3
0
mirror of https://git.kernel.org/pub/scm/network/wireless/iwd.git synced 2025-01-05 12:52:37 +01:00
iwd/src/dpp-util.c

1121 lines
25 KiB
C
Raw Normal View History

/*
*
* Wireless daemon for Linux
*
* Copyright (C) 2021 Intel Corporation. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <errno.h>
#include <ell/ell.h>
#include "src/dpp-util.h"
#include "src/util.h"
2021-12-06 22:03:54 +01:00
#include "src/band.h"
#include "src/crypto.h"
#include "src/json.h"
#include "ell/useful.h"
#include "ell/asn1-private.h"
#include "src/ie.h"
2021-12-06 22:03:54 +01:00
static void append_freqs(struct l_string *uri,
const uint32_t *freqs, size_t len)
{
size_t i;
enum band_freq band;
l_string_append_printf(uri, "C:");
for (i = 0; i < len; i++) {
uint8_t oper_class;
uint8_t channel = band_freq_to_channel(freqs[i], &band);
/* For now use global operating classes */
if (band == BAND_FREQ_2_4_GHZ)
oper_class = 81;
else
oper_class = 115;
l_string_append_printf(uri, "%u/%u", oper_class, channel);
if (i != len - 1)
l_string_append_c(uri, ',');
}
l_string_append_c(uri, ';');
}
char *dpp_generate_uri(const uint8_t *asn1, size_t asn1_len, uint8_t version,
const uint8_t *mac, const uint32_t *freqs,
size_t freqs_len, const char *info, const char *host)
{
struct l_string *uri = l_string_new(256);
char *base64;
base64 = l_base64_encode(asn1, asn1_len, 0);
l_string_append_printf(uri, "DPP:K:%s;", base64);
l_free(base64);
if (mac)
l_string_append_printf(uri, "M:%02x%02x%02x%02x%02x%02x;",
MAC_STR(mac));
if (freqs)
append_freqs(uri, freqs, freqs_len);
if (info)
l_string_append_printf(uri, "I:%s;", info);
if (host)
l_string_append_printf(uri, "H:%s;", host);
if (version)
l_string_append_printf(uri, "V:%u;", version);
l_string_append_c(uri, ';');
return l_string_unwrap(uri);
}
static uint32_t dpp_parse_akm(char *akms)
{
_auto_(l_strv_free) char **split = l_strsplit(akms, '+');
char **i = split;
uint32_t akm_out = 0;
while (*i) {
if (!strncmp(*i, "psk", 3))
akm_out |= IE_RSN_AKM_SUITE_PSK;
else if (!strncmp(*i, "sae", 3))
akm_out |= IE_RSN_AKM_SUITE_SAE_SHA256;
i++;
}
return akm_out;
}
/*
* TODO: This handles the most basic configuration. i.e. a configuration object
* with ssid/passphrase/akm.
*/
struct dpp_configuration *dpp_parse_configuration_object(const char *json,
size_t json_len)
{
struct dpp_configuration *config;
struct json_contents *c;
struct json_iter iter;
struct json_iter discovery;
struct json_iter cred;
_auto_(l_free) char *tech = NULL;
_auto_(l_free) char *ssid = NULL;
_auto_(l_free) char *akm = NULL;
_auto_(l_free) char *pass = NULL;
_auto_(l_free) char *psk = NULL;
c = json_contents_new(json, json_len);
if (!c)
return NULL;
json_iter_init(&iter, c);
if (!json_iter_parse(&iter,
JSON_MANDATORY("wi-fi_tech", JSON_STRING, &tech),
JSON_MANDATORY("discovery", JSON_OBJECT, &discovery),
JSON_MANDATORY("cred", JSON_OBJECT, &cred),
JSON_UNDEFINED))
goto free_contents;
if (!tech || strncmp(tech, "infra", 5))
goto free_contents;
if (!json_iter_parse(&discovery,
JSON_MANDATORY("ssid", JSON_STRING, &ssid),
JSON_UNDEFINED))
goto free_contents;
if (!ssid || !util_ssid_is_utf8(strlen(ssid), (const uint8_t *) ssid))
goto free_contents;
if (!json_iter_parse(&cred,
JSON_MANDATORY("akm", JSON_STRING, &akm),
JSON_OPTIONAL("pass", JSON_STRING, &pass),
JSON_OPTIONAL("psk", JSON_STRING, &psk),
JSON_UNDEFINED))
goto free_contents;
if (!pass && (!psk || strlen(psk) != 64))
goto free_contents;
config = l_new(struct dpp_configuration, 1);
if (pass)
config->passphrase = l_steal_ptr(pass);
else
config->psk = l_steal_ptr(psk);
memcpy(config->ssid, ssid, strlen(ssid));
config->ssid_len = strlen(ssid);
config->akm_suites = dpp_parse_akm(akm);
if (!config->akm_suites)
goto free_config;
json_contents_free(c);
return config;
free_config:
dpp_configuration_free(config);
free_contents:
json_contents_free(c);
return NULL;
}
/*
* The DPP spec does not specify a difference between FT AKMs and their normal
* counterpart. Because of this any FT AKM will just result in the standard
* 'psk' or 'sae' AKM.
*/
static const char *dpp_akm_to_string(enum ie_rsn_akm_suite akm_suite)
{
switch (akm_suite) {
case IE_RSN_AKM_SUITE_PSK:
case IE_RSN_AKM_SUITE_FT_USING_PSK:
case IE_RSN_AKM_SUITE_PSK_SHA256:
return "psk";
case IE_RSN_AKM_SUITE_SAE_SHA256:
case IE_RSN_AKM_SUITE_FT_OVER_SAE_SHA256:
return "sae";
default:
return NULL;
}
}
char *dpp_configuration_to_json(struct dpp_configuration *config)
{
_auto_(l_free) char *pass_or_psk;
_auto_(l_free) char *ssid;
ssid = l_malloc(config->ssid_len + 1);
memcpy(ssid, config->ssid, config->ssid_len);
ssid[config->ssid_len] = '\0';
if (config->passphrase)
pass_or_psk = l_strdup_printf("\"pass\":\"%s\"",
config->passphrase);
else
pass_or_psk = l_strdup_printf("\"psk\":\"%s\"",
config->psk);
return l_strdup_printf("{\"wi-fi_tech\":\"infra\","
"\"discovery\":{\"ssid\":\"%s\"},"
"\"cred\":{\"akm\":\"%s\",%s}}",
ssid, dpp_akm_to_string(config->akm_suites),
pass_or_psk);
}
struct dpp_configuration *dpp_configuration_new(
const struct l_settings *settings,
const char *ssid,
enum ie_rsn_akm_suite akm_suite)
{
struct dpp_configuration *config;
_auto_(l_free) char *passphrase = NULL;
_auto_(l_free) char *psk = NULL;
size_t ssid_len = strlen(ssid);
if (!l_settings_has_group(settings, "Security"))
return NULL;
passphrase = l_settings_get_string(settings, "Security", "Passphrase");
if (!passphrase) {
psk = l_settings_get_string(settings, "Security",
"PreSharedKey");
if (!psk)
return NULL;
}
config = l_new(struct dpp_configuration, 1);
memcpy(config->ssid, ssid, ssid_len);
config->ssid[ssid_len] = '\0';
config->ssid_len = ssid_len;
if (passphrase)
config->passphrase = l_steal_ptr(passphrase);
else
config->psk = l_steal_ptr(psk);
config->akm_suites = akm_suite;
return config;
}
void dpp_configuration_free(struct dpp_configuration *config)
{
if (config->passphrase)
l_free(config->passphrase);
if (config->psk)
l_free(config->psk);
l_free(config);
}
void dpp_attr_iter_init(struct dpp_attr_iter *iter, const uint8_t *pdu,
size_t len)
{
iter->pos = pdu;
iter->end = pdu + len;
}
bool dpp_attr_iter_next(struct dpp_attr_iter *iter,
enum dpp_attribute_type *type_out, size_t *len_out,
const uint8_t **data_out)
{
enum dpp_attribute_type type;
uint16_t len;
if (iter->pos + 4 > iter->end)
return false;
type = l_get_le16(iter->pos);
len = l_get_le16(iter->pos + 2);
iter->pos += 4;
if (iter->end - iter->pos < len)
return false;
*type_out = type;
*len_out = len;
*data_out = iter->pos;
iter->pos += len;
return true;
}
size_t dpp_append_attr(uint8_t *to, enum dpp_attribute_type type,
void *attr, size_t attr_len)
{
l_put_le16(type, to);
l_put_le16(attr_len, to + 2);
memcpy(to + 4, attr, attr_len);
return attr_len + 4;
}
/*
* The use of ad0/ad1 differs with different protocol frame types, which is why
* this is left up to the caller to pass the correct AD bytes. The usage is
* defined in:
*
* 6.3.1.4 Protocol Conventions (for authentication)
* 6.4.1 Overview (for configuration)
*
*/
uint8_t *dpp_unwrap_attr(const void *ad0, size_t ad0_len, const void *ad1,
size_t ad1_len, const void *key, size_t key_len,
const void *wrapped, size_t wrapped_len,
size_t *unwrapped_len)
{
struct iovec ad[2];
uint8_t *unwrapped;
size_t ad_size = 0;
if (ad0) {
ad[ad_size].iov_base = (void *) ad0;
ad[ad_size].iov_len = ad0_len;
ad_size++;
}
if (ad1) {
ad[ad_size].iov_base = (void *) ad1;
ad[ad_size].iov_len = ad1_len;
ad_size++;
}
unwrapped = l_malloc(wrapped_len - 16);
if (!aes_siv_decrypt(key, key_len, wrapped, wrapped_len, ad, ad_size,
unwrapped)) {
l_free(unwrapped);
return NULL;
}
*unwrapped_len = wrapped_len - 16;
return unwrapped;
}
/*
* Encrypt DPP attributes encapsulated in DPP wrapped data.
*
* ad0/ad0_len - frame specific AD0 component
* ad1/ad0_len - frame specific AD1 component
* to - buffer to encrypt data.
* to_len - size of 'to'
* key - key used to encrypt
* key_len - size of 'key'
* num_attrs - number of attributes listed (type, length, data triplets)
* ... - List of attributes, Type, Length, and data
*/
size_t dpp_append_wrapped_data(const void *ad0, size_t ad0_len,
const void *ad1, size_t ad1_len,
uint8_t *to, size_t to_len,
const void *key, size_t key_len,
size_t num_attrs, ...)
{
size_t i;
size_t attrs_len = 0;
_auto_(l_free) uint8_t *plaintext = NULL;
uint8_t *ptr;
struct iovec ad[2];
size_t ad_size = 0;
va_list va;
va_start(va, num_attrs);
/* Count up total attributes length */
for (i = 0; i < num_attrs; i++) {
va_arg(va, enum dpp_attribute_type);
attrs_len += va_arg(va, size_t) + 4;
va_arg(va, void*);
}
va_end(va);
if (to_len < attrs_len + 4 + 16)
return false;
plaintext = l_malloc(attrs_len);
ptr = plaintext;
va_start(va, num_attrs);
/* Build up plaintext attributes */
for (i = 0; i < num_attrs; i++) {
enum dpp_attribute_type type = va_arg(va,
enum dpp_attribute_type);
size_t l = va_arg(va, size_t);
void *p = va_arg(va, void *);
l_put_le16(type, ptr);
ptr += 2;
l_put_le16(l, ptr);
ptr += 2;
memcpy(ptr, p, l);
ptr += l;
}
va_end(va);
ptr = to;
l_put_le16(DPP_ATTR_WRAPPED_DATA, ptr);
ptr += 2;
l_put_le16(attrs_len + 16, ptr);
ptr += 2;
if (ad0) {
ad[ad_size].iov_base = (void *) ad0;
ad[ad_size].iov_len = ad0_len;
ad_size++;
}
if (ad1) {
ad[ad_size].iov_base = (void *) ad1;
ad[ad_size].iov_len = ad1_len;
ad_size++;
}
if (!aes_siv_encrypt(key, key_len, plaintext, attrs_len,
ad, ad_size, ptr))
return 0;
return attrs_len + 4 + 16;
}
/*
* EasyConnect 2.0 Table 3. Key and Nonce Length Dependency on Prime Length
*/
static enum l_checksum_type dpp_sha_from_key_len(size_t len)
{
if (len == 32)
return L_CHECKSUM_SHA256;
else if (len == 48)
return L_CHECKSUM_SHA384;
else if (len == 64)
return L_CHECKSUM_SHA512;
else
return L_CHECKSUM_NONE;
}
size_t dpp_nonce_len_from_key_len(size_t len)
{
if (len == 32)
return 16;
else if (len == 48)
return 24;
else if (len == 64)
return 32;
else
return 0;
}
/*
* 3.2.2
* H()
*/
bool dpp_hash(enum l_checksum_type type, uint8_t *out, unsigned int num, ...)
{
struct l_checksum *sha = l_checksum_new(type);
size_t hsize = l_checksum_digest_length(type);
unsigned int i;
va_list va;
va_start(va, num);
for (i = 0; i < num; i++) {
void *data = va_arg(va, void *);
size_t len = va_arg(va, size_t);
l_checksum_update(sha, data, len);
}
va_end(va);
l_checksum_get_digest(sha, out, hsize);
l_checksum_free(sha);
return true;
}
/*
* 3.2.2
*
* HKDF is defined as:
*
* key = HKDF(salt, info, ikm)
* = HKDF-Expand(HKDF-Extract(salt, ikm), info, len)
*
* Note: A NULL 'salt' means a zero'ed buffer and 'salt_len' should still be
* set for this zero'ed buffer length.
*/
static bool dpp_hkdf(enum l_checksum_type sha, const void *salt,
size_t salt_len, const char *info, const void *ikm,
size_t ikm_len, void *out, size_t out_len)
{
uint8_t tmp[64];
uint8_t zero_salt[64] = { 0 };
size_t hash_len = l_checksum_digest_length(sha);
if (!salt)
salt = zero_salt;
if (!hkdf_extract(sha, salt, salt_len, 1, tmp,
ikm, ikm_len))
return false;
return hkdf_expand(sha, tmp, hash_len, info, out, out_len);
}
bool dpp_derive_r_auth(const void *i_nonce, const void *r_nonce,
size_t nonce_len, struct l_ecc_point *i_proto,
struct l_ecc_point *r_proto,
struct l_ecc_point *r_boot,
void *r_auth)
{
uint64_t pix[L_ECC_MAX_DIGITS];
uint64_t prx[L_ECC_MAX_DIGITS];
uint64_t brx[L_ECC_MAX_DIGITS];
size_t keys_len;
uint8_t zero = 0;
enum l_checksum_type type;
keys_len = l_ecc_point_get_x(i_proto, pix, sizeof(pix));
l_ecc_point_get_x(r_proto, prx, sizeof(prx));
l_ecc_point_get_x(r_boot, brx, sizeof(brx));
type = dpp_sha_from_key_len(keys_len);
/*
* R-auth = H(I-nonce | R-nonce | PI.x | PR.x | [ BI.x | ] BR.x | 0)
*/
return dpp_hash(type, r_auth, 6, i_nonce, nonce_len, r_nonce, nonce_len,
pix, keys_len, prx, keys_len, brx, keys_len,
&zero, (size_t) 1);
}
bool dpp_derive_i_auth(const void *r_nonce, const void *i_nonce,
size_t nonce_len, struct l_ecc_point *r_proto,
struct l_ecc_point *i_proto,
struct l_ecc_point *r_boot, void *i_auth)
{
uint64_t prx[L_ECC_MAX_DIGITS];
uint64_t pix[L_ECC_MAX_DIGITS];
uint64_t brx[L_ECC_MAX_DIGITS];
size_t keys_len;
uint8_t one = 1;
enum l_checksum_type type;
keys_len = l_ecc_point_get_x(r_proto, prx, sizeof(prx));
l_ecc_point_get_x(i_proto, pix, sizeof(pix));
l_ecc_point_get_x(r_boot, brx, sizeof(brx));
type = dpp_sha_from_key_len(keys_len);
/*
* I-auth = H(R-nonce | I-nonce | PR.x | PI.x | BR.x | [ BI.x | ] 1)
*/
return dpp_hash(type, i_auth, 6, r_nonce, nonce_len, i_nonce, nonce_len,
prx, keys_len, pix, keys_len, brx, keys_len,
&one, (size_t) 1);
}
/*
* Derives key k1. This returns the intermediate secret M.x used in deriving
* key ke.
*/
struct l_ecc_scalar *dpp_derive_k1(const struct l_ecc_point *i_proto_public,
const struct l_ecc_scalar *boot_private,
void *k1)
{
struct l_ecc_scalar *m;
uint64_t mx_bytes[L_ECC_MAX_DIGITS];
ssize_t key_len;
enum l_checksum_type sha;
if (!l_ecdh_generate_shared_secret(boot_private, i_proto_public, &m))
return NULL;
key_len = l_ecc_scalar_get_data(m, mx_bytes, sizeof(mx_bytes));
if (key_len < 0)
goto free_m;
sha = dpp_sha_from_key_len(key_len);
if (!dpp_hkdf(sha, NULL, key_len, "first intermediate key", mx_bytes,
key_len, k1, key_len))
goto free_m;
return m;
free_m:
l_ecc_scalar_free(m);
return NULL;
}
/*
* Derives key k2. This returns the intermediate secret N.x used in deriving
* key ke.
*/
struct l_ecc_scalar *dpp_derive_k2(const struct l_ecc_point *i_proto_public,
const struct l_ecc_scalar *proto_private,
void *k2)
{
struct l_ecc_scalar *n;
uint64_t nx_bytes[L_ECC_MAX_DIGITS];
ssize_t key_len;
enum l_checksum_type sha;
if (!l_ecdh_generate_shared_secret(proto_private, i_proto_public, &n))
return NULL;
key_len = l_ecc_scalar_get_data(n, nx_bytes, sizeof(nx_bytes));
if (key_len < 0)
goto free_n;
sha = dpp_sha_from_key_len(key_len);
if (!dpp_hkdf(sha, NULL, key_len, "second intermediate key", nx_bytes,
key_len, k2, key_len))
goto free_n;
return n;
free_n:
l_ecc_scalar_free(n);
return NULL;
}
bool dpp_derive_ke(const uint8_t *i_nonce, const uint8_t *r_nonce,
struct l_ecc_scalar *m, struct l_ecc_scalar *n,
void *ke)
{
uint8_t nonces[32 + 32];
size_t nonce_len;
uint64_t mx_bytes[L_ECC_MAX_DIGITS];
uint64_t nx_bytes[L_ECC_MAX_DIGITS];
uint64_t bk[L_ECC_MAX_DIGITS];
ssize_t key_len;
enum l_checksum_type sha;
key_len = l_ecc_scalar_get_data(m, mx_bytes, sizeof(mx_bytes));
l_ecc_scalar_get_data(n, nx_bytes, sizeof(nx_bytes));
nonce_len = dpp_nonce_len_from_key_len(key_len);
sha = dpp_sha_from_key_len(key_len);
memcpy(nonces, i_nonce, nonce_len);
memcpy(nonces + nonce_len, r_nonce, nonce_len);
/* bk = HKDF-Extract(I-nonce | R-nonce, M.x | N.x [ | L.x]) */
if (!hkdf_extract(sha, nonces, nonce_len * 2, 2, bk, mx_bytes,
key_len, nx_bytes, key_len))
return false;
/* ke = HKDF-Expand(bk, "DPP Key", length) */
return hkdf_expand(sha, bk, key_len, "DPP Key", ke, key_len);
}
/*
* Values derived from OID definitions in https://www.secg.org/sec2-v2.pdf
* Appendix A.2.1
*
* 1.2.840.10045.2.1 (ecPublicKey)
*/
static struct asn1_oid ec_oid = {
.asn1_len = 7,
.asn1 = { 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01 }
};
/* 1.2.840.10045.3.1.7 (prime256v1) */
static struct asn1_oid ec_p256_oid = {
.asn1_len = 8,
.asn1 = { 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07 }
};
/* 1.3.132.0.34 (secp384r1) */
static struct asn1_oid ec_p384_oid = {
.asn1_len = 5,
.asn1 = { 0x2B, 0x81, 0x04, 0x00, 0x22 }
};
uint8_t *dpp_point_to_asn1(const struct l_ecc_point *p, size_t *len_out)
{
uint8_t *asn1;
uint8_t *ptr;
struct asn1_oid *key_type;
const struct l_ecc_curve *curve = l_ecc_point_get_curve(p);
ssize_t key_size = l_ecc_curve_get_scalar_bytes(curve);
uint64_t x[L_ECC_MAX_DIGITS];
ssize_t ret;
size_t len;
uint8_t point_type;
switch (key_size) {
case 32:
key_type = &ec_p256_oid;
break;
case 48:
key_type = &ec_p384_oid;
break;
default:
return NULL;
}
ret = l_ecc_point_get_x(p, x, sizeof(x));
if (ret < 0 || ret != key_size)
return NULL;
len = 2 + ec_oid.asn1_len + 2 + key_type->asn1_len + 2 + key_size + 4;
/*
* Set the type to whatever avoids doing p - y when reading in the
* key. Working backwards from l_ecc_point_from_data if Y is odd and
* the type is BIT0 there is no subtraction. Similarly if Y is even
* and the type is BIT1.
*/
if (l_ecc_point_y_isodd(p))
point_type = L_ECC_POINT_TYPE_COMPRESSED_BIT0;
else
point_type = L_ECC_POINT_TYPE_COMPRESSED_BIT1;
if (L_WARN_ON(len > 128))
return NULL;
asn1 = l_malloc(len + 2);
ptr = asn1;
*ptr++ = ASN1_ID_SEQUENCE;
/* Length of both OIDs and key, plus tag/len bytes */
*ptr++ = len;
*ptr++ = ASN1_ID_SEQUENCE;
len = ec_oid.asn1_len + key_type->asn1_len + 4;
*ptr++ = len;
*ptr++ = ASN1_ID_OID;
*ptr++ = ec_oid.asn1_len;
memcpy(ptr, ec_oid.asn1, ec_oid.asn1_len);
ptr += ec_oid.asn1_len;
*ptr++ = ASN1_ID_OID;
*ptr++ = key_type->asn1_len;
memcpy(ptr, key_type->asn1, key_type->asn1_len);
ptr += key_type->asn1_len;
*ptr++ = ASN1_ID_BIT_STRING;
*ptr++ = key_size + 2;
*ptr++ = 0x00;
*ptr++ = point_type;
memcpy(ptr, x, key_size);
ptr += key_size;
if (len_out)
*len_out = ptr - asn1;
return asn1;
}
/*
* Only checking for the ASN.1 form:
*
* SEQUENCE {
* SEQUENCE {
* OBJECT IDENTIFIER ecPublicKey
* OBJECT IDENTIFIER key type (p256/p384)
* }
* BITSTRING (key data)
* }
*/
struct l_ecc_point *dpp_point_from_asn1(const uint8_t *asn1, size_t len)
{
const uint8_t *outer_seq;
size_t outer_len;
const uint8_t *inner_seq;
size_t inner_len;
const uint8_t *elem;
const uint8_t *key_data;
size_t elen = 0;
uint8_t tag;
unsigned int curve_num;
const struct l_ecc_curve *curve;
/* SEQUENCE */
outer_seq = asn1_der_find_elem(asn1, len, 0, &tag, &outer_len);
if (!outer_seq || tag != ASN1_ID_SEQUENCE)
return NULL;
/* SEQUENCE */
inner_seq = asn1_der_find_elem(outer_seq, outer_len, 0, &tag,
&inner_len);
if (!inner_seq || tag != ASN1_ID_SEQUENCE)
return NULL;
/* OBJECT IDENTIFIER (ecPublicKey) */
elem = asn1_der_find_elem(inner_seq, inner_len, 0, &tag, &elen);
if (!elem || tag != ASN1_ID_OID)
return NULL;
/* Check that this OID is ecPublicKey */
if (!asn1_oid_eq(&ec_oid, elen, elem))
return NULL;
elem = asn1_der_find_elem(inner_seq, inner_len, 1, &tag, &elen);
if (!elem || tag != ASN1_ID_OID)
return NULL;
/* Check if ELL supports this curve */
if (asn1_oid_eq(&ec_p256_oid, elen, elem))
curve_num = 19;
else if (asn1_oid_eq(&ec_p384_oid, elen, elem))
curve_num = 20;
else
return NULL;
curve = l_ecc_curve_from_ike_group(curve_num);
if (!curve)
return NULL;
/* BITSTRING */
key_data = asn1_der_find_elem(outer_seq, outer_len, 1, &tag, &elen);
if (!key_data || tag != ASN1_ID_BIT_STRING || elen < 2)
return NULL;
return l_ecc_point_from_data(curve, key_data[1],
key_data + 2, elen - 2);
}
/*
* Advances 'p' to the next character 'sep' plus one. strchr can be trusted to
* find the next character, but we do need to check that the next character + 1
* isn't the NULL terminator, i.e. that data actually exists past this point.
*/
#define TOKEN_NEXT(p, sep) \
({ \
const char *_next = strchr((p), (sep)); \
if (_next) { \
if (*(_next + 1) == '\0') \
_next = NULL; \
else \
_next++; \
} \
_next; \
})
/*
* Finds the length of the current token (characters until next 'sep'). If no
* 'sep' is found zero is returned.
*/
#define TOKEN_LEN(p, sep) \
({ \
const char *_next = strchr((p), (sep)); \
if (!_next) \
_next = (p); \
(_next - (p)); \
})
/*
* Ensures 'p' points to something resembling a single character followed by
* ':' followed by at least one non-null byte of data. This allows the parse
* loop to safely advance the pointer to each tokens data (pos + 2)
*/
#define TOKEN_OK(p) \
((p) && (p)[0] != '\0' && (p)[1] == ':' && (p)[2] != '\0') \
static struct scan_freq_set *dpp_parse_class_and_channel(const char *token,
unsigned int len)
{
const char *pos = token;
char *end;
struct scan_freq_set *freqs = scan_freq_set_new();
/* Checking for <operclass>/<channel>,<operclass>/<channel>,... */
for (; pos && pos < token + len; pos = TOKEN_NEXT(pos, ',')) {
unsigned long r;
uint8_t channel;
uint8_t oper_class;
uint32_t freq;
/* strtoul accepts minus and plus signs before value */
if (*pos == '-' || *pos == '+')
goto free_set;
/* to check uint8_t overflow */
errno = 0;
r = oper_class = strtoul(pos, &end, 10);
if (errno == ERANGE || errno == EINVAL)
goto free_set;
/*
* Did strtoul not advance pointer, not reach the next
* token, or overflow?
*/
if (end == pos || *end != '/' || r != oper_class)
goto free_set;
pos = end + 1;
if (*pos == '-' || *pos == '+')
goto free_set;
errno = 0;
r = channel = strtoul(pos, &end, 10);
if (errno == ERANGE || errno == EINVAL)
goto free_set;
/*
* Same verification as above, but also checks either for
* another pair (,) or end of this token (;)
*/
if (end == pos || (*end != ',' && *end != ';') || r != channel)
goto free_set;
freq = oci_to_frequency(oper_class, channel);
if (!freq)
goto free_set;
scan_freq_set_add(freqs, freq);
}
if (token + len != end)
goto free_set;
if (scan_freq_set_isempty(freqs)) {
free_set:
scan_freq_set_free(freqs);
return NULL;
}
return freqs;
}
static int dpp_parse_mac(const char *str, unsigned int len, uint8_t *mac_out)
{
uint8_t mac[6];
unsigned int i;
if (len != 12)
return -EINVAL;
for (i = 0; i < 12; i += 2) {
if (!l_ascii_isxdigit(str[i]))
return -EINVAL;
if (!l_ascii_isxdigit(str[i + 1]))
return -EINVAL;
}
if (sscanf(str, "%2hhx%2hhx%2hhx%2hhx%2hhx%2hhx",
&mac[0], &mac[1], &mac[2],
&mac[3], &mac[4], &mac[5]) != 6)
return -EINVAL;
if (!util_is_valid_sta_address(mac))
return -EINVAL;
memcpy(mac_out, mac, 6);
return 0;
}
static int dpp_parse_version(const char *str, unsigned int len,
uint8_t *version_out)
{
if (len != 1)
return -EINVAL;
if (str[0] != '1' && str[0] != '2')
return -EINVAL;
*version_out = str[0] - '0';
return 0;
}
static struct l_ecc_point *dpp_parse_key(const char *str, unsigned int len)
{
_auto_(l_free) uint8_t *decoded = NULL;
size_t decoded_len;
decoded = l_base64_decode(str, len, &decoded_len);
if (!decoded)
return NULL;
return dpp_point_from_asn1(decoded, decoded_len);
}
/*
* Parse a bootstrapping URI. This parses the tokens defined in the Easy Connect
* spec, and verifies they are the correct syntax. Some values have extra
* verification:
* - The bootstrapping key is base64 decoded and converted to an l_ecc_point
* - The operating class and channels are checked against the OCI table.
* - The version is checked to be either 1 or 2, as defined by the spec.
* - The MAC is verified to be a valid station address.
*/
struct dpp_uri_info *dpp_parse_uri(const char *uri)
{
struct dpp_uri_info *info;
const char *pos = uri;
const char *end = uri + strlen(uri) - 1;
int ret = 0;
if (!l_str_has_prefix(pos, "DPP:"))
return NULL;
info = l_new(struct dpp_uri_info, 1);
pos += 4;
/* EasyConnect 5.2.1 - Bootstrapping information format */
for (; TOKEN_OK(pos); pos = TOKEN_NEXT(pos, ';')) {
unsigned int len = TOKEN_LEN(pos + 2, ';');
if (!len)
goto free_info;
switch (*pos) {
case 'C':
info->freqs = dpp_parse_class_and_channel(pos + 2, len);
if (!info->freqs)
goto free_info;
break;
case 'M':
ret = dpp_parse_mac(pos + 2, len, info->mac);
if (ret < 0)
goto free_info;
break;
case 'V':
ret = dpp_parse_version(pos + 2, len, &info->version);
if (ret < 0)
goto free_info;
break;
case 'K':
info->boot_public = dpp_parse_key(pos + 2, len);
if (!info->boot_public)
goto free_info;
break;
case 'H':
case 'I':
break;
default:
goto free_info;
}
}
/* Extra data found after last token */
if (pos != end)
goto free_info;
/* The public bootstrapping key is the only required token */
if (!info->boot_public)
goto free_info;
return info;
free_info:
dpp_free_uri_info(info);
return NULL;
}
void dpp_free_uri_info(struct dpp_uri_info *info)
{
if (info->freqs)
scan_freq_set_free(info->freqs);
if (info->boot_public)
l_ecc_point_free(info->boot_public);
if (info->information)
l_free(info->information);
if (info->host)
l_free(info->host);
l_free(info);
}