
if (!(ciphers & (1 << i)))
continue;
list = l_strv_append(list,
ie_rsn_cipher_suite_to_string(1 << i));
}
return list;
}
static bool ap_validate_band_channel(struct ap_state *ap)
{
struct wiphy *wiphy = netdev_get_wiphy(ap->netdev);
uint32_t freq;
const struct band_freq_attrs *attr;
if (!(wiphy_get_supported_bands(wiphy) & ap->band)) {
l_error("AP hardware does not support band");
return -EINVAL;
}
freq = band_channel_to_freq(ap->channel, ap->band);
if (!freq) {
l_error("AP invalid band (%s) and channel (%u) combination",
(ap->band & BAND_FREQ_5_GHZ) ? "5GHz" : "2.4GHz",
ap->channel);
return false;
}
attr = wiphy_get_frequency_info(wiphy, freq);
if (!attr || attr->disabled) {
l_error("AP frequency %u disabled or unsupported", freq);
return false;
}
if (ap->supports_ht) {
if (band_freq_to_ht_chandef(freq, attr, &ap->chandef) < 0) {
/*
* This is unlikely ever to fail since there are no
* 20Mhz restrictions, but just in case fall back to
* non-HT.
*/
ap->supports_ht = false;
l_warn("AP could not find HT chandef for frequency %u"
" using 20Mhz no-HT", freq);
goto no_ht;
}
} else {
no_ht:
ap->chandef.frequency = freq;
ap->chandef.channel_width = BAND_CHANDEF_WIDTH_20NOHT;
}
l_debug("AP using frequency %u and channel width %s",
ap->chandef.frequency,
band_chandef_width_to_string(
ap->chandef.channel_width));
return true;
}
static int ap_load_config(struct ap_state *ap, const struct l_settings *config,
bool *out_cck_rates)
{
struct wiphy *wiphy = netdev_get_wiphy(ap->netdev);
size_t len;
L_AUTO_FREE_VAR(char *, strval) = NULL;
_auto_(l_strv_free) char **ciphers_str = NULL;
uint16_t cipher_mask;
int err;
int i;
strval = l_settings_get_string(config, "General", "SSID");
if (L_WARN_ON(!strval))
return -ENOMSG;
len = strlen(strval);
if (len < 1 || len > SSID_MAX_SIZE) {
l_error("AP SSID length outside the [1, 32] range");
return -EINVAL;
}
if (L_WARN_ON(!l_utf8_validate(strval, len, NULL)))
return -EINVAL;
strcpy(ap->ssid, strval);
l_free(l_steal_ptr(strval));
if (!ap_load_psk(ap, config))
return -EINVAL;
/*
* This looks at the network configuration settings in @config and
* relevant global settings and if it determines that netconfig is to
* be enabled for the AP, it both creates the DHCP server object and
* processes IP settings, applying the defaults where needed.
*/
err = ap_load_ipv4(ap, config);
if (err)
return err;
if (l_settings_has_key(config, "General", "Channel")) {
unsigned int uintval;
if (!l_settings_get_uint(config, "General", "Channel",
&uintval)) {
l_error("AP Channel value unsupported");
return -EINVAL;
}
ap->channel = uintval;
/*
* 6GHz is not supported so we can use only a channel number to
* distinguish between 2.4 and 5GHz.
*/
if (ap->channel >= 36)
ap->band = BAND_FREQ_5_GHZ;
else
ap->band = BAND_FREQ_2_4_GHZ;
} else {
/* TODO: Start a Get Survey to decide the channel */
ap->channel = 6;
ap->band = BAND_FREQ_2_4_GHZ;
}
if (l_settings_has_key(config, "General", "DisableHT")) {
bool boolval;
if (!l_settings_get_bool(config, "General", "DisableHT",
&boolval)) {
l_error("AP [General].DisableHT not a valid boolean");
return -EINVAL;
}
ap->supports_ht = !boolval;
} else
ap->supports_ht = wiphy_get_ht_capabilities(wiphy, ap->band,
NULL) != NULL;
if (!ap_validate_band_channel(ap)) {
l_error("AP Band and Channel combination invalid");
return -EINVAL;
}
strval = l_settings_get_string(config, "WSC", "DeviceName");
if (strval) {
len = strlen(strval);
if (len > 32) {
l_error("AP WSC name length outside the [1, 32] range");
return -EINVAL;
}
if (!l_utf8_validate(strval, len, NULL)) {
l_error("AP WSC name doesn't validate as UTF-8");
return -EINVAL;
}
strcpy(ap->wsc_name, strval);
l_free(l_steal_ptr(strval));
} else
memcpy(ap->wsc_name, ap->ssid, 33);
strval = l_settings_get_string(config, "WSC", "PrimaryDeviceType");
if (strval) {
bool ok = wsc_device_type_from_setting_str(strval,
&ap->wsc_primary_device_type);
if (!ok) {
l_error("AP [WSC].PrimaryDeviceType format unknown");
return -EINVAL;
}
l_free(l_steal_ptr(strval));
} else {
/* Make ourselves a WFA standard PC by default */
ap->wsc_primary_device_type.category = 1;
memcpy(ap->wsc_primary_device_type.oui, wsc_wfa_oui, 3);
ap->wsc_primary_device_type.oui_type = 0x04;
ap->wsc_primary_device_type.subcategory = 1;
}
if (l_settings_get_value(config, "WSC", "AuthorizedMACs")) {
char **strvval;
unsigned int i;
strvval = l_settings_get_string_list(config, "WSC",
"AuthorizedMACs", ',');
if (!strvval) {
l_error("AP Authorized MACs list format wrong");
return -EINVAL;
}
ap->authorized_macs_num = l_strv_length(strvval);
ap->authorized_macs = l_malloc(ap->authorized_macs_num * 6);
for (i = 0; strvval[i]; i++)
if (!util_string_to_address(strvval[i],
ap->authorized_macs + i * 6)) {
l_error("Bad authorized MAC format: %s",
strvval[i]);
l_strfreev(strvval);
return -EINVAL;
}
l_strfreev(strvval);
}
if (l_settings_has_key(config, "General", "RekeyTimeout")) {
unsigned int uintval;
if (!l_settings_get_uint(config, "General",
"RekeyTimeout", &uintval)) {
l_error("AP [General].RekeyTimeout is not valid");
return -EINVAL;
}
ap->rekey_time = uintval * L_USEC_PER_SEC;
} else
ap->rekey_time = 0;
/*
* Since 5GHz won't ever support only CCK rates we can ignore this
* setting on that band.
*/
if (ap->band & BAND_FREQ_5_GHZ)
*out_cck_rates = false;
else if (l_settings_get_value(config, "General", "NoCCKRates")) {
bool boolval;
if (!l_settings_get_bool(config, "General", "NoCCKRates",
&boolval)) {
l_error("AP [General].NoCCKRates not a valid "
"boolean");
return -EINVAL;
}
*out_cck_rates = !boolval;
} else
*out_cck_rates = true;
cipher_mask = wiphy_get_supported_ciphers(wiphy, IE_GROUP_CIPHERS);
/* If the config sets a group cipher use that directly */
strval = l_settings_get_string(config, "Security", "GroupCipher");
if (strval) {
enum ie_rsn_cipher_suite cipher = ap_string_to_cipher(strval);
if (!cipher || !(cipher & cipher_mask)) {
l_error("Unsupported or unknown group cipher %s",
strval);
return -ENOTSUP;
}
ap->group_cipher = cipher;
l_free(l_steal_ptr(strval));
} else {
/* No config override, use CCMP (or TKIP if not supported) */
if (cipher_mask & IE_RSN_CIPHER_SUITE_CCMP)
ap->group_cipher = IE_RSN_CIPHER_SUITE_CCMP;
else
ap->group_cipher = IE_RSN_CIPHER_SUITE_TKIP;
}
cipher_mask = wiphy_get_supported_ciphers(wiphy, IE_PAIRWISE_CIPHERS);
ciphers_str = l_settings_get_string_list(config, "Security",
"PairwiseCiphers", ',');
for (i = 0; ciphers_str && ciphers_str[i]; i++) {
enum ie_rsn_cipher_suite cipher =
ap_string_to_cipher(ciphers_str[i]);
/*
* Constrain list to only values in both supported ciphers and
* the cipher list provided.
*/
if (!cipher || !(cipher & cipher_mask)) {
l_error("Unsupported or unknown pairwise cipher %s",
ciphers_str[i]);
return -ENOTSUP;
}
ap->ciphers |= cipher;
}
if (!ap->ciphers) {
/*
* Default behavior if no ciphers are specified, disable TKIP
* for security if CCMP is available
*/
if (cipher_mask & IE_RSN_CIPHER_SUITE_CCMP)
cipher_mask &= ~IE_RSN_CIPHER_SUITE_TKIP;
ap->ciphers = cipher_mask;
}
return 0;
}
/*
* Start a simple independent WPA2 AP on given netdev.
*
* @ops.handle_event is required and must react to AP_EVENT_START_FAILED
* and AP_EVENT_STOPPING by forgetting the ap_state struct, which is
* going to be freed automatically.
* In the @config struct the [General].SSID key is required and one of
* [Security].Passphrase and [Security].PreSharedKey must be filled in.
* All other fields are optional.
*/
struct ap_state *ap_start(struct netdev *netdev, struct l_settings *config,
const struct ap_ops *ops, int *err_out,
void *user_data)
{
struct ap_state *ap;
struct wiphy *wiphy = netdev_get_wiphy(netdev);
2020-01-06 13:39:39 +01:00
uint64_t wdev_id = netdev_get_wdev_id(netdev);
int err;
bool cck_rates = true;
const uint8_t *rates;
unsigned int num_rates;
unsigned int i;
if (L_WARN_ON(!config)) {
if (err_out)
*err_out = -EINVAL;
return NULL;
}
ap = l_new(struct ap_state, 1);
ap->nl80211 = l_genl_family_new(iwd_get_genl(), NL80211_GENL_NAME);
ap->netdev = netdev;
ap->ops = ops;
ap->user_data = user_data;
err = ap_load_config(ap, config, &cck_rates);
if (err)
goto error;
err = -EINVAL;
ap->beacon_interval = 100;
2022-02-28 19:49:37 +01:00
ap->networks = l_queue_new();
wsc_uuid_from_addr(netdev_get_address(netdev), ap->wsc_uuid_r);
rates = wiphy_get_supported_rates(wiphy, ap->band, &num_rates);
if (!rates)
goto error;
ap->rates = l_uintset_new(200);
2020-08-04 16:53:02 +02:00
for (i = 0; i < num_rates; i++) {
if (cck_rates && !L_IN_SET(rates[i], 2, 4, 11, 22))
continue;
l_uintset_put(ap->rates, rates[i]);
2020-08-04 16:53:02 +02:00
}
2020-01-06 13:39:39 +01:00
if (!frame_watch_add(wdev_id, 0, 0x0000 |
(MPDU_MANAGEMENT_SUBTYPE_ASSOCIATION_REQUEST << 4),
NULL, 0, false, ap_assoc_req_cb, ap, NULL))
2020-01-06 13:39:39 +01:00
goto error;
2020-01-06 13:39:39 +01:00
if (!frame_watch_add(wdev_id, 0, 0x0000 |
(MPDU_MANAGEMENT_SUBTYPE_REASSOCIATION_REQUEST << 4),
NULL, 0, false, ap_reassoc_req_cb, ap, NULL))
2020-01-06 13:39:39 +01:00
goto error;
if (!wiphy_supports_probe_resp_offload(wiphy)) {
if (!frame_watch_add(wdev_id, 0, 0x0000 |
(MPDU_MANAGEMENT_SUBTYPE_PROBE_REQUEST << 4),
NULL, 0, false, ap_probe_req_cb, ap, NULL))
goto error;
}
2020-01-06 13:39:39 +01:00
if (!frame_watch_add(wdev_id, 0, 0x0000 |
(MPDU_MANAGEMENT_SUBTYPE_DISASSOCIATION << 4),
NULL, 0, false, ap_disassoc_cb, ap, NULL))
2020-01-06 13:39:39 +01:00
goto error;
2020-01-06 13:39:39 +01:00
if (!frame_watch_add(wdev_id, 0, 0x0000 |
(MPDU_MANAGEMENT_SUBTYPE_AUTHENTICATION << 4),
NULL, 0, false, ap_auth_cb, ap, NULL))
2020-01-06 13:39:39 +01:00
goto error;
2020-01-06 13:39:39 +01:00
if (!frame_watch_add(wdev_id, 0, 0x0000 |
(MPDU_MANAGEMENT_SUBTYPE_DEAUTHENTICATION << 4),
NULL, 0, false, ap_deauth_cb, ap, NULL))
2020-01-06 13:39:39 +01:00
goto error;
ap->mlme_watch = l_genl_family_register(ap->nl80211, "mlme",
ap_mlme_notify, ap, NULL);
if (!ap->mlme_watch)
l_error("Registering for MLME notification failed");
if (ap->netconfig_set_addr4) {
ap->rtnl_add_cmd = l_rtnl_ifaddr_add(rtnl,
netdev_get_ifindex(netdev),
ap->netconfig_addr4,
ap_ifaddr4_added_cb, ap, NULL);
if (!ap->rtnl_add_cmd) {
l_error("Failed to add the IPv4 address");
goto error;
}
return ap;
}
if (ap_start_send(ap)) {
if (err_out)
*err_out = 0;
return ap;
}
error:
if (err_out)
*err_out = err;
ap_reset(ap);
l_genl_family_free(ap->nl80211);
l_free(ap);
return NULL;
}
static void ap_stop_cb(struct l_genl_msg *msg, void *user_data)
{
struct ap_state *ap = user_data;
int error = l_genl_msg_get_error(msg);
ap->start_stop_cmd_id = 0;
if (error < 0)
l_error("STOP_AP failed: %s (%i)", strerror(-error), -error);
if (ap->stopped_func)
ap->stopped_func(ap->user_data);
l_genl_family_free(ap->nl80211);
l_free(ap);
}
static struct l_genl_msg *ap_build_cmd_stop_ap(struct ap_state *ap)
{
struct l_genl_msg *cmd;
uint32_t ifindex = netdev_get_ifindex(ap->netdev);
cmd = l_genl_msg_new_sized(NL80211_CMD_STOP_AP, 16);
l_genl_msg_append_attr(cmd, NL80211_ATTR_IFINDEX, 4, &ifindex);
return cmd;
}
/*
* Schedule the running @ap to be stopped and freed. The original
* ops and user_data are forgotten and a new callback can be
* provided if the caller needs to know when the interface becomes
* free, for example for a new ap_start call.
*
* The user must forget @ap when @stopped_func is called. If the
* @user_data ends up being destroyed before that, ap_free(ap) should
* be used to prevent @stopped_func from being called.
* If @stopped_func is not provided, the caller must forget @ap
* immediately.
*/
void ap_shutdown(struct ap_state *ap, ap_stopped_func_t stopped_func,
void *user_data)
{
struct l_genl_msg *cmd;
if (ap->started) {
ap->started = false;
if (ap_event(ap, AP_EVENT_STOPPING, NULL))
return;
}
ap_reset(ap);
if (ap->gtk_set) {
ap->gtk_set = false;
cmd = ap_build_cmd_del_key(ap);
if (!cmd) {
l_error("ap_build_cmd_del_key failed");
goto free_ap;
}
if (!l_genl_family_send(ap->nl80211, cmd, ap_gtk_op_cb, NULL,
NULL)) {
l_genl_msg_unref(cmd);
l_error("Issuing DEL_KEY failed");
goto free_ap;
}
}
cmd = ap_build_cmd_stop_ap(ap);
if (!cmd) {
l_error("ap_build_cmd_stop_ap failed");
goto free_ap;
}
2019-05-28 21:43:42 +02:00
ap->start_stop_cmd_id = l_genl_family_send(ap->nl80211, cmd, ap_stop_cb,
ap, NULL);
if (!ap->start_stop_cmd_id) {
l_genl_msg_unref(cmd);
l_error("Sending STOP_AP failed");
goto free_ap;
}
ap->stopped_func = stopped_func;
ap->user_data = user_data;
return;
free_ap:
if (stopped_func)
stopped_func(user_data);
l_genl_family_free(ap->nl80211);
l_free(ap);
}
/* Free @ap without a graceful shutdown */
void ap_free(struct ap_state *ap)
{
ap_reset(ap);
if (ap->in_event) {
ap->free_pending = true;
return;
}
l_genl_family_free(ap->nl80211);
l_free(ap);
}
bool ap_station_disconnect(struct ap_state *ap, const uint8_t *mac,
enum mmpdu_reason_code reason)
{
struct sta_state *sta;
if (!ap->started)
return false;
sta = l_queue_remove_if(ap->sta_states, ap_sta_match_addr, mac);
if (!sta)
return false;
if (ap->supports_ht)
ap_update_beacon(ap);
ap_del_station(sta, reason, false);
ap_sta_free(sta);
return true;
}
static void ap_wsc_pbc_timeout_cb(struct l_timeout *timeout, void *user_data)
{
struct ap_state *ap = user_data;
l_debug("PBC mode timeout");
ap_wsc_exit_pbc(ap);
}
static void ap_wsc_pbc_timeout_destroy(void *user_data)
{
struct ap_state *ap = user_data;
ap->wsc_pbc_timeout = NULL;
}
bool ap_push_button(struct ap_state *ap)
{
if (!ap->started)
return false;
if (l_queue_length(ap->wsc_pbc_probes) > 1) {
l_debug("Can't start PBC mode due to Session Overlap");
return false;
}
/*
* WSC v2.0.5 Section 11.3: "Multiple presses of the button are
* permitted. If a PBC button on an Enrollee or Registrar is
* pressed again during Walk Time, the timers for that device are
* restarted at that time [...]"
*/
if (ap->wsc_pbc_timeout) {
l_timeout_modify(ap->wsc_pbc_timeout, AP_WSC_PBC_WALK_TIME);
return true;
}
ap->wsc_pbc_timeout = l_timeout_create(AP_WSC_PBC_WALK_TIME,
ap_wsc_pbc_timeout_cb, ap,
ap_wsc_pbc_timeout_destroy);
ap->wsc_dpid = WSC_DEVICE_PASSWORD_ID_PUSH_BUTTON;
ap_update_beacon(ap);
return true;
}
struct ap_if_data {
struct netdev *netdev;
struct ap_state *ap;
struct l_dbus_message *pending;
};
static void ap_properties_changed(struct ap_if_data *ap_if)
{
l_dbus_property_changed(dbus_get_bus(),
netdev_get_path(ap_if->netdev),
IWD_AP_INTERFACE, "Started");
l_dbus_property_changed(dbus_get_bus(),
netdev_get_path(ap_if->netdev),
IWD_AP_INTERFACE, "Name");
l_dbus_property_changed(dbus_get_bus(),
netdev_get_path(ap_if->netdev),
IWD_AP_INTERFACE, "Frequency");
l_dbus_property_changed(dbus_get_bus(),
netdev_get_path(ap_if->netdev),
IWD_AP_INTERFACE, "PairwiseCiphers");
l_dbus_property_changed(dbus_get_bus(),
netdev_get_path(ap_if->netdev),
IWD_AP_INTERFACE, "GroupCipher");
l_dbus_property_changed(dbus_get_bus(),
netdev_get_path(ap_if->netdev),
IWD_AP_INTERFACE, "Scanning");
}
static void ap_if_event_func(enum ap_event_type type, const void *event_data,
void *user_data)
{
struct ap_if_data *ap_if = user_data;
struct l_dbus_message *reply;
switch (type) {
case AP_EVENT_START_FAILED:
{
const struct ap_event_start_failed_data *data = event_data;
if (L_WARN_ON(!ap_if->pending))
break;
reply = dbus_error_from_errno(data->error, ap_if->pending);
dbus_pending_reply(&ap_if->pending, reply);
ap_if->ap = NULL;
break;
}
case AP_EVENT_STARTED:
if (L_WARN_ON(!ap_if->pending))
break;
l_dbus_object_add_interface(dbus_get_bus(),
netdev_get_path(ap_if->netdev),
IWD_AP_DIAGNOSTIC_INTERFACE,
ap_if);
reply = l_dbus_message_new_method_return(ap_if->pending);
dbus_pending_reply(&ap_if->pending, reply);
ap_properties_changed(ap_if);
l_rtnl_set_linkmode_and_operstate(rtnl,
netdev_get_ifindex(ap_if->netdev),
IF_LINK_MODE_DEFAULT, IF_OPER_UP,
NULL, NULL, NULL);
break;
case AP_EVENT_STOPPING:
l_dbus_object_remove_interface(dbus_get_bus(),
netdev_get_path(ap_if->netdev),
IWD_AP_DIAGNOSTIC_INTERFACE);
ap_properties_changed(ap_if);
l_rtnl_set_linkmode_and_operstate(rtnl,
netdev_get_ifindex(ap_if->netdev),
IF_LINK_MODE_DORMANT, IF_OPER_DOWN,
NULL, NULL, NULL);
if (!ap_if->pending)
ap_if->ap = NULL;
break;
case AP_EVENT_STATION_ADDED:
case AP_EVENT_STATION_REMOVED:
case AP_EVENT_REGISTRATION_START:
case AP_EVENT_REGISTRATION_SUCCESS:
case AP_EVENT_PBC_MODE_EXIT:
case AP_EVENT_DHCP_NEW_LEASE:
case AP_EVENT_DHCP_LEASE_EXPIRED:
/* Ignored */
break;
}
}
static const struct ap_ops ap_dbus_ops = {
.handle_event = ap_if_event_func,
};
static struct l_dbus_message *ap_dbus_start(struct l_dbus *dbus,
struct l_dbus_message *message, void *user_data)
{
struct ap_if_data *ap_if = user_data;
const char *ssid, *wpa2_passphrase;
struct l_settings *config;
int err;
if (ap_if->ap && ap_if->ap->started)
return dbus_error_already_exists(message);
if (ap_if->ap || ap_if->pending)
return dbus_error_busy(message);
if (!l_dbus_message_get_arguments(message, "ss",
&ssid, &wpa2_passphrase))
return dbus_error_invalid_args(message);
config = l_settings_new();
l_settings_set_string(config, "General", "SSID", ssid);
l_settings_set_string(config, "Security", "Passphrase",
wpa2_passphrase);
l_settings_add_group(config, "IPv4");
ap_if->ap = ap_start(ap_if->netdev, config, &ap_dbus_ops, &err, ap_if);
l_settings_free(config);
if (!ap_if->ap)
return dbus_error_from_errno(err, message);
ap_if->pending = l_dbus_message_ref(message);
return NULL;
}
static void ap_dbus_stop_cb(void *user_data)
{
struct ap_if_data *ap_if = user_data;
struct l_dbus_message *reply;
if (L_WARN_ON(!ap_if->pending))
return;
reply = l_dbus_message_new_method_return(ap_if->pending);
dbus_pending_reply(&ap_if->pending, reply);
ap_if->ap = NULL;
}
static struct l_dbus_message *ap_dbus_stop(struct l_dbus *dbus,
struct l_dbus_message *message, void *user_data)
{
struct ap_if_data *ap_if = user_data;
if (!ap_if->ap) {
if (ap_if->pending)
return dbus_error_busy(message);
/* already stopped, no-op */
return l_dbus_message_new_method_return(message);
}
if (ap_if->pending) {
struct l_dbus_message *reply;
reply = dbus_error_aborted(ap_if->pending);
dbus_pending_reply(&ap_if->pending, reply);
}
ap_if->pending = l_dbus_message_ref(message);
ap_shutdown(ap_if->ap, ap_dbus_stop_cb, ap_if);
return NULL;
}
static struct l_dbus_message *ap_dbus_start_profile(struct l_dbus *dbus,
struct l_dbus_message *message,
void *user_data)
{
struct ap_if_data *ap_if = user_data;
const char *ssid;
_auto_(l_settings_free) struct l_settings *config = NULL;
char *config_path;
int err;
if (ap_if->ap && ap_if->ap->started)
return dbus_error_already_exists(message);
if (ap_if->ap || ap_if->pending)
return dbus_error_busy(message);
if (!l_dbus_message_get_arguments(message, "s", &ssid))
return dbus_error_invalid_args(message);
config = l_settings_new();
config_path = storage_get_path("ap/%s.ap", ssid);
err = l_settings_load_from_file(config, config_path) ? 0 : -EIO;
l_free(config_path);
if (err)
goto error;
/*
* Since [General].SSID is not an allowed setting for a profile on
* disk, we're free to potentially overwrite it with the SSID that
* the DBus user asked for.
*/
l_settings_set_string(config, "General", "SSID", ssid);
ap_if->ap = ap_start(ap_if->netdev, config, &ap_dbus_ops, &err, ap_if);
if (!ap_if->ap)
goto error;
ap_if->pending = l_dbus_message_ref(message);
return NULL;
error:
return dbus_error_from_errno(err, message);
}
2022-02-28 19:49:37 +01:00
static void ap_set_scanning(struct ap_state *ap, bool scanning)
{
if (ap->scanning == scanning)
return;
ap->scanning = scanning;
l_dbus_property_changed(dbus_get_bus(), netdev_get_path(ap->netdev),
IWD_AP_INTERFACE, "Scanning");
}
static void ap_scan_triggered(int err, void *user_data)
{
struct ap_state *ap = user_data;
struct l_dbus_message *reply;
if (err < 0) {
reply = dbus_error_from_errno(err, ap->scan_pending);
dbus_pending_reply(&ap->scan_pending, reply);
return;
}
l_debug("AP scan triggered for %s", netdev_get_name(ap->netdev));
reply = l_dbus_message_new_method_return(ap->scan_pending);
l_dbus_message_set_arguments(reply, "");
dbus_pending_reply(&ap->scan_pending, reply);
ap_set_scanning(ap, true);
}
static bool ap_scan_notify(int err, struct l_queue *bss_list,
const struct scan_freq_set *freqs,
void *user_data)
{
struct ap_state *ap = user_data;
const struct l_queue_entry *bss_entry;
ap_set_scanning(ap, false);
/* Remove all networks, then re-populate with fresh BSS list */
l_queue_clear(ap->networks, l_free);
for (bss_entry = l_queue_get_entries(bss_list); bss_entry;
bss_entry = bss_entry->next) {
struct scan_bss *bss = bss_entry->data;
ap_network_append(ap, bss);
}
l_debug("");
return false;
}
static void ap_scan_destroy(void *user_data)
{
struct ap_state *ap = user_data;
ap->scan_id = 0;
}
static struct l_dbus_message *ap_dbus_scan(struct l_dbus *dbus,
struct l_dbus_message *message,
void *user_data)
{
struct ap_if_data *ap_if = user_data;
uint64_t wdev_id = netdev_get_wdev_id(ap_if->netdev);
struct scan_parameters params = { 0};
if (wiphy_has_feature(wiphy_find_by_wdev(wdev_id),
NL80211_FEATURE_AP_SCAN))
params.ap_scan = true;
/*
* TODO: There is really nothing preventing scanning while stopped.
* The only consideration would be if a scan is ongoing and the
* AP is started. Queuing Start() as wiphy work may be required to
* handle this case if needed. For now just limit to started APs.
*/
if (!ap_if->ap || !ap_if->ap->started)
return dbus_error_not_available(message);
if (ap_if->ap->scan_id)
return dbus_error_busy(message);
ap_if->ap->scan_id = scan_active_full(wdev_id, &params,
ap_scan_triggered,
ap_scan_notify,
ap_if->ap, ap_scan_destroy);
if (!ap_if->ap->scan_id)
return dbus_error_failed(message);
ap_if->ap->scan_pending = l_dbus_message_ref(message);
return NULL;
}
static void dbus_append_network(struct l_dbus_message_builder *builder,
struct ap_network *network)
{
l_dbus_message_builder_enter_array(builder, "{sv}");
dbus_append_dict_basic(builder, "Name", 's', network->ssid);
dbus_append_dict_basic(builder, "SignalStrength", 'n',
&network->signal);
dbus_append_dict_basic(builder, "Type", 's',
security_to_str(network->security));
l_dbus_message_builder_leave_array(builder);
}
static struct l_dbus_message *ap_dbus_get_networks(struct l_dbus *dbus,
struct l_dbus_message *message,
void *user_data)
{
struct ap_if_data *ap_if = user_data;
struct l_dbus_message *reply;
struct l_dbus_message_builder *builder;
const struct l_queue_entry *entry;
if (!ap_if->ap || !ap_if->ap->started)
return dbus_error_not_available(message);
reply = l_dbus_message_new_method_return(message);
builder = l_dbus_message_builder_new(reply);
l_dbus_message_builder_enter_array(builder, "a{sv}");
for (entry = l_queue_get_entries(ap_if->ap->networks); entry;
entry = entry->next) {
struct ap_network *network = entry->data;
dbus_append_network(builder, network);
}
l_dbus_message_builder_leave_array(builder);
l_dbus_message_builder_finalize(builder);
l_dbus_message_builder_destroy(builder);
return reply;
}
static bool ap_dbus_property_get_started(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct ap_if_data *ap_if = user_data;
bool started = ap_if->ap && ap_if->ap->started;
l_dbus_message_builder_append_basic(builder, 'b', &started);
return true;
}
static bool ap_dbus_property_get_name(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct ap_if_data *ap_if = user_data;
if (!ap_if->ap || !ap_if->ap->started)
return false;
l_dbus_message_builder_append_basic(builder, 's',
ap_if->ap->ssid);
return true;
}
2022-02-28 19:49:37 +01:00
static bool ap_dbus_property_get_scanning(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct ap_if_data *ap_if = user_data;
bool bval;
if (!ap_if->ap || !ap_if->ap->started)
return false;
bval = ap_if->ap->scanning;
l_dbus_message_builder_append_basic(builder, 'b', &bval);
return true;
}
2022-11-01 21:17:36 +01:00
static bool ap_dbus_property_get_freq(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct ap_if_data *ap_if = user_data;
uint32_t freq;
if (!ap_if->ap || !ap_if->ap->started)
return false;
freq = band_channel_to_freq(ap_if->ap->channel, ap_if->ap->band);
2022-11-01 21:17:36 +01:00
l_dbus_message_builder_append_basic(builder, 'u', &freq);
return true;
}
static bool ap_dbus_property_get_pairwise(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct ap_if_data *ap_if = user_data;
char **ciphers;
size_t i;
if (!ap_if->ap || !ap_if->ap->started)
return false;
ciphers = ap_ciphers_to_strv(ap_if->ap->ciphers);
l_dbus_message_builder_enter_array(builder, "s");
for (i = 0; ciphers[i]; i++)
l_dbus_message_builder_append_basic(builder, 's', ciphers[i]);
l_dbus_message_builder_leave_array(builder);
l_strv_free(ciphers);
return true;
}
static bool ap_dbus_property_get_group(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct ap_if_data *ap_if = user_data;
char **cipher;
if (!ap_if->ap || !ap_if->ap->started)
return false;
cipher = ap_ciphers_to_strv(ap_if->ap->group_cipher);
/* Group cipher will only ever be a single value */
l_dbus_message_builder_append_basic(builder, 's', cipher[0]);
l_strv_free(cipher);
return true;
}
static void ap_setup_interface(struct l_dbus_interface *interface)
{
l_dbus_interface_method(interface, "Start", 0, ap_dbus_start, "",
"ss", "ssid", "wpa2_passphrase");
l_dbus_interface_method(interface, "Stop", 0, ap_dbus_stop, "", "");
l_dbus_interface_method(interface, "StartProfile", 0,
ap_dbus_start_profile, "", "s",
"ssid");
2022-02-28 19:49:37 +01:00
l_dbus_interface_method(interface, "Scan", 0, ap_dbus_scan, "", "");
l_dbus_interface_method(interface, "GetOrderedNetworks", 0,
ap_dbus_get_networks, "aa{sv}",
"", "networks");
l_dbus_interface_property(interface, "Started", 0, "b",
ap_dbus_property_get_started, NULL);
l_dbus_interface_property(interface, "Name", 0, "s",
ap_dbus_property_get_name, NULL);
2022-02-28 19:49:37 +01:00
l_dbus_interface_property(interface, "Scanning", 0, "b",
ap_dbus_property_get_scanning, NULL);
2022-11-01 21:17:36 +01:00
l_dbus_interface_property(interface, "Frequency", 0, "u",
ap_dbus_property_get_freq, NULL);
l_dbus_interface_property(interface, "PairwiseCiphers", 0, "as",
ap_dbus_property_get_pairwise, NULL);
l_dbus_interface_property(interface, "GroupCipher", 0, "s",
ap_dbus_property_get_group, NULL);
}
static void ap_destroy_interface(void *user_data)
{
struct ap_if_data *ap_if = user_data;
if (ap_if->pending) {
struct l_dbus_message *reply;
reply = dbus_error_aborted(ap_if->pending);
dbus_pending_reply(&ap_if->pending, reply);
}
if (ap_if->ap)
ap_free(ap_if->ap);
l_free(ap_if);
}
struct diagnostic_data {
struct l_dbus_message *pending;
struct l_dbus_message_builder *builder;
};
static void ap_get_station_cb(const struct diagnostic_station_info *info,
void *user_data)
{
struct diagnostic_data *data = user_data;
/* First station info */
if (!data->builder) {
struct l_dbus_message *reply =
l_dbus_message_new_method_return(data->pending);
data->builder = l_dbus_message_builder_new(reply);
l_dbus_message_builder_enter_array(data->builder, "a{sv}");
}
l_dbus_message_builder_enter_array(data->builder, "{sv}");
dbus_append_dict_basic(data->builder, "Address", 's',
util_address_to_string(info->addr));
diagnostic_info_to_dict(info, data->builder);
l_dbus_message_builder_leave_array(data->builder);
}
static void ap_get_station_destroy(void *user_data)
{
struct diagnostic_data *data = user_data;
struct l_dbus_message *reply;
if (!data->builder) {
reply = l_dbus_message_new_method_return(data->pending);
data->builder = l_dbus_message_builder_new(reply);
l_dbus_message_builder_enter_array(data->builder, "a{sv}");
}
l_dbus_message_builder_leave_array(data->builder);
reply = l_dbus_message_builder_finalize(data->builder);
l_dbus_message_builder_destroy(data->builder);
dbus_pending_reply(&data->pending, reply);
l_free(data);
}
static struct l_dbus_message *ap_dbus_get_diagnostics(struct l_dbus *dbus,
struct l_dbus_message *message, void *user_data)
{
struct ap_if_data *ap_if = user_data;
struct diagnostic_data *data;
int ret;
data = l_new(struct diagnostic_data, 1);
data->pending = l_dbus_message_ref(message);
ret = netdev_get_all_stations(ap_if->ap->netdev, ap_get_station_cb,
data, ap_get_station_destroy);
if (ret < 0) {
l_dbus_message_unref(data->pending);
l_free(data);
return dbus_error_from_errno(ret, message);
}
return NULL;
}
static void ap_setup_diagnostic_interface(struct l_dbus_interface *interface)
{
l_dbus_interface_method(interface, "GetDiagnostics", 0,
ap_dbus_get_diagnostics,
"aa{sv}", "", "diagnostic");
}
static void ap_diagnostic_interface_destroy(void *user_data)
{
}
static void ap_add_interface(struct netdev *netdev)
{
struct ap_if_data *ap_if;
2019-05-28 21:43:42 +02:00
/*
* TODO: Check wiphy supported channels and NL80211_ATTR_TX_FRAME_TYPES
*/
/* just allocate/set device, Start method will complete setup */
ap_if = l_new(struct ap_if_data, 1);
ap_if->netdev = netdev;
/* setup ap dbus interface */
l_dbus_object_add_interface(dbus_get_bus(),
netdev_get_path(netdev), IWD_AP_INTERFACE, ap_if);
}
static void ap_remove_interface(struct netdev *netdev)
{
l_dbus_object_remove_interface(dbus_get_bus(),
netdev_get_path(netdev), IWD_AP_INTERFACE);
l_dbus_object_remove_interface(dbus_get_bus(),
netdev_get_path(netdev), IWD_AP_DIAGNOSTIC_INTERFACE);
}
static void ap_netdev_watch(struct netdev *netdev,
enum netdev_watch_event event, void *userdata)
{
switch (event) {
case NETDEV_WATCH_EVENT_UP:
case NETDEV_WATCH_EVENT_NEW:
if (netdev_get_iftype(netdev) == NETDEV_IFTYPE_AP &&
netdev_get_is_up(netdev))
ap_add_interface(netdev);
break;
case NETDEV_WATCH_EVENT_DOWN:
case NETDEV_WATCH_EVENT_DEL:
ap_remove_interface(netdev);
break;
default:
break;
}
}
2019-05-28 21:43:42 +02:00
static int ap_init(void)
{
const struct l_settings *settings = iwd_get_config();
netdev_watch = netdev_watch_add(ap_netdev_watch, NULL, NULL);
2019-05-28 21:43:42 +02:00
l_dbus_register_interface(dbus_get_bus(), IWD_AP_INTERFACE,
ap_setup_interface, ap_destroy_interface, false);
l_dbus_register_interface(dbus_get_bus(), IWD_AP_DIAGNOSTIC_INTERFACE,
ap_setup_diagnostic_interface,
ap_diagnostic_interface_destroy, false);
2019-05-28 21:43:42 +02:00
/*
* Enable network configuration and DHCP only if
* [General].EnableNetworkConfiguration is true.
*/
if (netconfig_enabled()) {
global_addr4_strs =
l_settings_get_string_list(settings, "IPv4",
"APAddressPool", ',');
if (global_addr4_strs && !global_addr4_strs[0]) {
l_error("Can't parse the [IPv4].APAddressPool "
"setting as a string list");
l_strv_free(global_addr4_strs);
global_addr4_strs = NULL;
}
/* Fall back to 192.168.0.0/16 */
if (!global_addr4_strs)
global_addr4_strs =
l_strv_append(NULL, "192.168.0.0/16");
}
rtnl = iwd_get_rtnl();
2019-05-28 21:43:42 +02:00
return 0;
}
2019-05-28 21:43:42 +02:00
static void ap_exit(void)
{
netdev_watch_remove(netdev_watch);
l_dbus_unregister_interface(dbus_get_bus(), IWD_AP_INTERFACE);
l_strv_free(global_addr4_strs);
}
2019-05-28 21:43:42 +02:00
IWD_MODULE(ap, ap_init, ap_exit)
IWD_MODULE_DEPENDS(ap, netdev);