merge-psywiki-tripsit-data/scrape.py

504 lines
17 KiB
Python
Raw Normal View History

2021-06-17 19:55:03 +02:00
#!/usr/bin/env python3
# downloads and exports data on all substances from psychonautwiki and tripsit factsheets, combining to form master list with standardized format
# prioritizes psychonautwiki ROA info (dose/duration) over tripsit factsheets
# pip3 install beautifulsoup4 requests python-graphql-client
import requests
from bs4 import BeautifulSoup
from time import time, sleep
from python_graphql_client import GraphqlClient
import json
import os
import re
import traceback
headers = {
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Methods': 'GET',
'Access-Control-Allow-Headers': 'Content-Type',
'Access-Control-Max-Age': '3600',
'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0'
}
ts_api_url = "https://tripbot.tripsit.me/api/tripsit/getAllDrugs"
ps_api_url = "https://api.psychonautwiki.org"
ps_client = GraphqlClient(endpoint=ps_api_url)
def substance_name_match(name, substance):
"""check if name matches any value in keys we care about"""
lower_name = name.lower()
return any(
[lower_name == substance[key].lower()
for key in ['name', 'pretty_name'] if key in substance] +
[lower_name == alias.lower()
for alias in substance.get('aliases', [])]
)
def find_substance_in_data(data, name):
return next((s for s in data if substance_name_match(name, s)), None)
roa_name_aliases = {
'iv': ['intravenous'],
'intravenous': ['iv'],
'im': ['intramuscular'],
'intramuscular': ['im'],
'insufflated': ['snorted'],
'snorted': ['insufflated'],
'vaporized': ['vapourized'],
'vapourized': ['vaporized'],
2021-06-17 19:55:03 +02:00
}
def roa_matches_name(roa, name):
aliases = roa_name_aliases.get(name.lower(), [])
return roa['name'].lower() == name.lower() or roa['name'].lower() in aliases
# get tripsit data
ts_dose_order = ['Threshold', 'Light', 'Common', 'Strong', 'Heavy']
ts_combo_ignore = ['benzos'] # duplicate
# prettify names in interaction list
ts_combo_transformations = {
'lsd': 'LSD',
'mushrooms': 'Mushrooms',
'dmt': 'DMT',
'mescaline': 'Mescaline',
'dox': 'DOx',
'nbomes': 'NBOMes',
'2c-x': '2C-x',
'2c-t-x': '2C-T-x',
'amt': 'aMT',
'5-meo-xxt': '5-MeO-xxT',
'cannabis': 'Cannabis',
'ketamine': 'Ketamine',
'mxe': 'MXE',
'dxm': 'DXM',
'pcp': 'PCP',
'nitrous': 'Nitrous',
'amphetamines': 'Amphetamines',
'mdma': 'MDMA',
'cocaine': 'Cocaine',
'caffeine': 'Caffeine',
'alcohol': 'Alcohol',
'ghb/gbl': 'GHB/GBL',
'opioids': 'Opioids',
'tramadol': 'Tramadol',
'benzodiazepines': 'Benzodiazepines',
'maois': 'MAOIs',
'ssris': 'SSRIs',
}
ts_response = requests.get(ts_api_url)
ts_data = ts_response.json()['data'][0]
ts_substances_data = list(ts_data.values())
# TS has durations split over a few keys, so this finds or creates the duration for the associated ROA
# and adds a new line item
def ts_add_formatted_duration(ts_roas, formatted_duration, duration_name):
units = formatted_duration.get('_unit', '') or ''
if '_unit' in formatted_duration:
formatted_duration.pop('_unit')
def add_to_roa(roa, value):
if 'duration' not in roa:
roa['duration'] = []
roa['duration'].append({
'name': duration_name,
'value': value
})
for roa_name, value in formatted_duration.items():
value_string = f"{value} {units}".strip()
# if value present (i.e. just one value for all ROA doses provided above), apply to all ROAs
if roa_name == 'value':
# if TS did not add any doses, do nothing with this value
# we could theoretically apply this to all PW doses with missing durations, but we can't be sure
# if it applies to all ROAs, so just ignore
if not len(ts_roas):
break
for ts_roa in ts_roas:
add_to_roa(ts_roa, value_string)
# add to matching ROA or create new ROA if doesn't exist
else:
ts_roa = next(
(ts_roa for ts_roa in ts_roas if roa_matches_name(ts_roa, roa_name)), None)
# if ROA doesn't exist, make new
if not ts_roa:
ts_roa = {'name': roa_name}
ts_roas.append(ts_roa)
add_to_roa(ts_roa, value_string)
# get psychonautwiki data
def pw_clean_common_name(name):
name = re.sub(r'^"', '', name)
name = re.sub(r'"$', '', name)
name = re.sub(r'"?\[\d*\]$', '', name)
name = re.sub(r'\s*More names\.$', '', name)
name = re.sub(r'\.$', '', name)
return name.strip()
def pw_should_skip(name, soup):
return name.startswith('Experience:') or len(soup.find_all(text="Common names")) == 0
pw_substance_data = []
if os.path.exists('_cached_pw_substances.json'):
with open('_cached_pw_substances.json') as f:
pw_substance_data = json.load(f)
if not len(pw_substance_data):
pw_substance_urls_query = """
{
substances(limit: 11000) {
name
url
}
}
"""
pw_substance_urls_data = ps_client.execute(query=pw_substance_urls_query)[
'data']['substances']
for idx, substance in enumerate(pw_substance_urls_data):
try:
url = substance['url']
substance_req = requests.get(url, headers)
substance_soup = BeautifulSoup(
substance_req.content, "html.parser")
name = substance_soup.find('h1', id='firstHeading').text
if pw_should_skip(name, substance_soup):
print(
f"Skipping {name} ({idx + 1} / {len(pw_substance_urls_data)})")
continue
# get aliases text
common_names_str = substance_soup.find_all(text="Common names")
cleaned_common_names = set(map(pw_clean_common_name, common_names_str[0].parent.find_next_sibling(
'td').text.split(', '))) if len(common_names_str) > 0 else set()
cleaned_common_names.add(substance['name'])
# don't include name in list of other common names
common_names = sorted(
2021-06-17 19:55:03 +02:00
filter(lambda n: n != name, cleaned_common_names))
# scrape ROAs from page
def get_data_starting_at_row(curr_row):
rows = []
while curr_row.find('th', {'class': 'ROARowHeader'}):
row = {}
row['name'] = curr_row.find(
'th', {'class': 'ROARowHeader'}).find('a').text
row_values = curr_row.find('td', {'class': 'RowValues'})
row_value_text = row_values.find_all(
2021-06-17 19:55:03 +02:00
text=True, recursive=False)
if len(row_value_text):
row['value'] = "".join(row_value_text).strip()
2021-06-17 19:55:03 +02:00
else:
row['value'] = None
row_note = row_values.find('span')
if row_note:
row['note'] = re.sub(
r'\s*\[\d*\]$', '', row_note.text).strip()
rows.append(row)
curr_row = curr_row.find_next('tr')
return rows, curr_row
roas = []
dose_charts = substance_soup.find_all('tr', {'class': 'dosechart'})
for dose_chart in dose_charts:
table = dose_chart.parent.parent
roa_name = table.find('tr').find('a').text
if not roa_name:
continue
roa = {
'name': roa_name,
'dosage': [],
'duration': [],
}
# dosage
curr_row = dose_chart.find_next('tr')
roa['dosage'], curr_row = get_data_starting_at_row(curr_row)
# extract bioavailability
if len(roa['dosage']) and roa['dosage'][0]['name'] == 'Bioavailability':
bioavailability = roa['dosage'].pop(0)
roa['bioavailability'] = bioavailability['value']
# duration
if curr_row.find('th', {'class': 'ROASubHeader'}):
curr_row = curr_row.find_next('tr')
roa['duration'], _ = get_data_starting_at_row(curr_row)
if not len(roa['dosage']):
roa['dosage'] = None
if not len(roa['duration']):
roa['duration'] = None
roas.append(roa)
# query PS API for more data on substance
query = """
{
substances(query: "%s") {
name
class {
chemical
psychoactive
}
tolerance {
full
half
zero
}
toxicity
addictionPotential
crossTolerances
}
}
""" % substance['name']
data = ps_client.execute(query=query)['data']['substances']
if len(data) == 0:
continue
elif len(data) > 1:
# should never happen?
print(f"{name} has more than one dataset... investigate why")
data = data[0]
if 'name' in data:
data.pop('name')
pw_substance_data.append({
'url': url,
'name': name,
'aliases': common_names,
'roas': roas,
'data': data
})
print(
f"Done with {name} [{len(roas)} ROA(s)] ({idx + 1} / {len(pw_substance_urls_data)})")
except KeyboardInterrupt:
print("\nScrape canceled")
exit(0)
except:
print(f"{name} failed:")
print(traceback.format_exc())
exit(1)
with open(f"_cached_pw_substances.json", 'w') as f:
f.write(json.dumps(pw_substance_data, indent=2))
# combine tripsit and psychonautwiki data
all_substance_names = sorted(set(
list(map(lambda s: s.get('name', '').lower(), pw_substance_data)) +
list(map(lambda s: s.get('name', '').lower(), ts_substances_data))
))
substance_data = []
for name in all_substance_names:
# find PW substance
pw_substance = find_substance_in_data(pw_substance_data, name)
# remove to get rid of duplicates in final output
if pw_substance:
pw_substance_data.remove(pw_substance)
else:
pw_substance = {}
# find TS substance
ts_substance = find_substance_in_data(
ts_substances_data, name)
# remove to get rid of duplicates in final output
if ts_substance:
ts_substances_data.remove(ts_substance)
else:
ts_substance = {}
# if no substance found in either dataset, skip
if not pw_substance and not ts_substance:
continue
ts_properties = ts_substance.get('properties', {})
# url will always exist for psychonautwiki substance, so tripsit substance must exist if url is None
url = pw_substance.get(
'url') or f"https://drugs.tripsit.me/{ts_substance['name']}"
# pick display name from available substances found from both datasets
names = list(filter(lambda n: n is not None and len(n) > 0, [
pw_substance.get('name'), ts_substance.get('pretty_name')]))
# people use shorter names
name = min(names, key=len)
# lowercase list of all names, excluding chosen name above
aliases = set(map(lambda n: n.lower(), filter(lambda n: n is not None and len(n) > 0, [
pw_substance.get('name'), ts_substance.get('pretty_name')] + pw_substance.get('aliases', []) + ts_substance.get('aliases', []))))
if name.lower() in aliases:
aliases.remove(name.lower())
aliases = sorted(aliases)
summary = ts_properties.get('summary', '').strip()
if not len(summary):
summary = None
ts_bioavailability_str = ts_properties.get('bioavailability', '').strip()
ts_bioavailability = {}
if len(ts_bioavailability_str):
matches = re.findall(
r'([a-zA-Z\/]+)[.:\s]+([0-9\.%\s\+/\-]+)', ts_bioavailability_str)
if len(matches):
for roa_name, value in matches:
ts_bioavailability[roa_name.lower()] = value.strip('. \t')
2021-06-17 19:55:03 +02:00
pw_data = pw_substance.get('data', {})
classes = pw_data.get('class')
toxicity = pw_data.get('toxicity')
addiction_potential = pw_data.get('addictionPotential')
tolerance = pw_data.get('tolerance')
cross_tolerances = pw_data.get('crossTolerances')
roas = []
# get PW ROAs
pw_roas = pw_substance.get('roas', [])
# process TS ROAs
ts_roas = []
# TS ROA dosage
ts_formatted_dose = ts_substance.get('formatted_dose')
if ts_formatted_dose:
for roa_name, dose_data in ts_formatted_dose.items():
dose_levels = []
for dose_level in ts_dose_order:
value_string = dose_data.get(dose_level)
if value_string is None:
continue
dose_levels.append({
'name': dose_level,
'value': value_string,
})
if len(dose_levels):
ts_roas.append({
'name': roa_name,
'dosage': dose_levels
})
# TS ROA durations
ts_formatted_onset = ts_substance.get('formatted_onset')
if ts_formatted_onset:
ts_add_formatted_duration(ts_roas, ts_formatted_onset, 'Onset')
ts_formatted_duration = ts_substance.get('formatted_duration')
if ts_formatted_duration:
ts_add_formatted_duration(ts_roas, ts_formatted_duration, 'Duration')
ts_formatted_aftereffects = ts_substance.get('formatted_aftereffects')
if ts_formatted_aftereffects:
ts_add_formatted_duration(ts_roas,
ts_formatted_aftereffects, 'After effects')
# merge PW and TS ROAs
# prioritize PW for ROAs but use TS to fill in gaps
roas.extend(pw_roas)
for ts_roa in ts_roas:
existing_roa = next(
(roa for roa in roas if roa_matches_name(roa, ts_roa['name'])), None)
# if ROA does not exist, add
if not existing_roa:
existing_roa = ts_roa
roas.append(existing_roa)
# we want bioavailability from below, so don't skip
# if ROA does not already have bioavailability, try to get from TS
if not existing_roa.get('bioavailability'):
name_lower = ts_roa['name'].lower()
name_aliases = roa_name_aliases.get(name_lower, [])
alias_found = next(
(name_alias in ts_bioavailability for name_alias in name_aliases), None)
# TS has bioavailability if name or any name alias is found
if name_lower in ts_bioavailability or alias_found:
existing_roa['bioavailability'] = ts_bioavailability.get(
name_lower) or ts_bioavailability.get(alias_found)
# if existing ROA is missing dosage and TS has dosage, add
if (not existing_roa.get('dosage') or not len(existing_roa['dosage'])) and ('dosage' in ts_roa and ts_roa['dosage'] and len(ts_roa['dosage'])):
2021-06-17 19:55:03 +02:00
existing_roa['dosage'] = ts_roa['dosage']
# if existing ROA is missing duration and TS has duration, add
if (not existing_roa.get('duration') or not len(existing_roa['duration'])) and ('duration' in ts_roa and ts_roa['duration'] and len(ts_roa['duration'])):
2021-06-17 19:55:03 +02:00
existing_roa['duration'] = ts_roa['duration']
interactions = None
combos = ts_substance.get('combos')
if combos:
interactions = []
for key, combo_data in combos.items():
if key in ts_combo_ignore:
continue
combo_data['name'] = ts_combo_transformations[key]
interactions.append(combo_data)
interactions = sorted(interactions, key=lambda i: i['name'])
substance_data.append({
'url': url,
'name': name,
'aliases': list(aliases),
'aliasesStr': ','.join(aliases),
'summary': summary,
'classes': classes,
'toxicity': toxicity,
'addictionPotential': addiction_potential,
'tolerance': tolerance,
'crossTolerances': cross_tolerances,
'roas': roas,
'interactions': interactions,
})
# output
substances_json = json.dumps(substance_data, indent=2)
with open(f"substances_{time()}.json", 'w') as f:
f.write(substances_json)