2
0
Go to file Use this template
2021-10-23 21:11:52 +01:00
.github/workflows ci(kitchen+ci): update with latest CVE pre-salted images 2021-10-05 10:49:18 +01:00
bin ci(pre-commit): add to formula [skip ci] 2020-10-03 10:53:17 +01:00
dev Vagrant Updates: 2019-12-11 19:03:35 +01:00
docs chore(release): 1.9.3 [skip ci] 2021-10-05 10:22:25 +00:00
salt fix(debian,ubuntu): rename repo file to match documentation 2021-09-17 15:50:54 -03:00
test test(_mapdata): use 15.3 for opensuse-15.yaml 2021-10-05 09:44:54 +01:00
.gitignore ci(kitchen+ci): update with latest CVE pre-salted images 2021-10-05 10:49:18 +01:00
.gitlab-ci.yml ci(kitchen+ci): update with latest CVE pre-salted images 2021-10-05 10:49:18 +01:00
.pre-commit-config.yaml ci(3003.1): update inc. AlmaLinux, Rocky & rst-lint [skip ci] 2021-07-02 00:07:43 +01:00
.rstcheck.cfg chore(pre-commit): use info report level for rstcheck [skip ci] 2021-05-20 14:10:38 +01:00
.rubocop.yml test: standardise use of share suite & _mapdata state [skip ci] 2021-03-23 21:33:02 +00:00
.salt-lint ci(travis): update salt-lint config for v0.0.10 [skip ci] 2019-10-23 17:38:01 +01:00
.travis.yml ci(kitchen+ci): update with latest CVE pre-salted images 2021-10-05 10:49:18 +01:00
.yamllint ci: add Debian 11 Bullseye & update yamllint configuration [skip ci] 2021-07-18 19:05:11 +01:00
AUTHORS.md chore(release): 1.9.3 [skip ci] 2021-10-05 10:22:25 +00:00
CHANGELOG.md chore(release): 1.9.3 [skip ci] 2021-10-05 10:22:25 +00:00
CODEOWNERS chore: update CODEOWNERS & .yamllint re: kitchen-vagrant [skip ci] 2021-04-05 18:21:48 +01:00
commitlint.config.js chore(commitlint): add {body,footer,header}-max(-line)-length [skip ci] 2020-10-07 09:09:56 +01:00
FORMULA chore(release): 1.9.3 [skip ci] 2021-10-05 10:22:25 +00:00
Gemfile ci(gemfile+lock): use ssf customised inspec repo [skip ci] 2021-08-04 21:56:41 +01:00
Gemfile.lock chore(gemfile.lock): update to latest gem versions (2021-W42) [skip ci] 2021-10-23 21:11:52 +01:00
kitchen.vagrant.yml ci(kitchen+ci): update with latest CVE pre-salted images 2021-10-05 10:49:18 +01:00
kitchen.windows.yml ci(kitchen+ci): update with latest CVE pre-salted images 2021-10-05 10:49:18 +01:00
kitchen.yml ci(kitchen+ci): update with latest CVE pre-salted images 2021-10-05 10:49:18 +01:00
LICENSE Update LICENSING year 2015-03-20 20:05:04 -04:00
pillar.example ci(pillar): update master_type in pillar.example 2021-09-04 21:27:44 +01:00
pre-commit_semantic-release.sh ci(gitlab-ci): use GitLab CI as Travis CI replacement 2020-12-16 06:58:36 +00:00
release-rules.js docs(semantic-release): implement an automated changelog 2019-05-14 19:21:00 +02:00
release.config.js ci(gitlab-ci): use GitLab CI as Travis CI replacement 2020-12-16 06:58:36 +00:00
Vagrantfile Vagrant Updates: 2019-12-11 19:03:35 +01:00

salt-formula

Travis CI Build Status Semantic Release

Yes, Salt can Salt itself!

Table of Contents

General notes

See the full SaltStack Formulas installation and usage instructions.

If you are interested in writing or contributing to formulas, please pay attention to the Writing Formula Section.

If you want to use this formula, please pay attention to the FORMULA file and/or git tag, which contains the currently released version. This formula is versioned according to Semantic Versioning.

See Formula Versioning Section for more details.

Contributing to this repo

Commit message formatting is significant!!

Please see How to contribute for more details.

Available states

salt

Meta-state (This is a state that includes other states).

This calls all runable states based on configured pillar data.

salt.minion

Install a minion

salt.master

Install a master.

salt.syndic

Install a syndic.

salt.cloud

Install salt cloud.

salt.ssh

Install salt-ssh with roster file. Configure pillar data under salt:ssh_roster to feed the template.

salt.api

Install salt api Requisite: Configure salt-master with rest_cherrypy or rest_tornado.

salt.standalone

Install a minion and configure it in standalone mode.

salt.gitfs.dulwich

Install gitfs backend dulwich dependencies. Set salt:master:gitfs_provider: dulwich in your pillar.

salt.gitfs.gitpython

Install gitfs backend GitPython dependenciess. Set salt:master:gitfs_provider: gitpython in your pillar.

salt.gitfs.keys

Install ssh keys to be used by gitfs

salt.gitfs.pygit2

Install gitfs backend libgit2/pygit2 dependenciess. Set salt:master:gitfs_provider: pygit2 in your pillar. For EL distributions, pygit is installed from packages from EPEL.

salt.pkgrepo

It is recommended to use SaltStack repository for Debian, RedHat, and SuSE, to benefit from the latest stable salt release. Refer to official documentation at <http://docs.saltstack.com/en/latest/topics/installation/index.html#platform-specific-installation-instructions>`_.

salt.pkgrepo.clean

Undo the effects of salt.pkgrepo on Debian, RedHat, and SuSE.

salt.formulas

Clone selected Salt formulas Git repositories under /srv/formulas and makes them available in the relevant file_roots settings. Please note that in order for file_roots to be updated, salt.master must be called after salt.formulas. For example:

base:
  'saltmain':
    - salt.formulas
    - salt.master

Pillar data can be used to customize all paths, URLs, etc. Here's a minimal pillar sample installing two formulas in the base environment:

salt_formulas:
  list:
    base:
      - salt-formula
      - openssh-formula

See pillar.example for an exhaustive list of settings available via pillar. Note that by default this state:

  • downloads the latest formulas from the saltstack-formulas project on GitHub.
  • does not update the local repositories after the initial clone. This is a safety measure since you do not control how the official repositories evolve.

If you configure the state to download the formulas from repositories that you control, then you can safely enable the salt_formulas:git_opts:default:update pillar setting to True.

Configuration

Every option available in the templates can be set in pillar. Settings under 'salt' will be overridden by more specific settings under salt['master'], salt['minion'] or salt['cloud']. Options specified in salt['minion'] which are not present in the default configuration file will be added to the end of the configuration file.

salt:
  ret_port: 4506
  master:
    user: saltuser
    ...
  minion:
    user: saltuser
    ...
  cloud:
    providers: ec2
    ...

Extending

Additional templates can be added by the user under salt/files/minion.d and master.d. This might be useful if, for example, a recently-added configuration option is not yet provided by the default template.

Vagrant

Executing the provided Vagrantfile will create a Ubuntu 14.04 VM, add the default Saltstack Repository and install the current stable version.

The folders inside the VM will be set up in a way that enables you to simply execute 'sudo salt "*" state.highstate' to apply the salt formula to the VM, using the pillar.example config. You can check /etc/salt/ for results.

Remember, you will have to run state.highstate or state.sls salt.(master|minion|cloud) manually.

MacOS Support

As MacOS has no native package management that pkg.installed can leverage appropriately, and brew does not count, the salt.minion state manages salt minion package upgrades by way of .pkg file download which is then installed using the macpackage.installed state.

salt-minion packages on MacOS will not be upgraded by default. To enable package management you must set the following at a minimum,

install_packages: True
version: 2017.7.4
salt_minion_pkg_source: https://repo.saltproject.io/osx/salt-2017.7.4-py3-x86_64.pkg

install_packages must indicate that the installation of a package is desired. If so, version will be used to compare the version of the installed .pkg against the downloaded one. If version is not set and a salt.pkg is already installed the .pkg will not be installed again.

A future update to the formula may include extraction of version from the downloaded .pkg itself; but for the time being you MUST set version to indicate what you believe it to be.

Refer to pillar.example for more information.

Testing

Linux testing is done with kitchen-salt.

Requirements

  • Ruby
  • Docker
$ gem install bundler
$ bundle install
$ bin/kitchen test [platform]

Where [platform] is the platform name defined in kitchen.yml, e.g. debian-9-2019-2-py3.

bin/kitchen converge

Creates the docker instance and runs the salt main states, ready for testing.

bin/kitchen verify

Runs the inspec tests on the actual instance.

bin/kitchen destroy

Removes the docker instance.

bin/kitchen test

Runs all of the stages above in one go: i.e. destroy + converge + verify + destroy.

bin/kitchen login

Gives you SSH access to the instance for manual testing.

Testing with Vagrant

Windows/FreeBSD/OpenBSD testing is done with kitchen-salt.

Requirements

  • Ruby
  • Virtualbox
  • Vagrant

Setup

$ gem install bundler
$ bundle install --with=vagrant
$ bin/kitchen test [platform]

Where [platform] is the platform name defined in kitchen.vagrant.yml, e.g. windows-81-latest-py3.

Note

When testing using Vagrant you must set the environment variable KITCHEN_LOCAL_YAML to kitchen.vagrant.yml. For example:

$ KITCHEN_LOCAL_YAML=kitchen.vagrant.yml bin/kitchen test      # Alternatively,
$ export KITCHEN_LOCAL_YAML=kitchen.vagrant.yml
$ bin/kitchen test

Then run the following commands as needed.

bin/kitchen converge

Creates the Vagrant instance and runs the salt main states, ready for testing.

bin/kitchen verify

Runs the inspec tests on the actual instance.

bin/kitchen destroy

Removes the Vagrant instance.

bin/kitchen test

Runs all of the stages above in one go: i.e. destroy + converge + verify + destroy.

bin/kitchen login

Gives you RDP/SSH access to the instance for manual testing.