mirror of
https://github.com/42wim/matterbridge.git
synced 2025-01-26 20:14:31 +01:00
53cafa9f3d
This commit adds support for go/cgo tgs conversion when building with the -tags `cgo` The default binaries are still "pure" go and uses the old way of converting. * Move lottie_convert.py conversion code to its own file * Add optional libtgsconverter * Update vendor * Apply suggestions from code review * Update bridge/helper/libtgsconverter.go Co-authored-by: Wim <wim@42.be>
55 lines
1.4 KiB
Markdown
55 lines
1.4 KiB
Markdown
# go-decimal-to-rational
|
|
|
|
[![Build Status](https://travis-ci.org/av-elier/go-decimal-to-rational.svg?branch=master)](https://travis-ci.org/av-elier/go-decimal-to-rational)
|
|
|
|
Go library to convert decimal (float64) to rational fraction with required precision
|
|
|
|
Relies on [Continued Fraction](http://mathworld.wolfram.com/ContinuedFraction.html) algorythm.
|
|
|
|
It's sometimes more appropriate than default big.Rat SetString, because
|
|
you can get `2/3` from `0.6666` by specifiing required precision. In big.Rat SetString
|
|
you can only get `3333/50000`, and have no way to manipulate than (as of go 1.11).
|
|
|
|
# Example
|
|
```go
|
|
func ExampleNewRatP() {
|
|
fmt.Println(NewRatP(0.6666, 0.01).String())
|
|
fmt.Println(NewRatP(0.981, 0.001).String())
|
|
fmt.Println(NewRatP(0.75, 0.01).String())
|
|
// Output:
|
|
// 2/3
|
|
// 981/1000
|
|
// 3/4
|
|
}
|
|
```
|
|
```go
|
|
func ExampleNewRatI() {
|
|
fmt.Println(NewRatI(0.6667, 3).String())
|
|
fmt.Println(NewRatI(0.6667, 4).String())
|
|
// Output:
|
|
// 2/3
|
|
// 6667/10000
|
|
}
|
|
```
|
|
|
|
# Docs
|
|
```
|
|
import dectofrac "github.com/av-elier/go-decimal-to-rational"
|
|
```
|
|
|
|
#### func NewRatI
|
|
|
|
```go
|
|
func NewRatI(val float64, iterations int64) *big.Rat
|
|
```
|
|
NewRatI returns rational from decimal using `iterations` number of
|
|
iterations in Continued Fraction algorythm
|
|
|
|
#### func NewRatP
|
|
|
|
```go
|
|
func NewRatP(val float64, stepPrecision float64) *big.Rat
|
|
```
|
|
NewRatP returns rational from decimal by going as mush iterations, until
|
|
next fraction is less than `stepPrecision`
|