Commit my long sought after *cough*Skorobeus*cough* randomSpeaking updates

This commit is contained in:
James Vega 2004-11-09 18:43:27 +00:00
parent 2fb7041627
commit 59d306598a

View File

@ -28,7 +28,7 @@
###
"""
Silently listens to a channel, building an SQL database of Markov Chains for
Silently listens to a channel, building a database of Markov Chains for
later hijinks. To read more about Markov Chains, check out
<http://www.cs.bell-labs.com/cm/cs/pearls/sec153.html>. When the database is
large enough, you can have it make fun little random messages from it.
@ -39,18 +39,46 @@ __revision__ = "$Id$"
import supybot.plugins as plugins
import sets
import time
import Queue
import anydbm
import random
import os.path
import threading
import supybot.conf as conf
import supybot.world as world
from supybot.commands import *
import supybot.ircmsgs as ircmsgs
import supybot.ircutils as ircutils
import supybot.privmsgs as privmsgs
import supybot.registry as registry
import supybot.schedule as schedule
import supybot.callbacks as callbacks
class Probability(registry.Float):
"""Value must be a floating-point number between 0 and 1."""
def setValue(self, v):
if v < 0 or v > 1:
self.error()
else:
registry.Float.setValue(self, float(v))
conf.registerPlugin('Markov')
conf.registerGroup(conf.supybot.plugins.Markov, 'randomSpeaking')
conf.registerChannelValue(conf.supybot.plugins.Markov.randomSpeaking,
'probability', Probability(0, """Determines the probability that will be
checked against to determine whether the bot should randomly say
something. If 0, the bot will never say anything on it's own. If 1, the
bot will speak every time we make a check."""))
conf.registerChannelValue(conf.supybot.plugins.Markov.randomSpeaking,
'maxDelay', registry.PositiveInteger(10, """Determines the upper bound for
how long the bot will wait before randomly speaking. The delay is a
randomly generated number of seconds below the value of this config
variable."""))
conf.registerChannelValue(conf.supybot.plugins.Markov.randomSpeaking,
'throttleTime', registry.PositiveInteger(300, """Determines the minimum
number of seconds between the bot randomly speaking."""))
class MarkovDBInterface(object):
def close(self):
pass
@ -249,10 +277,13 @@ class MarkovWorkQueue(threading.Thread):
class Markov(callbacks.Privmsg):
def __init__(self):
self.q = MarkovWorkQueue()
callbacks.Privmsg.__init__(self)
self.__parent = super(Markov, self)
self.__parent.__init__()
self.lastSpoke = time.time()
def die(self):
self.q.die()
self.__parent.die()
def tokenize(self, m):
if ircmsgs.isAction(m):
@ -264,7 +295,20 @@ class Markov(callbacks.Privmsg):
def doPrivmsg(self, irc, msg):
channel = msg.args[0]
if ircutils.isChannel(channel):
if irc.isChannel(channel):
canSpeak = False
now = time.time()
throttle = self.registryValue('randomSpeaking.throttleTime',
channel)
prob = self.registryValue('randomSpeaking.probability', channel)
delay = self.registryValue('randomSpeaking.maxDelay', channel)
irc = callbacks.SimpleProxy(irc, msg)
if now > self.lastSpoke + throttle:
canSpeak = True
if canSpeak and random.random() < prob:
f = self._markov(channel, irc, private=True, to=channel)
schedule.addEvent(lambda: self.q.enqueue(f), now + delay)
self.lastSpoke = now + delay
words = self.tokenize(msg)
words.insert(0, '\n')
words.insert(0, '\n')
@ -277,17 +321,8 @@ class Markov(callbacks.Privmsg):
db.addPair(channel, first, second, follower)
self.q.enqueue(doPrivmsg)
def markov(self, irc, msg, args):
"""[<channel>] [word1 word2]
Returns a randomly-generated Markov Chain generated sentence from the
data kept on <channel> (which is only necessary if not sent in the
channel itself). If word1 and word2 are specified, they will be used
to start the Markov chain.
"""
channel = privmsgs.getChannel(msg, args)
(word1, word2) = privmsgs.getArgs(args, required=0, optional=2)
def markov(db):
def _markov(self, channel, irc, word1=None, word2=None, **kwargs):
def f(db):
if word1 and word2:
givenArgs = True
words = [word1, word2]
@ -314,58 +349,71 @@ class Markov(callbacks.Privmsg):
return
words.append(follower)
if givenArgs:
irc.reply(' '.join(words[:-1]))
irc.reply(' '.join(words[:-1]), **kwargs)
else:
irc.reply(' '.join(resp))
self.q.enqueue(markov)
irc.reply(' '.join(resp), **kwargs)
return f
def firsts(self, irc, msg, args):
def markov(self, irc, msg, args, channel, word1, word2):
"""[<channel>] [word1 word2]
Returns a randomly-generated Markov Chain generated sentence from the
data kept on <channel> (which is only necessary if not sent in the
channel itself). If word1 and word2 are specified, they will be used
to start the Markov chain.
"""
f = self._markov(channel, irc, word1, word2)
self.q.enqueue(f)
markov = wrap(markov, ['channel', optional('something'),
additional('something')])
def firsts(self, irc, msg, args, channel):
"""[<channel>]
Returns the number of Markov's first links in the database for
<channel>.
"""
channel = privmsgs.getChannel(msg, args)
def firsts(db):
s = 'There are %s firsts in my Markov database for %s.'
irc.reply(s % (db.firsts(channel), channel))
self.q.enqueue(firsts)
firsts = wrap(firsts, ['channel'])
def lasts(self, irc, msg, args):
def lasts(self, irc, msg, args, channel):
"""[<channel>]
Returns the number of Markov's last links in the database for
<channel>.
"""
channel = privmsgs.getChannel(msg, args)
def lasts(db):
s = 'There are %s lasts in my Markov database for %s.'
irc.reply(s % (db.lasts(channel), channel))
self.q.enqueue(lasts)
lasts = wrap(lasts, ['channel'])
def pairs(self, irc, msg, args):
def pairs(self, irc, msg, args, channel):
"""[<channel>]
Returns the number of Markov's chain links in the database for
<channel>.
"""
channel = privmsgs.getChannel(msg, args)
def pairs(db):
s = 'There are %s pairs in my Markov database for %s.'
irc.reply(s % (db.pairs(channel), channel))
self.q.enqueue(pairs)
pairs = wrap(pairs, ['channel'])
def follows(self, irc, msg, args):
def follows(self, irc, msg, args, channel):
"""[<channel>]
Returns the number of Markov's third links in the database for
<channel>.
"""
channel = privmsgs.getChannel(msg, args)
def follows(db):
s = 'There are %s follows in my Markov database for %s.'
irc.reply(s % (db.follows(channel), channel))
self.q.enqueue(follows)
follows = wrap(follows, ['channel'])
Class = Markov