1
0
mirror of https://github.com/Mikaela/Limnoria.git synced 2025-01-02 08:12:34 +01:00
Limnoria/others/asyncore.py

495 lines
15 KiB
Python

# -*- Mode: Python -*-
# Id: asyncore.py,v 2.51 2000/09/07 22:29:26 rushing Exp
# Author: Sam Rushing <rushing@nightmare.com>
# ======================================================================
# Copyright 1996 by Sam Rushing
#
# All Rights Reserved
#
# Permission to use, copy, modify, and distribute this software and
# its documentation for any purpose and without fee is hereby
# granted, provided that the above copyright notice appear in all
# copies and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of Sam
# Rushing not be used in advertising or publicity pertaining to
# distribution of the software without specific, written prior
# permission.
#
# SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
# INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
# NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
# CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
# OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
# NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
# ======================================================================
"""Basic infrastructure for asynchronous socket service clients and servers.
There are only two ways to have a program on a single processor do "more
than one thing at a time". Multi-threaded programming is the simplest and
most popular way to do it, but there is another very different technique,
that lets you have nearly all the advantages of multi-threading, without
actually using multiple threads. it's really only practical if your program
is largely I/O bound. If your program is CPU bound, then pre-emptive
scheduled threads are probably what you really need. Network servers are
rarely CPU-bound, however.
If your operating system supports the select() system call in its I/O
library (and nearly all do), then you can use it to juggle multiple
communication channels at once; doing other work while your I/O is taking
place in the "background." Although this strategy can seem strange and
complex, especially at first, it is in many ways easier to understand and
control than multi-threaded programming. The module documented here solves
many of the difficult problems for you, making the task of building
sophisticated high-performance network servers and clients a snap.
"""
import exceptions
import select
import socket
import sys
import time
import os
from errno import EALREADY, EINPROGRESS, EWOULDBLOCK, ECONNRESET, \
ENOTCONN, ESHUTDOWN, EINTR, EISCONN
try:
socket_map
except NameError:
socket_map = {}
class ExitNow(exceptions.Exception):
pass
def read(obj):
try:
obj.handle_read_event()
except ExitNow:
raise
except:
obj.handle_error()
def write(obj):
try:
obj.handle_write_event()
except ExitNow:
raise
except:
obj.handle_error()
def readwrite(obj, flags):
try:
if flags & select.POLLIN:
obj.handle_read_event()
if flags & select.POLLOUT:
obj.handle_write_event()
except ExitNow:
raise
except:
obj.handle_error()
def poll(timeout=0.0, map=None):
if map is None:
map = socket_map
if map:
r = []; w = []; e = []
for fd, obj in map.items():
if obj.readable():
r.append(fd)
if obj.writable():
w.append(fd)
if [] == r == w == e:
time.sleep(timeout)
else:
try:
r, w, e = select.select(r, w, e, timeout)
except select.error, err:
if err[0] != EINTR:
raise
else:
return
for fd in r:
obj = map.get(fd)
if obj is None:
continue
read(obj)
for fd in w:
obj = map.get(fd)
if obj is None:
continue
write(obj)
def poll2(timeout=0.0, map=None):
import poll
if map is None:
map = socket_map
if timeout is not None:
# timeout is in milliseconds
timeout = int(timeout*1000)
if map:
l = []
for fd, obj in map.items():
flags = 0
if obj.readable():
flags = poll.POLLIN
if obj.writable():
flags = flags | poll.POLLOUT
if flags:
l.append((fd, flags))
r = poll.poll(l, timeout)
for fd, flags in r:
obj = map.get(fd)
if obj is None:
continue
readwrite(obj, flags)
def poll3(timeout=0.0, map=None):
# Use the poll() support added to the select module in Python 2.0
if map is None:
map = socket_map
if timeout is not None:
# timeout is in milliseconds
timeout = int(timeout*1000)
pollster = select.poll()
if map:
for fd, obj in map.items():
flags = 0
if obj.readable():
flags = select.POLLIN
if obj.writable():
flags = flags | select.POLLOUT
if flags:
pollster.register(fd, flags)
try:
r = pollster.poll(timeout)
except select.error, err:
if err[0] != EINTR:
raise
r = []
for fd, flags in r:
obj = map.get(fd)
if obj is None:
continue
readwrite(obj, flags)
def loop(timeout=30.0, use_poll=0, map=None):
if map is None:
map = socket_map
if use_poll:
if hasattr(select, 'poll'):
poll_fun = poll3
else:
poll_fun = poll2
else:
poll_fun = poll
while map:
poll_fun(timeout, map)
class dispatcher:
debug = 0
connected = 0
accepting = 0
closing = 0
addr = None
def __init__(self, sock=None, map=None):
if sock:
self.set_socket(sock, map)
# I think it should inherit this anyway
self.socket.setblocking(0)
self.connected = 1
# XXX Does the constructor require that the socket passed
# be connected?
try:
self.addr = sock.getpeername()
except socket.error:
# The addr isn't crucial
pass
else:
self.socket = None
def __repr__(self):
status = [self.__class__.__module__+"."+self.__class__.__name__]
if self.accepting and self.addr:
status.append('listening')
elif self.connected:
status.append('connected')
if self.addr is not None:
try:
status.append('%s:%d' % self.addr)
except TypeError:
status.append(repr(self.addr))
return '<%s at %#x>' % (' '.join(status), id(self))
def add_channel(self, map=None):
#self.log_info('adding channel %s' % self)
if map is None:
map = socket_map
map[self._fileno] = self
def del_channel(self, map=None):
fd = self._fileno
if map is None:
map = socket_map
if map.has_key(fd):
#self.log_info('closing channel %d:%s' % (fd, self))
del map[fd]
def create_socket(self, family, type):
self.family_and_type = family, type
self.socket = socket.socket(family, type)
self.socket.setblocking(0)
self._fileno = self.socket.fileno()
self.add_channel()
def set_socket(self, sock, map=None):
self.socket = sock
## self.__dict__['socket'] = sock
self._fileno = sock.fileno()
self.add_channel(map)
def set_reuse_addr(self):
# try to re-use a server port if possible
try:
self.socket.setsockopt(
socket.SOL_SOCKET, socket.SO_REUSEADDR,
self.socket.getsockopt(socket.SOL_SOCKET,
socket.SO_REUSEADDR) | 1
)
except socket.error:
pass
# ==================================================
# predicates for select()
# these are used as filters for the lists of sockets
# to pass to select().
# ==================================================
def readable(self):
return True
if os.name == 'mac':
# The macintosh will select a listening socket for
# write if you let it. What might this mean?
def writable(self):
return not self.accepting
else:
def writable(self):
return True
# ==================================================
# socket object methods.
# ==================================================
def listen(self, num):
self.accepting = 1
if os.name == 'nt' and num > 5:
num = 1
return self.socket.listen(num)
def bind(self, addr):
self.addr = addr
return self.socket.bind(addr)
def connect(self, address):
self.connected = 0
err = self.socket.connect_ex(address)
# XXX Should interpret Winsock return values
if err in (EINPROGRESS, EALREADY, EWOULDBLOCK):
return
if err in (0, EISCONN):
self.addr = address
self.connected = 1
self.handle_connect()
else:
raise socket.error, err
def accept(self):
# XXX can return either an address pair or None
try:
conn, addr = self.socket.accept()
return conn, addr
except socket.error, why:
if why[0] == EWOULDBLOCK:
pass
else:
raise socket.error, why
def send(self, data):
try:
result = self.socket.send(data)
return result
except socket.error, why:
if why[0] == EWOULDBLOCK:
return 0
else:
raise socket.error, why
return 0
def recv(self, buffer_size):
try:
data = self.socket.recv(buffer_size)
if not data:
# a closed connection is indicated by signaling
# a read condition, and having recv() return 0.
self.handle_close()
return ''
else:
return data
except socket.error, why:
# winsock sometimes throws ENOTCONN
if why[0] in [ECONNRESET, ENOTCONN, ESHUTDOWN]:
self.handle_close()
return ''
else:
raise socket.error, why
def close(self):
self.del_channel()
self.socket.close()
# cheap inheritance, used to pass all other attribute
# references to the underlying socket object.
def __getattr__(self, attr):
return getattr(self.socket, attr)
# log and log_info may be overridden to provide more sophisticated
# logging and warning methods. In general, log is for 'hit' logging
# and 'log_info' is for informational, warning and error logging.
def log(self, message):
sys.stderr.write('log: %s\n' % str(message))
def log_info(self, message, type='info'):
if __debug__ or type != 'info':
print '%s: %s' % (type, message)
def handle_read_event(self):
if self.accepting:
# for an accepting socket, getting a read implies
# that we are connected
if not self.connected:
self.connected = 1
self.handle_accept()
elif not self.connected:
self.handle_connect()
self.connected = 1
self.handle_read()
else:
self.handle_read()
def handle_write_event(self):
# getting a write implies that we are connected
if not self.connected:
self.handle_connect()
self.connected = 1
self.handle_write()
def handle_expt_event(self):
self.handle_expt()
def handle_error(self):
nil, t, v, tbinfo = compact_traceback()
# sometimes a user repr method will crash.
try:
self_repr = repr(self)
except:
self_repr = '<__repr__(self) failed for object at %0x>' % id(self)
self.log_info(
'uncaptured python exception, closing channel %s (%s:%s %s)' % (
self_repr,
t,
v,
tbinfo
),
'error'
)
self.close()
def handle_expt(self):
self.log_info('unhandled exception', 'warning')
def handle_read(self):
self.log_info('unhandled read event', 'warning')
def handle_write(self):
self.log_info('unhandled write event', 'warning')
def handle_connect(self):
self.log_info('unhandled connect event', 'warning')
def handle_accept(self):
self.log_info('unhandled accept event', 'warning')
def handle_close(self):
self.log_info('unhandled close event', 'warning')
self.close()
# ---------------------------------------------------------------------------
# adds simple buffered output capability, useful for simple clients.
# [for more sophisticated usage use asynchat.async_chat]
# ---------------------------------------------------------------------------
class dispatcher_with_send(dispatcher):
def __init__(self, sock=None):
dispatcher.__init__(self, sock)
self.out_buffer = ''
def initiate_send(self):
num_sent = 0
num_sent = dispatcher.send(self, self.out_buffer[:512])
self.out_buffer = self.out_buffer[num_sent:]
def handle_write(self):
self.initiate_send()
def writable(self):
return (not self.connected) or len(self.out_buffer)
def send(self, data):
if self.debug:
self.log_info('sending %s' % repr(data))
self.out_buffer = self.out_buffer + data
self.initiate_send()
# ---------------------------------------------------------------------------
# used for debugging.
# ---------------------------------------------------------------------------
def compact_traceback():
t, v, tb = sys.exc_info()
tbinfo = []
assert tb # Must have a traceback
while tb:
tbinfo.append((
tb.tb_frame.f_code.co_filename,
tb.tb_frame.f_code.co_name,
str(tb.tb_lineno)
))
tb = tb.tb_next
# just to be safe
del tb
file, function, line = tbinfo[-1]
info = ' '.join(['[%s|%s|%s]' % x for x in tbinfo])
return (file, function, line), t, v, info
def close_all(map=None):
if map is None:
map = socket_map
for x in map.values():
x.socket.close()
map.clear()