.. | ||
build | ||
src | ||
.npmignore | ||
index.js | ||
LICENSE.md | ||
package.json | ||
README.md |
Node-TimSort: Fast Sorting for Node.js
An adaptive and stable sort algorithm based on
merging that requires fewer than nlog(n) comparisons when run on
partially sorted arrays. The algorithm uses O(n) memory and still runs
in O(nlogn) (worst case) on random arrays.
This implementation is based on the original TimSort
developed by Tim Peters for Python’s lists (code here).
TimSort has been also adopted in Java starting from version 7.
Acknowledgments
- @novacrazy: ported the module to ES6/ES7 and made it available via bower
- @kasperisager: implemented faster lexicographic comparison of small integers
Usage
Install the package with npm:
npm install --save timsort
And use it:
var TimSort = require('timsort');
var arr = [...];
.sort(arr); TimSort
You can also install it with bower:
bower install timsort
As array.sort()
by default the timsort
module sorts according to lexicographical order. You can also provide
your own compare function (to sort any object) as:
function numberCompare(a,b) {
return a-b;
}
var arr = [...];
var TimSort = require('timsort');
.sort(arr, numberCompare); TimSort
You can also sort only a specific subrange of the array:
.sort(arr, 5, 10);
TimSort.sort(arr, numberCompare, 5, 10); TimSort
Performance
A benchmark is provided in benchmark/index.js
. It
compares the timsort
module against the default
array.sort
method in the numerical sorting of different
types of integer array (as described here):
- Random array
- Descending array
- Ascending array
- Ascending array with 3 random exchanges
- Ascending array with 10 random numbers in the end
- Array of equal elements
- Random Array with many duplicates
- Random Array with some duplicates
For any of the array types the sorting is repeated several times and for different array sizes, average execution time is then printed. I run the benchmark on Node v6.3.1 (both pre-compiled and compiled from source, results are very similar), obtaining the following values:
Execution Time (ns) | Speedup | |||
---|---|---|---|---|
Array Type | Length | TimSort.sort | array.sort | |
Random | 10 | 404 | 1583 | 3.91 |
100 | 7147 | 4442 | 0.62 | |
1000 | 96395 | 59979 | 0.62 | |
10000 | 1341044 | 6098065 | 4.55 | |
Descending | 10 | 180 | 1881 | 10.41 |
100 | 682 | 19210 | 28.14 | |
1000 | 3809 | 185185 | 48.61 | |
10000 | 35878 | 5392428 | 150.30 | |
Ascending | 10 | 173 | 816 | 4.69 |
100 | 578 | 18147 | 31.34 | |
1000 | 2551 | 331993 | 130.12 | |
10000 | 22098 | 5382446 | 243.57 | |
Ascending + 3 Rand Exc | 10 | 232 | 927 | 3.99 |
100 | 1059 | 15792 | 14.90 | |
1000 | 3525 | 300708 | 85.29 | |
10000 | 27455 | 4781370 | 174.15 | |
Ascending + 10 Rand End | 10 | 378 | 1425 | 3.77 |
100 | 1707 | 23346 | 13.67 | |
1000 | 5818 | 334744 | 57.53 | |
10000 | 38034 | 4985473 | 131.08 | |
Equal Elements | 10 | 164 | 766 | 4.68 |
100 | 520 | 3188 | 6.12 | |
1000 | 2340 | 27971 | 11.95 | |
10000 | 17011 | 281672 | 16.56 | |
Many Repetitions | 10 | 396 | 1482 | 3.74 |
100 | 7282 | 25267 | 3.47 | |
1000 | 105528 | 420120 | 3.98 | |
10000 | 1396120 | 5787399 | 4.15 | |
Some Repetitions | 10 | 390 | 1463 | 3.75 |
100 | 6678 | 20082 | 3.01 | |
1000 | 104344 | 374103 | 3.59 | |
10000 | 1333816 | 5474000 | 4.10 |
TimSort.sort
is faster than
array.sort
on almost of the tested array types. In general,
the more ordered the array is the better TimSort.sort
performs with respect to array.sort
(up to 243 times faster
on already sorted arrays). And also, in general, the bigger the array
the more we benefit from using the timsort
module.
These data strongly depend on Node.js version and the machine on which the benchmark is run. I strongly encourage you to run the benchmark on your own setup with:
npm run benchmark
Please also notice that:
- This benchmark is far from exhaustive. Several cases are not considered and the results must be taken as partial
- inlining is surely playing an active role in
timsort
module’s good performance - A more accurate comparison of the algorithms would require
implementing
array.sort
in pure javascript and counting element comparisons
Stability
TimSort is stable which means that equal items maintain their relative order after sorting. Stability is a desirable property for a sorting algorithm. Consider the following array of items with an height and a weight.
[ height: 100, weight: 80 },
{ height: 90, weight: 90 },
{ height: 70, weight: 95 },
{ height: 100, weight: 100 },
{ height: 80, weight: 110 },
{ height: 110, weight: 115 },
{ height: 100, weight: 120 },
{ height: 70, weight: 125 },
{ height: 70, weight: 130 },
{ height: 100, weight: 135 },
{ height: 75, weight: 140 },
{ height: 70, weight: 140 }
{ ]
Items are already sorted by weight
. Sorting the array
according to the item’s height
with the
timsort
module results in the following array:
[ height: 70, weight: 95 },
{ height: 70, weight: 125 },
{ height: 70, weight: 130 },
{ height: 70, weight: 140 },
{ height: 75, weight: 140 },
{ height: 80, weight: 110 },
{ height: 90, weight: 90 },
{ height: 100, weight: 80 },
{ height: 100, weight: 100 },
{ height: 100, weight: 120 },
{ height: 100, weight: 135 },
{ height: 110, weight: 115 }
{ ]
Items with the same height
are still sorted by
weight
which means they preserved their relative order.
array.sort
, instead, is not guarranteed to be
stable. In Node v0.12.7 sorting the previous array by
height
with array.sort
results in:
[ height: 70, weight: 140 },
{ height: 70, weight: 95 },
{ height: 70, weight: 125 },
{ height: 70, weight: 130 },
{ height: 75, weight: 140 },
{ height: 80, weight: 110 },
{ height: 90, weight: 90 },
{ height: 100, weight: 100 },
{ height: 100, weight: 80 },
{ height: 100, weight: 135 },
{ height: 100, weight: 120 },
{ height: 110, weight: 115 }
{ ]
As you can see the sorting did not preserve weight
ordering for items with the same height
.