3
0
mirror of https://git.kernel.org/pub/scm/network/wireless/iwd.git synced 2024-11-06 03:59:22 +01:00
iwd/src/wiphy.c
2022-10-24 11:05:24 -05:00

2570 lines
59 KiB
C

/*
*
* Wireless daemon for Linux
*
* Copyright (C) 2013-2019 Intel Corporation. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#define _GNU_SOURCE
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <linux/if_ether.h>
#include <fnmatch.h>
#include <unistd.h>
#include <string.h>
#include <limits.h>
#include <ell/ell.h>
#include "linux/nl80211.h"
#include "ell/useful.h"
#include "src/missing.h"
#include "src/iwd.h"
#include "src/module.h"
#include "src/ie.h"
#include "src/crypto.h"
#include "src/scan.h"
#include "src/netdev.h"
#include "src/dbus.h"
#include "src/rfkill.h"
#include "src/wiphy.h"
#include "src/storage.h"
#include "src/util.h"
#include "src/common.h"
#include "src/watchlist.h"
#include "src/nl80211util.h"
#include "src/nl80211cmd.h"
#include "src/band.h"
#define EXT_CAP_LEN 10
static struct l_genl_family *nl80211 = NULL;
static struct l_hwdb *hwdb;
static char **whitelist_filter;
static char **blacklist_filter;
static int mac_randomize_bytes = 6;
static char regdom_country[2];
static uint32_t work_ids;
static unsigned int wiphy_dump_id;
enum driver_flag {
DEFAULT_IF = 0x1,
FORCE_PAE = 0x2,
};
struct driver_info {
const char *prefix;
unsigned int flags;
};
/*
* The out-of-tree rtl88x2bu crashes the kernel hard if default interface is
* destroyed. It seems many other drivers are built from the same source code
* so we set the DEFAULT_IF flag for all of them. Unfortunately there are
* in-tree drivers that also match these names and may be fine.
*/
static const struct driver_info driver_infos[] = {
{ "rtl81*", DEFAULT_IF },
{ "rtl87*", DEFAULT_IF },
{ "rtl88*", DEFAULT_IF },
{ "rtw_*", DEFAULT_IF },
{ "brcmfmac", DEFAULT_IF },
{ "bcmsdh_sdmmc", DEFAULT_IF },
};
struct wiphy {
uint32_t id;
char name[20];
uint8_t permanent_addr[ETH_ALEN];
uint32_t feature_flags;
uint8_t ext_features[(NUM_NL80211_EXT_FEATURES + 7) / 8];
uint8_t max_num_ssids_per_scan;
uint32_t max_roc_duration;
uint16_t max_scan_ie_len;
uint16_t supported_iftypes;
uint16_t supported_ciphers;
struct scan_freq_set *supported_freqs;
struct scan_freq_set *disabled_freqs;
struct scan_freq_set *pending_freqs;
struct band *band_2g;
struct band *band_5g;
struct band *band_6g;
char *model_str;
char *vendor_str;
char *driver_str;
const struct driver_info *driver_info;
struct watchlist state_watches;
uint8_t extended_capabilities[EXT_CAP_LEN + 2]; /* max bitmap size + IE header */
uint8_t *iftype_extended_capabilities[NUM_NL80211_IFTYPES];
uint8_t rm_enabled_capabilities[7]; /* 5 size max + header */
struct l_genl_family *nl80211;
char regdom_country[2];
/* Work queue for this radio */
struct l_queue *work;
bool work_in_callback;
unsigned int get_reg_id;
unsigned int dump_id;
bool support_scheduled_scan:1;
bool support_rekey_offload:1;
bool support_adhoc_rsn:1;
bool support_qos_set_map:1;
bool support_cmds_auth_assoc:1;
bool support_fw_roam:1;
bool soft_rfkill : 1;
bool hard_rfkill : 1;
bool offchannel_tx_ok : 1;
bool blacklisted : 1;
bool registered : 1;
bool self_managed : 1;
bool ap_probe_resp_offload : 1;
};
static struct l_queue *wiphy_list = NULL;
enum ie_rsn_cipher_suite wiphy_select_cipher(struct wiphy *wiphy, uint16_t mask)
{
if (mask == IE_RSN_CIPHER_SUITE_NO_GROUP_TRAFFIC)
return IE_RSN_CIPHER_SUITE_NO_GROUP_TRAFFIC;
mask &= wiphy->supported_ciphers;
if (mask & IE_RSN_CIPHER_SUITE_GCMP)
return IE_RSN_CIPHER_SUITE_GCMP;
if (mask & IE_RSN_CIPHER_SUITE_CCMP)
return IE_RSN_CIPHER_SUITE_CCMP;
if (mask & IE_RSN_CIPHER_SUITE_TKIP)
return IE_RSN_CIPHER_SUITE_TKIP;
if (mask & IE_RSN_CIPHER_SUITE_BIP_CMAC)
return IE_RSN_CIPHER_SUITE_BIP_CMAC;
return 0;
}
static bool wiphy_can_connect_sae(struct wiphy *wiphy)
{
/*
* WPA3 Specification version 3, Section 2.2:
* A STA shall not enable WEP and TKIP
*/
if (!(wiphy->supported_ciphers & IE_RSN_CIPHER_SUITE_CCMP)) {
l_debug("HW not CCMP capable, can't use SAE");
return false;
}
/*
* WPA3 Specification version 3, Section 2.3:
* A STA shall negotiate PMF when associating to an AP using SAE
*/
if (!(wiphy->supported_ciphers & IE_RSN_CIPHER_SUITE_BIP_CMAC)) {
l_debug("HW not MFP capable, can't use SAE");
return false;
}
/*
* SAE support in the kernel is a complete mess in that there are 3
* different ways the hardware can support SAE:
*
* 1. Cards which allow SAE in userspace, meaning they support both
* CMD_AUTHENTICATE and CMD_ASSOCIATE as well as advertise support
* for FEATURE_SAE (SoftMAC).
*
* 2. Cards which allow SAE to be offloaded to hardware. These cards
* do not support AUTH/ASSOC commands, do not advertise FEATURE_SAE,
* but advertise support for EXT_FEATURE_SAE_OFFLOAD. With these
* cards the entire SAE protocol as well as the subsequent 4-way
* handshake are all done in the driver/firmware (fullMAC).
*
* 3. TODO: Cards which allow SAE in userspace via CMD_EXTERNAL_AUTH.
* These cards do not support AUTH/ASSOC commands but do implement
* CMD_EXTERNAL_AUTH which is supposed to allow userspace to
* generate Authenticate frames as it would for case (1). As it
* stands today only one driver actually uses CMD_EXTERNAL_AUTH and
* for now IWD will not allow connections to SAE networks using this
* mechanism.
*/
if (wiphy_has_feature(wiphy, NL80211_FEATURE_SAE)) {
/* Case (1) */
if (wiphy->support_cmds_auth_assoc)
return true;
/*
* Case (3)
*
* TODO: No support for CMD_EXTERNAL_AUTH yet.
*/
return false;
}
/* Case (2) */
if (wiphy_has_ext_feature(wiphy,
NL80211_EXT_FEATURE_SAE_OFFLOAD))
return true;
return false;
}
enum ie_rsn_akm_suite wiphy_select_akm(struct wiphy *wiphy,
const struct scan_bss *bss,
enum security security,
const struct ie_rsn_info *info,
bool fils_capable_hint)
{
bool psk_offload = wiphy_has_ext_feature(wiphy,
NL80211_EXT_FEATURE_4WAY_HANDSHAKE_STA_PSK);
/*
* If FT is available, use FT authentication to keep the door open
* for fast transitions. Otherwise use SHA256 version if present.
*/
if (security == SECURITY_8021X) {
if (wiphy_has_feature(wiphy, NL80211_EXT_FEATURE_FILS_STA) &&
fils_capable_hint) {
if ((info->akm_suites &
IE_RSN_AKM_SUITE_FT_OVER_FILS_SHA384) &&
bss->rsne && bss->mde_present)
return IE_RSN_AKM_SUITE_FT_OVER_FILS_SHA384;
if ((info->akm_suites &
IE_RSN_AKM_SUITE_FT_OVER_FILS_SHA256) &&
bss->rsne && bss->mde_present)
return IE_RSN_AKM_SUITE_FT_OVER_FILS_SHA256;
if (info->akm_suites & IE_RSN_AKM_SUITE_FILS_SHA384)
return IE_RSN_AKM_SUITE_FILS_SHA384;
if (info->akm_suites & IE_RSN_AKM_SUITE_FILS_SHA256)
return IE_RSN_AKM_SUITE_FILS_SHA256;
}
if ((info->akm_suites & IE_RSN_AKM_SUITE_FT_OVER_8021X) &&
bss->rsne && bss->mde_present &&
wiphy->support_cmds_auth_assoc)
return IE_RSN_AKM_SUITE_FT_OVER_8021X;
if (info->akm_suites & IE_RSN_AKM_SUITE_8021X_SHA256)
return IE_RSN_AKM_SUITE_8021X_SHA256;
if (info->akm_suites & IE_RSN_AKM_SUITE_8021X)
return IE_RSN_AKM_SUITE_8021X;
} else if (security == SECURITY_PSK) {
/*
* Prefer connecting to SAE/WPA3 network, but only if SAE is
* supported, we are MFP capable, and the AP has set the
* MFPR/MFPC bits correctly. If any of these conditions are not
* met, we can fallback to WPA2 (if the AKM is present).
*/
if (ie_rsne_is_wpa3_personal(info)) {
l_debug("Network is WPA3-Personal...");
if (!wiphy_can_connect_sae(wiphy))
goto wpa2_personal;
if (info->akm_suites &
IE_RSN_AKM_SUITE_FT_OVER_SAE_SHA256)
return IE_RSN_AKM_SUITE_FT_OVER_SAE_SHA256;
if (info->akm_suites & IE_RSN_AKM_SUITE_SAE_SHA256)
return IE_RSN_AKM_SUITE_SAE_SHA256;
}
wpa2_personal:
/*
* Allow FT if either Auth/Assoc is supported OR if the card
* supports PSK offload. Without Auth/Assoc, PSK offload is the
* only mechanism to allow FT on these cards.
*/
if ((info->akm_suites & IE_RSN_AKM_SUITE_FT_USING_PSK) &&
bss->rsne && bss->mde_present) {
if (wiphy->support_cmds_auth_assoc ||
(psk_offload && wiphy->support_fw_roam))
return IE_RSN_AKM_SUITE_FT_USING_PSK;
}
if (info->akm_suites & IE_RSN_AKM_SUITE_PSK_SHA256)
return IE_RSN_AKM_SUITE_PSK_SHA256;
if (info->akm_suites & IE_RSN_AKM_SUITE_PSK)
return IE_RSN_AKM_SUITE_PSK;
} else if (security == SECURITY_NONE) {
if (info->akm_suites & IE_RSN_AKM_SUITE_OWE)
return IE_RSN_AKM_SUITE_OWE;
}
return 0;
}
static struct wiphy *wiphy_new(uint32_t id)
{
struct wiphy *wiphy = l_new(struct wiphy, 1);
wiphy->id = id;
wiphy->supported_freqs = scan_freq_set_new();
wiphy->disabled_freqs = scan_freq_set_new();
watchlist_init(&wiphy->state_watches, NULL);
wiphy->extended_capabilities[0] = IE_TYPE_EXTENDED_CAPABILITIES;
wiphy->extended_capabilities[1] = EXT_CAP_LEN;
return wiphy;
}
static void destroy_work(void *user_data)
{
struct wiphy_radio_work_item *work = user_data;
if (work->ops && work->ops->destroy)
work->ops->destroy(work);
}
static void wiphy_free(void *data)
{
struct wiphy *wiphy = data;
uint32_t i;
l_debug("Freeing wiphy %s[%u]", wiphy->name, wiphy->id);
if (wiphy->dump_id)
l_genl_family_cancel(nl80211, wiphy->dump_id);
if (wiphy->get_reg_id)
l_genl_family_cancel(nl80211, wiphy->get_reg_id);
for (i = 0; i < NUM_NL80211_IFTYPES; i++)
l_free(wiphy->iftype_extended_capabilities[i]);
if (wiphy->band_2g) {
band_free(wiphy->band_2g);
wiphy->band_2g = NULL;
}
if (wiphy->band_5g) {
band_free(wiphy->band_5g);
wiphy->band_5g = NULL;
}
if (wiphy->band_6g) {
band_free(wiphy->band_6g);
wiphy->band_6g = NULL;
}
scan_freq_set_free(wiphy->supported_freqs);
scan_freq_set_free(wiphy->disabled_freqs);
watchlist_destroy(&wiphy->state_watches);
l_free(wiphy->model_str);
l_free(wiphy->vendor_str);
l_free(wiphy->driver_str);
l_genl_family_free(wiphy->nl80211);
l_queue_destroy(wiphy->work, destroy_work);
l_free(wiphy);
}
static bool wiphy_match(const void *a, const void *b)
{
const struct wiphy *wiphy = a;
uint32_t id = L_PTR_TO_UINT(b);
return (wiphy->id == id);
}
struct wiphy *wiphy_find(int wiphy_id)
{
return l_queue_find(wiphy_list, wiphy_match, L_UINT_TO_PTR(wiphy_id));
}
bool wiphy_is_blacklisted(const struct wiphy *wiphy)
{
return wiphy->blacklisted;
}
static bool wiphy_is_managed(const char *phy)
{
char *pattern;
unsigned int i;
if (!whitelist_filter)
goto check_blacklist;
for (i = 0; (pattern = whitelist_filter[i]); i++) {
if (fnmatch(pattern, phy, 0) != 0)
continue;
goto check_blacklist;
}
l_debug("whitelist filtered phy: %s", phy);
return false;
check_blacklist:
if (!blacklist_filter)
return true;
for (i = 0; (pattern = blacklist_filter[i]); i++) {
if (fnmatch(pattern, phy, 0) == 0) {
l_debug("blacklist filtered ifname: %s", phy);
return false;
}
}
return true;
}
const char *wiphy_get_path(struct wiphy *wiphy)
{
static char path[256];
L_WARN_ON(snprintf(path, sizeof(path), "%s/%d", IWD_BASE_PATH,
wiphy->id) >= (int) sizeof(path));
path[sizeof(path) - 1] = '\0';
return path;
}
uint32_t wiphy_get_id(struct wiphy *wiphy)
{
return wiphy->id;
}
uint32_t wiphy_get_supported_bands(struct wiphy *wiphy)
{
uint32_t bands = 0;
if (wiphy->band_2g)
bands |= BAND_FREQ_2_4_GHZ;
if (wiphy->band_5g)
bands |= BAND_FREQ_5_GHZ;
if (wiphy->band_6g)
bands |= BAND_FREQ_6_GHZ;
return bands;
}
const struct scan_freq_set *wiphy_get_supported_freqs(
const struct wiphy *wiphy)
{
return wiphy->supported_freqs;
}
const struct scan_freq_set *wiphy_get_disabled_freqs(const struct wiphy *wiphy)
{
return wiphy->disabled_freqs;
}
bool wiphy_supports_probe_resp_offload(struct wiphy *wiphy)
{
return wiphy->ap_probe_resp_offload;
}
bool wiphy_can_transition_disable(struct wiphy *wiphy)
{
/*
* WPA3 Specification version 3, Section 2.2:
* A STA shall not enable WEP and TKIP
*/
if (!(wiphy->supported_ciphers & IE_RSN_CIPHER_SUITE_CCMP))
return false;
if (!(wiphy->supported_ciphers & IE_RSN_CIPHER_SUITE_BIP_CMAC))
return false;
return true;
}
/* Catch all for the offload features */
bool wiphy_can_offload(struct wiphy *wiphy)
{
return wiphy_has_ext_feature(wiphy,
NL80211_EXT_FEATURE_4WAY_HANDSHAKE_STA_PSK) ||
wiphy_has_ext_feature(wiphy,
NL80211_EXT_FEATURE_4WAY_HANDSHAKE_STA_1X) ||
wiphy_has_ext_feature(wiphy, NL80211_EXT_FEATURE_SAE_OFFLOAD);
}
bool wiphy_supports_ext_key_id(struct wiphy *wiphy)
{
return wiphy_has_ext_feature(wiphy, NL80211_EXT_FEATURE_EXT_KEY_ID);
}
bool wiphy_supports_cmds_auth_assoc(struct wiphy *wiphy)
{
return wiphy->support_cmds_auth_assoc;
}
bool wiphy_has_feature(struct wiphy *wiphy, uint32_t feature)
{
return wiphy->feature_flags & feature;
}
bool wiphy_can_randomize_mac_addr(struct wiphy *wiphy)
{
return wiphy_has_feature(wiphy, NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR);
}
bool wiphy_rrm_capable(struct wiphy *wiphy)
{
if (wiphy_has_feature(wiphy,
NL80211_FEATURE_DS_PARAM_SET_IE_IN_PROBES) &&
wiphy_has_feature(wiphy, NL80211_FEATURE_QUIET))
return true;
if (wiphy_has_ext_feature(wiphy, NL80211_EXT_FEATURE_RRM))
return true;
return false;
}
bool wiphy_has_ext_feature(struct wiphy *wiphy, uint32_t feature)
{
return feature < sizeof(wiphy->ext_features) * 8 &&
test_bit(wiphy->ext_features, feature);
}
uint8_t wiphy_get_max_num_ssids_per_scan(struct wiphy *wiphy)
{
return wiphy->max_num_ssids_per_scan;
}
uint16_t wiphy_get_max_scan_ie_len(struct wiphy *wiphy)
{
return wiphy->max_scan_ie_len;
}
uint32_t wiphy_get_max_roc_duration(struct wiphy *wiphy)
{
return wiphy->max_roc_duration;
}
bool wiphy_supports_adhoc_rsn(struct wiphy *wiphy)
{
return wiphy->support_adhoc_rsn;
}
bool wiphy_can_offchannel_tx(struct wiphy *wiphy)
{
return wiphy->offchannel_tx_ok;
}
bool wiphy_supports_qos_set_map(struct wiphy *wiphy)
{
return wiphy->support_qos_set_map;
}
bool wiphy_supports_firmware_roam(struct wiphy *wiphy)
{
return wiphy->support_fw_roam;
}
const char *wiphy_get_driver(struct wiphy *wiphy)
{
return wiphy->driver_str;
}
const char *wiphy_get_name(struct wiphy *wiphy)
{
return wiphy->name;
}
bool wiphy_uses_default_if(struct wiphy *wiphy)
{
if (!wiphy_get_driver(wiphy))
return true;
if (wiphy->driver_info &&
wiphy->driver_info->flags & DEFAULT_IF)
return true;
return false;
}
bool wiphy_control_port_enabled(struct wiphy *wiphy)
{
const struct l_settings *settings = iwd_get_config();
bool enabled;
if (wiphy->driver_info &&
wiphy->driver_info->flags & FORCE_PAE) {
l_info("Not using Control Port due to driver quirks: %s",
wiphy_get_driver(wiphy));
return false;
}
if (!wiphy_has_ext_feature(wiphy,
NL80211_EXT_FEATURE_CONTROL_PORT_OVER_NL80211))
return false;
if (!l_settings_get_bool(settings, "General",
"ControlPortOverNL80211", &enabled))
enabled = true;
return enabled;
}
const uint8_t *wiphy_get_permanent_address(struct wiphy *wiphy)
{
return wiphy->permanent_addr;
}
const uint8_t *wiphy_get_extended_capabilities(struct wiphy *wiphy,
uint32_t iftype)
{
if (wiphy->iftype_extended_capabilities[iftype])
return wiphy->iftype_extended_capabilities[iftype];
return wiphy->extended_capabilities;
}
const uint8_t *wiphy_get_rm_enabled_capabilities(struct wiphy *wiphy)
{
if (!wiphy_rrm_capable(wiphy))
return NULL;
return wiphy->rm_enabled_capabilities;
}
bool wiphy_get_rsnxe(const struct wiphy *wiphy, uint8_t *buf, size_t len)
{
if (len < 3)
return false;
buf[0] = IE_TYPE_RSNX;
buf[1] = 1;
/*
* Lower 4 bits of the first octet:
* The length of the Extended RSN Capabilities field, in octets,
* minus 1, i.e., n - 1.
*/
buf[2] = 0;
/* No other bits set for now */
return true;
}
static void wiphy_address_constrain(struct wiphy *wiphy, uint8_t addr[static 6])
{
switch (mac_randomize_bytes) {
case 6:
/* Set the locally administered bit */
addr[0] |= 0x2;
/* Reset multicast bit */
addr[0] &= 0xfe;
break;
case 3:
memcpy(addr, wiphy->permanent_addr, 3);
break;
}
/*
* Constrain the last NIC byte to 0x00 .. 0xfe, otherwise we might be
* able to generate an address of 0xff 0xff 0xff which might be
* interpreted as a vendor broadcast. Similarly, 0x00 0x00 0x00 is
* also not valid
*/
addr[5] &= 0xfe;
if (l_memeqzero(addr + 3, 3))
addr[5] = 0x01;
}
void wiphy_generate_random_address(struct wiphy *wiphy, uint8_t addr[static 6])
{
switch (mac_randomize_bytes) {
case 6:
l_getrandom(addr, 6);
break;
case 3:
l_getrandom(addr + 3, 3);
break;
}
wiphy_address_constrain(wiphy, addr);
}
void wiphy_generate_address_from_ssid(struct wiphy *wiphy, const char *ssid,
uint8_t addr[static 6])
{
struct l_checksum *sha = l_checksum_new(L_CHECKSUM_SHA256);
l_checksum_update(sha, ssid, strlen(ssid));
l_checksum_update(sha, wiphy->permanent_addr,
sizeof(wiphy->permanent_addr));
l_checksum_get_digest(sha, addr, mac_randomize_bytes);
l_checksum_free(sha);
wiphy_address_constrain(wiphy, addr);
}
bool wiphy_constrain_freq_set(const struct wiphy *wiphy,
struct scan_freq_set *set)
{
scan_freq_set_constrain(set, wiphy->supported_freqs);
scan_freq_set_subtract(set, wiphy->disabled_freqs);
if (!scan_freq_set_get_bands(set))
/* The set is empty. */
return false;
return true;
}
static char **wiphy_iftype_mask_to_str(uint16_t mask)
{
char **ret = l_new(char *, __builtin_popcount(mask) + 1);
unsigned int i;
unsigned int j;
for (j = 0, i = 0; i < sizeof(mask) * 8; i++) {
const char *str;
if (!(mask & (1 << i)))
continue;
str = netdev_iftype_to_string(i + 1);
if (str)
ret[j++] = l_strdup(str);
}
return ret;
}
static char **wiphy_get_supported_iftypes(struct wiphy *wiphy, uint16_t mask)
{
return wiphy_iftype_mask_to_str(wiphy->supported_iftypes & mask);
}
bool wiphy_supports_iftype(struct wiphy *wiphy, uint32_t iftype)
{
if (iftype > sizeof(wiphy->supported_iftypes) * 8)
return false;
return wiphy->supported_iftypes & (1 << (iftype - 1));
}
const uint8_t *wiphy_get_supported_rates(struct wiphy *wiphy, unsigned int band,
unsigned int *out_num)
{
struct band *bandp;
switch (band) {
case NL80211_BAND_2GHZ:
bandp = wiphy->band_2g;
break;
case NL80211_BAND_5GHZ:
bandp = wiphy->band_5g;
break;
case NL80211_BAND_6GHZ:
bandp = wiphy->band_6g;
break;
default:
return NULL;
}
if (!bandp)
return NULL;
if (out_num)
*out_num = bandp->supported_rates_len;
return bandp->supported_rates;
}
void wiphy_get_reg_domain_country(struct wiphy *wiphy, char *out)
{
char *country = wiphy->regdom_country;
if (!country[0])
/* Wiphy uses the global regulatory domain */
country = regdom_country;
out[0] = country[0];
out[1] = country[1];
}
bool wiphy_country_is_unknown(struct wiphy *wiphy)
{
char cc[2];
wiphy_get_reg_domain_country(wiphy, cc);
/*
* Treat OO and XX as an unknown country. Additional codes could be
* added here if needed. The purpose of this is to know if we can
* expect the disabled frequency list to be updated once a country is
* known.
*/
return ((cc[0] == 'O' && cc[1] == 'O') ||
(cc[0] == 'X' && cc[1] == 'X'));
}
int wiphy_estimate_data_rate(struct wiphy *wiphy,
const void *ies, uint16_t ies_len,
const struct scan_bss *bss,
uint64_t *out_data_rate)
{
struct ie_tlv_iter iter;
const void *supported_rates = NULL;
const void *ext_supported_rates = NULL;
const void *vht_capabilities = NULL;
const void *vht_operation = NULL;
const void *ht_capabilities = NULL;
const void *ht_operation = NULL;
const void *he_capabilities = NULL;
const struct band *bandp;
enum band_freq band;
if (band_freq_to_channel(bss->frequency, &band) == 0)
return -ENOTSUP;
switch (band) {
case BAND_FREQ_2_4_GHZ:
bandp = wiphy->band_2g;
break;
case BAND_FREQ_5_GHZ:
bandp = wiphy->band_5g;
break;
case BAND_FREQ_6_GHZ:
bandp = wiphy->band_6g;
break;
default:
return -ENOTSUP;
}
ie_tlv_iter_init(&iter, ies, ies_len);
while (ie_tlv_iter_next(&iter)) {
uint16_t tag = ie_tlv_iter_get_tag(&iter);
switch (tag) {
case IE_TYPE_SUPPORTED_RATES:
if (iter.len > 8)
return -EBADMSG;
supported_rates = iter.data - 2;
break;
case IE_TYPE_EXTENDED_SUPPORTED_RATES:
ext_supported_rates = iter.data - 2;
break;
case IE_TYPE_HT_CAPABILITIES:
if (iter.len != 26)
return -EBADMSG;
ht_capabilities = iter.data - 2;
break;
case IE_TYPE_HT_OPERATION:
if (iter.len != 22)
return -EBADMSG;
ht_operation = iter.data - 2;
break;
case IE_TYPE_VHT_CAPABILITIES:
if (iter.len != 12)
return -EBADMSG;
vht_capabilities = iter.data - 2;
break;
case IE_TYPE_VHT_OPERATION:
if (iter.len != 5)
return -EBADMSG;
vht_operation = iter.data - 2;
break;
case IE_TYPE_HE_CAPABILITIES:
if (!ie_validate_he_capabilities(iter.data, iter.len))
return -EBADMSG;
he_capabilities = iter.data;
break;
default:
break;
}
}
if (!band_estimate_he_rx_rate(bandp, he_capabilities,
bss->signal_strength / 100,
out_data_rate))
return 0;
if (!band_estimate_vht_rx_rate(bandp, vht_capabilities, vht_operation,
ht_capabilities, ht_operation,
bss->signal_strength / 100,
out_data_rate))
return 0;
if (!band_estimate_ht_rx_rate(bandp, ht_capabilities, ht_operation,
bss->signal_strength / 100,
out_data_rate))
return 0;
return band_estimate_nonht_rate(bandp, supported_rates,
ext_supported_rates,
bss->signal_strength / 100,
out_data_rate);
}
bool wiphy_regdom_is_updating(struct wiphy *wiphy)
{
return wiphy->pending_freqs != NULL;
}
uint32_t wiphy_state_watch_add(struct wiphy *wiphy,
wiphy_state_watch_func_t func,
void *user_data, wiphy_destroy_func_t destroy)
{
return watchlist_add(&wiphy->state_watches, func, user_data, destroy);
}
bool wiphy_state_watch_remove(struct wiphy *wiphy, uint32_t id)
{
return watchlist_remove(&wiphy->state_watches, id);
}
static void wiphy_print_mcs_indexes(const uint8_t *mcs)
{
int i;
for (i = 0; i < 77; i++) {
int start;
if (!test_bit(mcs, i))
continue;
start = i;
while (i < 76 && test_bit(mcs, i + 1))
i += 1;
if (start != i)
l_info("\t\t\t%d-%d", start, i);
else
l_info("\t\t\t%d", start);
}
}
static void wiphy_print_mcs_info(const uint8_t *mcs_map,
const char *prefix,
uint8_t value0,
uint8_t value1,
uint8_t value2)
{
int i;
for (i = 14; i >= 0; i -= 2) {
uint8_t value;
int mcs = bit_field(mcs_map[i / 8], i % 8, 2);
if (mcs == 0x3)
continue;
switch (mcs) {
case 0:
value = value0;
break;
case 1:
value = value1;
break;
case 2:
value = value2;
break;
}
l_info("\t\t\tMax %s MCS: 0-%d for NSS: %d", prefix,
value, i / 2 + 1);
return;
}
}
static void wiphy_print_he_capabilities(struct band *band,
const struct band_he_capabilities *he_cap)
{
_auto_(l_strv_free) char **iftypes = NULL;
_auto_(l_free) char *joined = NULL;
uint8_t width_set = bit_field(he_cap->he_phy_capa[0], 1, 7);
iftypes = wiphy_iftype_mask_to_str(he_cap->iftypes);
joined = l_strjoinv(iftypes, ' ');
l_info("\t\t\tInterface Types: %s", joined);
switch (band->freq) {
case BAND_FREQ_2_4_GHZ:
wiphy_print_mcs_info(he_cap->he_mcs_set,
"HE RX <= 80MHz", 7, 9, 11);
wiphy_print_mcs_info(he_cap->he_mcs_set + 2,
"HE TX <= 80MHz", 7, 9, 11);
break;
case BAND_FREQ_5_GHZ:
case BAND_FREQ_6_GHZ:
wiphy_print_mcs_info(he_cap->he_mcs_set,
"HE RX <= 80MHz", 7, 9, 11);
wiphy_print_mcs_info(he_cap->he_mcs_set + 2,
"HE TX <= 80MHz", 7, 9, 11);
if (test_bit(&width_set, 2)) {
wiphy_print_mcs_info(he_cap->he_mcs_set + 4,
"HE RX <= 160MHz", 7, 9, 11);
wiphy_print_mcs_info(he_cap->he_mcs_set + 6,
"HE TX <= 160MHz", 7, 9, 11);
}
if (test_bit(&width_set, 3)) {
wiphy_print_mcs_info(he_cap->he_mcs_set + 8,
"HE RX <= 80+80MHz", 7, 9, 11);
wiphy_print_mcs_info(he_cap->he_mcs_set + 10,
"HE TX <= 80+80MHz", 7, 9, 11);
}
break;
}
}
static void wiphy_print_band_info(struct band *band, const char *name)
{
int i;
l_info("\t%s:", name);
l_info("\t\tBitrates (non-HT):");
for (i = 0; i < band->supported_rates_len; i++)
l_info("\t\t\t%2d.%d Mbps", band->supported_rates[i] / 2,
band->supported_rates[i] % 2 * 5);
if (band->ht_supported) {
uint8_t max_nss = bit_field(band->ht_mcs_set[12], 2, 2) + 1;
l_info("\t\tHT Capabilities:");
if (test_bit(band->ht_capabilities, 1))
l_info("\t\t\tHT40");
else
l_info("\t\t\tHT20");
if (test_bit(band->ht_capabilities, 5))
l_info("\t\t\tShort GI for 20Mhz");
if (test_bit(band->ht_capabilities, 6))
l_info("\t\t\tShort GI for 40Mhz");
l_info("\t\tHT RX MCS indexes:");
wiphy_print_mcs_indexes(band->ht_mcs_set);
if (test_bit(band->ht_mcs_set, 96)) {
if (test_bit(band->ht_mcs_set, 97))
l_info("\t\tHT TX MCS differ, max NSS: %d",
max_nss);
} else
l_info("\t\tHT TX MCS set undefined");
}
if (band->vht_supported) {
l_info("\t\tVHT Capabilities:");
switch (bit_field(band->vht_capabilities[0], 2, 2)) {
case 1:
l_info("\t\t\t160 Mhz operation");
break;
case 2:
l_info("\t\t\t160 Mhz, 80+80 Mhz operation");
break;
}
if (test_bit(band->vht_capabilities, 5))
l_info("\t\t\tShort GI for 80Mhz");
if (test_bit(band->vht_capabilities, 6))
l_info("\t\t\tShort GI for 160 and 80 + 80 Mhz");
wiphy_print_mcs_info(band->vht_mcs_set, "RX", 7, 8, 9);
wiphy_print_mcs_info(band->vht_mcs_set + 4, "TX", 7, 8, 9);
}
if (band->he_capabilities) {
const struct l_queue_entry *entry;
l_info("\t\tHE Capabilities");
for (entry = l_queue_get_entries(band->he_capabilities);
entry; entry = entry->next) {
const struct band_he_capabilities *he_cap = entry->data;
wiphy_print_he_capabilities(band, he_cap);
}
}
}
static void wiphy_print_basic_info(struct wiphy *wiphy)
{
char buf[2048];
l_info("Wiphy: %d, Name: %s", wiphy->id, wiphy->name);
l_info("\tPermanent Address: "MAC, MAC_STR(wiphy->permanent_addr));
if (wiphy->band_2g)
wiphy_print_band_info(wiphy->band_2g, "2.4Ghz Band");
if (wiphy->band_5g)
wiphy_print_band_info(wiphy->band_5g, "5Ghz Band");
if (wiphy->band_6g)
wiphy_print_band_info(wiphy->band_6g, "6GHz Band");
if (wiphy->supported_ciphers) {
int n = 0;
size_t len = 0;
int i = sizeof(wiphy->supported_ciphers) * 8 - 1;
len += snprintf(buf, sizeof(buf), "\tCiphers:");
for (; i >= 0 && len < sizeof(buf); i--) {
typeof(wiphy->supported_ciphers) cipher = 1 << i;
const char *str;
if (cipher == IE_RSN_CIPHER_SUITE_WEP40 ||
cipher == IE_RSN_CIPHER_SUITE_WEP104)
continue;
if (!(wiphy->supported_ciphers & cipher))
continue;
str = ie_rsn_cipher_suite_to_string(cipher);
if (!str)
continue;
len += snprintf(buf + len, sizeof(buf) - len, "%s%s",
!n || (n % 4) ? " " : "\n\t\t ",
str);
n += 1;
}
l_info("%s", buf);
}
if (wiphy->supported_iftypes) {
char **iftypes = wiphy_get_supported_iftypes(wiphy, ~0);
char *joined = l_strjoinv(iftypes, ' ');
l_info("\tSupported iftypes: %s", joined);
l_free(joined);
l_strfreev(iftypes);
}
}
static void parse_supported_commands(struct wiphy *wiphy,
struct l_genl_attr *attr)
{
uint16_t type, len;
const void *data;
bool auth = false;
bool assoc = false;
while (l_genl_attr_next(attr, &type, &len, &data)) {
uint32_t cmd = *(uint32_t *)data;
switch (cmd) {
case NL80211_CMD_START_SCHED_SCAN:
wiphy->support_scheduled_scan = true;
break;
case NL80211_CMD_SET_REKEY_OFFLOAD:
wiphy->support_rekey_offload = true;
break;
case NL80211_CMD_SET_QOS_MAP:
wiphy->support_qos_set_map = true;
break;
case NL80211_CMD_AUTHENTICATE:
auth = true;
break;
case NL80211_CMD_ASSOCIATE:
assoc = true;
break;
}
}
if (auth && assoc)
wiphy->support_cmds_auth_assoc = true;
}
static void parse_supported_ciphers(struct wiphy *wiphy, const void *data,
uint16_t len)
{
while (len >= 4) {
uint32_t cipher = *(uint32_t *)data;
switch (cipher) {
case CRYPTO_CIPHER_CCMP:
wiphy->supported_ciphers |= IE_RSN_CIPHER_SUITE_CCMP;
break;
case CRYPTO_CIPHER_TKIP:
wiphy->supported_ciphers |= IE_RSN_CIPHER_SUITE_TKIP;
break;
case CRYPTO_CIPHER_WEP40:
wiphy->supported_ciphers |= IE_RSN_CIPHER_SUITE_WEP40;
break;
case CRYPTO_CIPHER_WEP104:
wiphy->supported_ciphers |= IE_RSN_CIPHER_SUITE_WEP104;
break;
case CRYPTO_CIPHER_BIP_CMAC:
wiphy->supported_ciphers |=
IE_RSN_CIPHER_SUITE_BIP_CMAC;
break;
case CRYPTO_CIPHER_GCMP:
wiphy->supported_ciphers |= IE_RSN_CIPHER_SUITE_GCMP;
break;
default: /* TODO: Support other ciphers */
break;
}
len -= 4;
data += 4;
}
}
static int parse_supported_rates(struct l_genl_attr *attr, struct band *band)
{
uint16_t type;
uint16_t len;
const void *data;
struct l_genl_attr nested;
int count = 0;
if (!l_genl_attr_recurse(attr, &nested))
return -EBADMSG;
while (l_genl_attr_next(&nested, NULL, NULL, NULL)) {
struct l_genl_attr nested2;
if (!l_genl_attr_recurse(&nested, &nested2))
return -EBADMSG;
while (l_genl_attr_next(&nested2, &type, &len, &data)) {
uint32_t rate;
if (type != NL80211_BITRATE_ATTR_RATE || len != 4)
continue;
rate = l_get_u32(data);
if (rate % 5)
continue;
/*
* Convert from the 100kb/s units reported by the
* kernel to the 500kb/s used in 802.11 IEs.
*/
rate /= 5;
/*
* Rates past 120 seem to be used for other purposes,
* BSS Membership Selector (HT/VHT), etc
*/
if (rate > 120)
continue;
band->supported_rates[count++] = rate;
}
}
band->supported_rates_len = count;
return 0;
}
static struct band *band_new_from_message(struct l_genl_attr *band)
{
uint16_t type;
struct l_genl_attr nested;
uint16_t count = 0;
struct band *ret;
size_t toalloc;
/* First find the number of supported rates */
while (l_genl_attr_next(band, &type, NULL, NULL)) {
switch (type) {
case NL80211_BAND_ATTR_RATES:
if (!l_genl_attr_recurse(band, &nested))
return NULL;
while (l_genl_attr_next(&nested, NULL, NULL, NULL))
count++;
}
}
toalloc = sizeof(struct band) + count * sizeof(uint8_t);
ret = l_malloc(toalloc);
memset(ret, 0, toalloc);
#if __GNUC__ == 11 && __GNUC_MINOR__ == 2
_Pragma("GCC diagnostic push")
_Pragma("GCC diagnostic ignored \"-Warray-bounds\"")
#endif
memset(ret->vht_mcs_set, 0xff, sizeof(ret->vht_mcs_set));
#if __GNUC__ == 11 && __GNUC_MINOR__ == 2
_Pragma("GCC diagnostic pop")
#endif
return ret;
}
static uint32_t get_iftypes(struct l_genl_attr *iftypes)
{
uint16_t type;
uint16_t len;
uint32_t types = 0;
while (l_genl_attr_next(iftypes, &type, &len, NULL)) {
if (len != 0)
continue;
types |= (1 << (type - 1));
}
return types;
}
static void parse_iftype_attrs(struct band *band, struct l_genl_attr *types)
{
uint16_t type;
uint16_t len;
const void *data;
unsigned int count = 0;
struct band_he_capabilities *he_cap =
l_new(struct band_he_capabilities, 1);
while (l_genl_attr_next(types, &type, &len, &data)) {
struct l_genl_attr iftypes;
switch (type) {
case NL80211_BAND_IFTYPE_ATTR_IFTYPES:
if (!l_genl_attr_recurse(types, &iftypes))
goto parse_error;
he_cap->iftypes = get_iftypes(&iftypes);
break;
case NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY:
if (len > sizeof(he_cap->he_phy_capa))
continue;
memcpy(he_cap->he_phy_capa, data, len);
count++;
break;
case NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET:
if (len > sizeof(he_cap->he_mcs_set))
continue;
memcpy(he_cap->he_mcs_set, data, len);
count++;
break;
default:
break;
}
}
/*
* Since the capabilities element indicates what values are present in
* the MCS set ensure both values are parsed
*/
if (count != 2 || !he_cap->iftypes)
goto parse_error;
if (!band->he_capabilities)
band->he_capabilities = l_queue_new();
l_queue_push_head(band->he_capabilities, he_cap);
return;
parse_error:
l_free(he_cap);
}
static void parse_band_iftype_data(struct band *band, struct l_genl_attr *ifdata)
{
while (l_genl_attr_next(ifdata, NULL, NULL, NULL)) {
struct l_genl_attr types;
if (!l_genl_attr_recurse(ifdata, &types))
continue;
parse_iftype_attrs(band, &types);
}
}
static void parse_supported_bands(struct wiphy *wiphy,
struct l_genl_attr *bands)
{
uint16_t type;
uint16_t len;
const void *data;
struct l_genl_attr attr;
while (l_genl_attr_next(bands, &type, NULL, NULL)) {
struct band **bandp;
struct band *band;
enum band_freq freq;
switch (type) {
case NL80211_BAND_2GHZ:
bandp = &wiphy->band_2g;
freq = BAND_FREQ_2_4_GHZ;
break;
case NL80211_BAND_5GHZ:
bandp = &wiphy->band_5g;
freq = BAND_FREQ_5_GHZ;
break;
case NL80211_BAND_6GHZ:
bandp = &wiphy->band_6g;
freq = BAND_FREQ_6_GHZ;
break;
default:
continue;
}
if (!l_genl_attr_recurse(bands, &attr))
continue;
if (*bandp == NULL) {
band = band_new_from_message(&attr);
if (!band)
continue;
band->freq = freq;
/* Reset iter to beginning */
if (!l_genl_attr_recurse(bands, &attr)) {
band_free(band);
continue;
}
} else
band = *bandp;
while (l_genl_attr_next(&attr, &type, &len, &data)) {
struct l_genl_attr nested;
switch (type) {
case NL80211_BAND_ATTR_FREQS:
nl80211_parse_supported_frequencies(&attr,
wiphy->supported_freqs,
wiphy->disabled_freqs);
break;
case NL80211_BAND_ATTR_RATES:
if (parse_supported_rates(&attr, band) < 0) {
band_free(band);
continue;
}
break;
case NL80211_BAND_ATTR_VHT_MCS_SET:
if (L_WARN_ON(len != sizeof(band->vht_mcs_set)))
continue;
memcpy(band->vht_mcs_set, data, len);
band->vht_supported = true;
break;
case NL80211_BAND_ATTR_VHT_CAPA:
if (L_WARN_ON(len !=
sizeof(band->vht_capabilities)))
continue;
memcpy(band->vht_capabilities, data, len);
band->vht_supported = true;
break;
case NL80211_BAND_ATTR_HT_MCS_SET:
if (L_WARN_ON(len != sizeof(band->ht_mcs_set)))
continue;
memcpy(band->ht_mcs_set, data, len);
band->ht_supported = true;
break;
case NL80211_BAND_ATTR_HT_CAPA:
if (L_WARN_ON(len !=
sizeof(band->ht_capabilities)))
continue;
memcpy(band->ht_capabilities, data, len);
band->ht_supported = true;
break;
case NL80211_BAND_ATTR_IFTYPE_DATA:
if (!l_genl_attr_recurse(&attr, &nested))
continue;
parse_band_iftype_data(band, &nested);
break;
}
}
if (*bandp == NULL)
*bandp = band;
}
}
static void parse_supported_iftypes(struct wiphy *wiphy,
struct l_genl_attr *attr)
{
uint16_t type, len;
const void *data;
while (l_genl_attr_next(attr, &type, &len, &data)) {
/*
* NL80211_IFTYPE_UNSPECIFIED can be ignored, so we start
* at the first bit
*/
if (type > sizeof(wiphy->supported_iftypes) * 8) {
l_warn("unsupported iftype: %u", type);
continue;
}
wiphy->supported_iftypes |= 1 << (type - 1);
}
}
static void parse_iftype_extended_capabilities(struct wiphy *wiphy,
struct l_genl_attr *attr)
{
uint16_t type;
uint16_t len;
const void *data;
struct l_genl_attr nested;
while (l_genl_attr_next(attr, &type, &len, &data)) {
uint32_t iftype;
if (!l_genl_attr_recurse(attr, &nested))
continue;
if (!l_genl_attr_next(&nested, &type, &len, &data))
continue;
if (type != NL80211_ATTR_IFTYPE)
continue;
iftype = l_get_u32(data);
if (!l_genl_attr_next(&nested, &type, &len, &data))
continue;
if (type != NL80211_ATTR_EXT_CAPA)
continue;
wiphy->iftype_extended_capabilities[iftype] =
l_new(uint8_t, EXT_CAP_LEN + 2);
wiphy->iftype_extended_capabilities[iftype][0] =
IE_TYPE_EXTENDED_CAPABILITIES;
wiphy->iftype_extended_capabilities[iftype][1] =
EXT_CAP_LEN;
memcpy(wiphy->iftype_extended_capabilities[iftype] + 2,
data, minsize(len, EXT_CAP_LEN));
}
}
static void wiphy_parse_attributes(struct wiphy *wiphy,
struct l_genl_msg *msg)
{
struct l_genl_attr attr;
struct l_genl_attr nested;
uint16_t type, len;
const void *data;
if (!l_genl_attr_init(&attr, msg))
return;
while (l_genl_attr_next(&attr, &type, &len, &data)) {
switch (type) {
case NL80211_ATTR_FEATURE_FLAGS:
if (len != sizeof(uint32_t))
l_warn("Invalid feature flags attribute");
else
wiphy->feature_flags = *((uint32_t *) data);
break;
case NL80211_ATTR_EXT_FEATURES:
if (len > sizeof(wiphy->ext_features))
len = sizeof(wiphy->ext_features);
memcpy(wiphy->ext_features, data, len);
break;
case NL80211_ATTR_SUPPORTED_COMMANDS:
if (l_genl_attr_recurse(&attr, &nested))
parse_supported_commands(wiphy, &nested);
break;
case NL80211_ATTR_CIPHER_SUITES:
parse_supported_ciphers(wiphy, data, len);
break;
case NL80211_ATTR_WIPHY_BANDS:
if (l_genl_attr_recurse(&attr, &nested))
parse_supported_bands(wiphy, &nested);
break;
case NL80211_ATTR_MAX_NUM_SCAN_SSIDS:
if (len != sizeof(uint8_t))
l_warn("Invalid MAX_NUM_SCAN_SSIDS attribute");
else
wiphy->max_num_ssids_per_scan =
*((uint8_t *) data);
break;
case NL80211_ATTR_MAX_SCAN_IE_LEN:
if (len != sizeof(uint16_t))
l_warn("Invalid MAX_SCAN_IE_LEN attribute");
else
wiphy->max_scan_ie_len = *((uint16_t *) data);
break;
case NL80211_ATTR_SUPPORT_IBSS_RSN:
wiphy->support_adhoc_rsn = true;
break;
case NL80211_ATTR_SUPPORTED_IFTYPES:
if (l_genl_attr_recurse(&attr, &nested))
parse_supported_iftypes(wiphy, &nested);
break;
case NL80211_ATTR_OFFCHANNEL_TX_OK:
wiphy->offchannel_tx_ok = true;
break;
case NL80211_ATTR_EXT_CAPA:
memcpy(wiphy->extended_capabilities + 2,
data, minsize(EXT_CAP_LEN, len));
break;
case NL80211_ATTR_IFTYPE_EXT_CAPA:
if (!l_genl_attr_recurse(&attr, &nested))
break;
parse_iftype_extended_capabilities(wiphy, &nested);
break;
case NL80211_ATTR_MAX_REMAIN_ON_CHANNEL_DURATION:
if (len != 4)
l_warn("Invalid MAX_ROC_DURATION attribute");
else
wiphy->max_roc_duration = *((uint32_t *) data);
break;
case NL80211_ATTR_ROAM_SUPPORT:
wiphy->support_fw_roam = true;
break;
case NL80211_ATTR_WIPHY_SELF_MANAGED_REG:
wiphy->self_managed = true;
break;
case NL80211_ATTR_PROBE_RESP_OFFLOAD:
wiphy->ap_probe_resp_offload = true;
break;
}
}
}
static bool wiphy_get_driver_name(struct wiphy *wiphy)
{
L_AUTO_FREE_VAR(char *, driver_link) = NULL;
char driver_path[256];
ssize_t len;
unsigned int i;
driver_link = l_strdup_printf("/sys/class/ieee80211/%s/device/driver",
wiphy->name);
len = readlink(driver_link, driver_path, sizeof(driver_path) - 1);
if (len == -1) {
l_error("Can't read %s: %s", driver_link, strerror(errno));
return false;
}
driver_path[len] = '\0';
wiphy->driver_str = l_strdup(basename(driver_path));
for (i = 0; i < L_ARRAY_SIZE(driver_infos); i++)
if (!fnmatch(driver_infos[i].prefix, wiphy->driver_str, 0))
wiphy->driver_info = &driver_infos[i];
return true;
}
static int wiphy_get_permanent_addr_from_sysfs(struct wiphy *wiphy)
{
char addr[32];
ssize_t len;
len = read_file(addr, sizeof(addr),
"/sys/class/ieee80211/%s/macaddress",
wiphy->name);
if (len != 18) {
if (len < 0)
return -errno;
return -EINVAL;
}
/* Sysfs appends a \n at the end, strip it */
addr[17] = '\0';
if (!util_string_to_address(addr, wiphy->permanent_addr))
return -EINVAL;
return 0;
}
static void wiphy_register(struct wiphy *wiphy)
{
struct l_dbus *dbus = dbus_get_bus();
wiphy->soft_rfkill = rfkill_get_soft_state(wiphy->id);
wiphy->hard_rfkill = rfkill_get_hard_state(wiphy->id);
if (hwdb) {
char modalias[128];
ssize_t len;
struct l_hwdb_entry *entries = NULL, *kv;
len = read_file(modalias, sizeof(modalias) - 1,
"/sys/class/ieee80211/%s/device/modalias",
wiphy->name);
if (len > 0) {
modalias[len] = '\0';
entries = l_hwdb_lookup(hwdb, "%s", modalias);
}
for (kv = entries; kv; kv = kv->next) {
if (!strcmp(kv->key, "ID_MODEL_FROM_DATABASE")) {
if (wiphy->model_str)
continue;
wiphy->model_str = l_strdup(kv->value);
}
if (!strcmp(kv->key, "ID_VENDOR_FROM_DATABASE")) {
if (wiphy->vendor_str)
continue;
wiphy->vendor_str = l_strdup(kv->value);
}
}
l_hwdb_lookup_free(entries);
}
wiphy_get_driver_name(wiphy);
if (!l_dbus_object_add_interface(dbus, wiphy_get_path(wiphy),
IWD_WIPHY_INTERFACE, wiphy))
l_info("Unable to add the %s interface to %s",
IWD_WIPHY_INTERFACE, wiphy_get_path(wiphy));
if (!l_dbus_object_add_interface(dbus, wiphy_get_path(wiphy),
L_DBUS_INTERFACE_PROPERTIES, NULL))
l_info("Unable to add the %s interface to %s",
L_DBUS_INTERFACE_PROPERTIES,
wiphy_get_path(wiphy));
wiphy->registered = true;
}
struct wiphy *wiphy_create(uint32_t wiphy_id, const char *name)
{
struct wiphy *wiphy;
struct l_genl *genl = iwd_get_genl();
wiphy = wiphy_new(wiphy_id);
l_strlcpy(wiphy->name, name, sizeof(wiphy->name));
wiphy->nl80211 = l_genl_family_new(genl, NL80211_GENL_NAME);
l_queue_push_head(wiphy_list, wiphy);
if (!wiphy_is_managed(name))
wiphy->blacklisted = true;
wiphy->work = l_queue_new();
return wiphy;
}
void wiphy_update_from_genl(struct wiphy *wiphy, struct l_genl_msg *msg)
{
if (wiphy->blacklisted)
return;
wiphy_parse_attributes(wiphy, msg);
}
void wiphy_update_name(struct wiphy *wiphy, const char *name)
{
bool updated = false;
if (strncmp(wiphy->name, name, sizeof(wiphy->name))) {
l_strlcpy(wiphy->name, name, sizeof(wiphy->name));
updated = true;
}
if (updated && wiphy->registered) {
struct l_dbus *dbus = dbus_get_bus();
l_dbus_property_changed(dbus, wiphy_get_path(wiphy),
IWD_WIPHY_INTERFACE, "Name");
}
}
static void wiphy_set_station_capability_bits(struct wiphy *wiphy)
{
uint8_t *ext_capa;
bool anqp_disabled;
/* No per-type capabilities exist for station, just copy the global */
if (!wiphy->iftype_extended_capabilities[NL80211_IFTYPE_STATION]) {
wiphy->iftype_extended_capabilities[NL80211_IFTYPE_STATION] =
l_new(uint8_t, EXT_CAP_LEN + 2);
memcpy(wiphy->iftype_extended_capabilities[
NL80211_IFTYPE_STATION],
wiphy->extended_capabilities,
EXT_CAP_LEN + 2);
}
ext_capa = wiphy->iftype_extended_capabilities[NL80211_IFTYPE_STATION];
if (!l_settings_get_bool(iwd_get_config(), "General", "DisableANQP",
&anqp_disabled))
anqp_disabled = true;
/* Set BSS Transition Management */
set_bit(ext_capa + 2, 19);
/* Set Interworking */
if (!anqp_disabled)
set_bit(ext_capa + 2, 31);
/* Set QoS Map */
if (wiphy->support_qos_set_map)
set_bit(ext_capa + 2, 32);
/* Set FILS */
set_bit(ext_capa + 2, 72);
}
static void wiphy_setup_rm_enabled_capabilities(struct wiphy *wiphy)
{
/* Nothing to do */
if (!wiphy_rrm_capable(wiphy))
return;
wiphy->rm_enabled_capabilities[0] = IE_TYPE_RM_ENABLED_CAPABILITIES;
wiphy->rm_enabled_capabilities[1] = 5;
/* Bits: Passive (4), Active (5), and Beacon Table (6) capabilities */
wiphy->rm_enabled_capabilities[2] = 0x70;
/*
* TODO: Support at least Link Measurement if TX_POWER_INSERTION is
* available
*/
}
static void wiphy_dump_done(void *user_data)
{
struct wiphy *wiphy = user_data;
const struct l_queue_entry *e;
/* This dump was canceled due to another dump */
if ((wiphy && !wiphy->dump_id) || (!wiphy && !wiphy_dump_id))
return;
if (wiphy) {
wiphy->dump_id = 0;
scan_freq_set_free(wiphy->disabled_freqs);
wiphy->disabled_freqs = wiphy->pending_freqs;
wiphy->pending_freqs = NULL;
WATCHLIST_NOTIFY(&wiphy->state_watches,
wiphy_state_watch_func_t, wiphy,
WIPHY_STATE_WATCH_EVENT_REGDOM_DONE);
return;
}
wiphy_dump_id = 0;
for (e = l_queue_get_entries(wiphy_list); e; e = e->next) {
wiphy = e->data;
if (!wiphy->pending_freqs || wiphy->self_managed)
continue;
scan_freq_set_free(wiphy->disabled_freqs);
wiphy->disabled_freqs = wiphy->pending_freqs;
wiphy->pending_freqs = NULL;
WATCHLIST_NOTIFY(&wiphy->state_watches,
wiphy_state_watch_func_t, wiphy,
WIPHY_STATE_WATCH_EVENT_REGDOM_DONE);
}
}
/* We are dumping wiphy(s) due to a regulatory change */
static void wiphy_dump_callback(struct l_genl_msg *msg,
void *user_data)
{
struct wiphy *wiphy;
uint32_t id;
struct l_genl_attr bands;
struct l_genl_attr attr;
uint16_t type;
if (nl80211_parse_attrs(msg, NL80211_ATTR_WIPHY, &id,
NL80211_ATTR_WIPHY_BANDS, &bands,
NL80211_ATTR_UNSPEC) < 0)
return;
wiphy = wiphy_find(id);
if (L_WARN_ON(!wiphy))
return;
while (l_genl_attr_next(&bands, NULL, NULL, NULL)) {
if (!l_genl_attr_recurse(&bands, &attr))
return;
while (l_genl_attr_next(&attr, &type, NULL, NULL)) {
if (type != NL80211_BAND_ATTR_FREQS)
continue;
nl80211_parse_supported_frequencies(&attr, NULL,
wiphy->pending_freqs);
}
}
}
static bool wiphy_cancel_last_dump(struct wiphy *wiphy)
{
const struct l_queue_entry *e;
unsigned int id = 0;
/*
* Zero command ID to signal that wiphy_dump_done doesn't need to do
* anything. For a self-managed wiphy just free/NULL pending_freqs. For
* a global dump each wiphy needs to be checked and dealt with.
*/
if (wiphy && wiphy->dump_id) {
id = wiphy->dump_id;
wiphy->dump_id = 0;
scan_freq_set_free(wiphy->pending_freqs);
wiphy->pending_freqs = NULL;
} else if (!wiphy && wiphy_dump_id) {
id = wiphy_dump_id;
wiphy_dump_id = 0;
for (e = l_queue_get_entries(wiphy_list); e; e = e->next) {
struct wiphy *w = e->data;
if (!w->pending_freqs || w->self_managed)
continue;
scan_freq_set_free(w->pending_freqs);
w->pending_freqs = NULL;
}
}
if (id) {
l_debug("Canceling pending regdom wiphy dump (%s)",
wiphy ? wiphy->name : "global");
l_genl_family_cancel(nl80211, id);
}
return id != 0;
}
static void wiphy_dump_after_regdom(struct wiphy *wiphy)
{
const struct l_queue_entry *e;
struct l_genl_msg *msg;
unsigned int id;
bool no_start_event;
msg = l_genl_msg_new_sized(NL80211_CMD_GET_WIPHY, 128);
if (wiphy)
l_genl_msg_append_attr(msg, NL80211_ATTR_WIPHY, 4, &wiphy->id);
l_genl_msg_append_attr(msg, NL80211_ATTR_SPLIT_WIPHY_DUMP, 0, NULL);
id = l_genl_family_dump(nl80211, msg, wiphy_dump_callback,
wiphy, wiphy_dump_done);
if (!id) {
l_error("Wiphy information dump failed");
l_genl_msg_unref(msg);
return;
}
/*
* Another update while dumping wiphy. This next dump should supercede
* the first and not result in a DONE event until this new dump is
* finished. This is because the disabled frequencies are in an unknown
* state and could cause incorrect behavior by any watchers.
*/
no_start_event = wiphy_cancel_last_dump(wiphy);
/* Limited dump so just emit the event for this wiphy */
if (wiphy) {
wiphy->dump_id = id;
wiphy->pending_freqs = scan_freq_set_new();
if (no_start_event)
return;
WATCHLIST_NOTIFY(&wiphy->state_watches,
wiphy_state_watch_func_t, wiphy,
WIPHY_STATE_WATCH_EVENT_REGDOM_STARTED);
return;
}
wiphy_dump_id = id;
/* Otherwise for a global regdom change notify for all wiphy's */
for (e = l_queue_get_entries(wiphy_list); e; e = e->next) {
struct wiphy *w = e->data;
if (w->self_managed)
continue;
w->pending_freqs = scan_freq_set_new();
if (no_start_event)
continue;
WATCHLIST_NOTIFY(&w->state_watches, wiphy_state_watch_func_t,
w, WIPHY_STATE_WATCH_EVENT_REGDOM_STARTED);
}
}
static bool wiphy_update_reg_domain(struct wiphy *wiphy, bool global,
struct l_genl_msg *msg)
{
char out_country[2];
char *orig;
/*
* Write the new country code or XX if the reg domain is not a
* country domain.
*/
if (nl80211_parse_attrs(msg, NL80211_ATTR_REG_ALPHA2, out_country,
NL80211_ATTR_UNSPEC) < 0)
out_country[0] = out_country[1] = 'X';
if (global)
/*
* Leave @wiphy->regdom_country as all zeros to mean that it
* uses the global @regdom_country, i.e. is not self-managed.
*
* Even if we're called because we queried a new wiphy's
* reg domain, use the value we received here to update our
* global @regdom_country in case this is the first opportunity
* we have to update it -- possibly because this is the first
* wiphy created (that is not self-managed anyway) and we
* haven't received any REG_CHANGE events yet.
*/
orig = regdom_country;
else
orig = wiphy->regdom_country;
/*
* The kernel seems to send regdom updates even if the country didn't
* change. Skip these as there is no reason to re-dump.
*/
if (orig[0] == out_country[0] && orig[1] == out_country[1])
return false;
l_debug("New reg domain country code for %s is %c%c",
global ? "(global)" : wiphy->name,
out_country[0], out_country[1]);
orig[0] = out_country[0];
orig[1] = out_country[1];
return true;
}
static void wiphy_get_reg_cb(struct l_genl_msg *msg, void *user_data)
{
struct wiphy *wiphy = user_data;
uint32_t tmp;
bool global;
wiphy->get_reg_id = 0;
/*
* NL80211_CMD_GET_REG contains an NL80211_ATTR_WIPHY iff the wiphy
* uses a self-managed regulatory domain.
*/
global = nl80211_parse_attrs(msg, NL80211_ATTR_WIPHY, &tmp,
NL80211_ATTR_UNSPEC) < 0;
wiphy_update_reg_domain(wiphy, global, msg);
}
static void wiphy_get_reg_domain(struct wiphy *wiphy)
{
struct l_genl_msg *msg;
msg = l_genl_msg_new(NL80211_CMD_GET_REG);
l_genl_msg_append_attr(msg, NL80211_ATTR_WIPHY, 4, &wiphy->id);
wiphy->get_reg_id = l_genl_family_send(wiphy->nl80211, msg,
wiphy_get_reg_cb, wiphy, NULL);
if (!wiphy->get_reg_id) {
l_error("Error sending NL80211_CMD_GET_REG for %s", wiphy->name);
l_genl_msg_unref(msg);
}
}
void wiphy_create_complete(struct wiphy *wiphy)
{
wiphy_register(wiphy);
if (l_memeqzero(wiphy->permanent_addr, 6)) {
int err = wiphy_get_permanent_addr_from_sysfs(wiphy);
if (err < 0)
l_error("Can't read sysfs maccaddr for %s: %s",
wiphy->name, strerror(-err));
}
wiphy_set_station_capability_bits(wiphy);
wiphy_setup_rm_enabled_capabilities(wiphy);
wiphy_get_reg_domain(wiphy);
wiphy_print_basic_info(wiphy);
}
bool wiphy_destroy(struct wiphy *wiphy)
{
l_debug("");
if (!l_queue_remove(wiphy_list, wiphy))
return false;
if (wiphy->registered)
l_dbus_unregister_object(dbus_get_bus(), wiphy_get_path(wiphy));
wiphy_free(wiphy);
return true;
}
static void wiphy_rfkill_cb(unsigned int wiphy_id, bool soft, bool hard,
void *user_data)
{
struct wiphy *wiphy = wiphy_find(wiphy_id);
struct l_dbus *dbus = dbus_get_bus();
bool old_powered, new_powered;
enum wiphy_state_watch_event event;
if (!wiphy)
return;
old_powered = !wiphy->soft_rfkill && !wiphy->hard_rfkill;
wiphy->soft_rfkill = soft;
wiphy->hard_rfkill = hard;
new_powered = !wiphy->soft_rfkill && !wiphy->hard_rfkill;
if (old_powered == new_powered)
return;
event = new_powered ? WIPHY_STATE_WATCH_EVENT_POWERED :
WIPHY_STATE_WATCH_EVENT_RFKILLED;
WATCHLIST_NOTIFY(&wiphy->state_watches, wiphy_state_watch_func_t,
wiphy, event);
l_dbus_property_changed(dbus, wiphy_get_path(wiphy),
IWD_WIPHY_INTERFACE, "Powered");
}
static bool wiphy_property_get_powered(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct wiphy *wiphy = user_data;
bool value = !wiphy->soft_rfkill && !wiphy->hard_rfkill;
l_dbus_message_builder_append_basic(builder, 'b', &value);
return true;
}
static struct l_dbus_message *wiphy_property_set_powered(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_iter *new_value,
l_dbus_property_complete_cb_t complete,
void *user_data)
{
struct wiphy *wiphy = user_data;
bool old_powered, new_powered;
if (!l_dbus_message_iter_get_variant(new_value, "b", &new_powered))
return dbus_error_invalid_args(message);
old_powered = !wiphy->soft_rfkill && !wiphy->hard_rfkill;
if (old_powered == new_powered)
goto done;
if (wiphy->hard_rfkill)
return dbus_error_not_available(message);
if (!rfkill_set_soft_state(wiphy->id, !new_powered))
return dbus_error_failed(message);
done:
complete(dbus, message, NULL);
return NULL;
}
static bool wiphy_property_get_model(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct wiphy *wiphy = user_data;
if (!wiphy->model_str)
return false;
l_dbus_message_builder_append_basic(builder, 's', wiphy->model_str);
return true;
}
static bool wiphy_property_get_vendor(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct wiphy *wiphy = user_data;
if (!wiphy->vendor_str)
return false;
l_dbus_message_builder_append_basic(builder, 's', wiphy->vendor_str);
return true;
}
static bool wiphy_property_get_name(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct wiphy *wiphy = user_data;
char buf[20];
if (l_utf8_validate(wiphy->name, strlen(wiphy->name), NULL)) {
l_dbus_message_builder_append_basic(builder, 's', wiphy->name);
return true;
}
/*
* In the highly unlikely scenario that the wiphy name is not utf8,
* we simply use the canonical name phy<index>. The kernel guarantees
* that this name cannot be taken by any other wiphy, so this should
* be safe enough.
*/
sprintf(buf, "phy%d", wiphy->id);
l_dbus_message_builder_append_basic(builder, 's', buf);
return true;
}
#define WIPHY_MODE_MASK ( \
(1 << (NL80211_IFTYPE_STATION - 1)) | \
(1 << (NL80211_IFTYPE_AP - 1)) | \
(1 << (NL80211_IFTYPE_ADHOC - 1)))
static bool wiphy_property_get_supported_modes(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct wiphy *wiphy = user_data;
unsigned int j = 0;
char **iftypes = wiphy_get_supported_iftypes(wiphy, WIPHY_MODE_MASK);
l_dbus_message_builder_enter_array(builder, "s");
while (iftypes[j])
l_dbus_message_builder_append_basic(builder, 's', iftypes[j++]);
l_dbus_message_builder_leave_array(builder);
l_strfreev(iftypes);
return true;
}
static void setup_wiphy_interface(struct l_dbus_interface *interface)
{
l_dbus_interface_property(interface, "Powered", 0, "b",
wiphy_property_get_powered,
wiphy_property_set_powered);
l_dbus_interface_property(interface, "Model", 0, "s",
wiphy_property_get_model, NULL);
l_dbus_interface_property(interface, "Vendor", 0, "s",
wiphy_property_get_vendor, NULL);
l_dbus_interface_property(interface, "Name", 0, "s",
wiphy_property_get_name, NULL);
l_dbus_interface_property(interface, "SupportedModes", 0, "as",
wiphy_property_get_supported_modes,
NULL);
}
static void wiphy_reg_notify(struct l_genl_msg *msg, void *user_data)
{
uint8_t cmd = l_genl_msg_get_command(msg);
struct wiphy *wiphy = NULL;
uint32_t wiphy_id;
l_debug("Notification of command %s(%u)",
nl80211cmd_to_string(cmd), cmd);
switch (cmd) {
case NL80211_CMD_REG_CHANGE:
if (!wiphy_update_reg_domain(NULL, true, msg))
return;
break;
case NL80211_CMD_WIPHY_REG_CHANGE:
if (nl80211_parse_attrs(msg, NL80211_ATTR_WIPHY, &wiphy_id,
NL80211_ATTR_UNSPEC) < 0)
return;
wiphy = wiphy_find(wiphy_id);
if (!wiphy)
return;
if (!wiphy_update_reg_domain(wiphy, false, msg))
return;
break;
default:
return;
}
wiphy_dump_after_regdom(wiphy);
}
static void wiphy_radio_work_next(struct wiphy *wiphy)
{
struct wiphy_radio_work_item *work;
bool done;
work = l_queue_peek_head(wiphy->work);
if (!work)
return;
/*
* Ensures no other work item will get inserted before this one while
* the work is being done.
*/
work->priority = INT_MIN;
l_debug("Starting work item %u", work->id);
wiphy->work_in_callback = true;
done = work->ops->do_work(work);
wiphy->work_in_callback = false;
if (done) {
work->id = 0;
l_queue_remove(wiphy->work, work);
wiphy->work_in_callback = true;
destroy_work(work);
wiphy->work_in_callback = false;
wiphy_radio_work_next(wiphy);
}
}
static int insert_by_priority(const void *a, const void *b, void *user_data)
{
const struct wiphy_radio_work_item *new = a;
const struct wiphy_radio_work_item *work = b;
if (work->priority <= new->priority)
return 1;
return -1;
}
uint32_t wiphy_radio_work_insert(struct wiphy *wiphy,
struct wiphy_radio_work_item *item,
int priority,
const struct wiphy_radio_work_item_ops *ops)
{
item->priority = priority;
item->ops = ops;
item->id = ++work_ids;
l_debug("Inserting work item %u", item->id);
l_queue_insert(wiphy->work, item, insert_by_priority, NULL);
if (l_queue_length(wiphy->work) == 1 && !wiphy->work_in_callback)
wiphy_radio_work_next(wiphy);
return item->id;
}
static bool match_id(const void *a, const void *b)
{
const struct wiphy_radio_work_item *item = a;
if (item->id == L_PTR_TO_UINT(b))
return true;
return false;
}
void wiphy_radio_work_done(struct wiphy *wiphy, uint32_t id)
{
struct wiphy_radio_work_item *item;
bool next = false;
item = l_queue_peek_head(wiphy->work);
if (!item)
return;
if (item->id == id) {
next = true;
l_queue_pop_head(wiphy->work);
} else
item = l_queue_remove_if(wiphy->work, match_id,
L_UINT_TO_PTR(id));
if (!item)
return;
l_debug("Work item %u done", id);
item->id = 0;
wiphy->work_in_callback = true;
destroy_work(item);
wiphy->work_in_callback = false;
if (next)
wiphy_radio_work_next(wiphy);
}
int wiphy_radio_work_is_running(struct wiphy *wiphy, uint32_t id)
{
struct wiphy_radio_work_item *item = l_queue_find(wiphy->work, match_id,
L_UINT_TO_PTR(id));
if (!item)
return -ENOENT;
return item == l_queue_peek_head(wiphy->work) ? 1 : 0;
}
static int wiphy_init(void)
{
struct l_genl *genl = iwd_get_genl();
const struct l_settings *config = iwd_get_config();
const char *whitelist = iwd_get_phy_whitelist();
const char *blacklist = iwd_get_phy_blacklist();
const char *s;
nl80211 = l_genl_family_new(genl, NL80211_GENL_NAME);
/*
* This is an extra sanity check so that no memory is leaked
* in case the generic netlink handling gets confused.
*/
if (wiphy_list) {
l_warn("Destroying existing list of wiphy devices");
l_queue_destroy(wiphy_list, NULL);
}
wiphy_list = l_queue_new();
rfkill_watch_add(wiphy_rfkill_cb, NULL);
if (!l_dbus_register_interface(dbus_get_bus(),
IWD_WIPHY_INTERFACE,
setup_wiphy_interface,
NULL, false))
l_error("Unable to register the %s interface",
IWD_WIPHY_INTERFACE);
hwdb = l_hwdb_new_default();
if (whitelist)
whitelist_filter = l_strsplit(whitelist, ',');
if (blacklist)
blacklist_filter = l_strsplit(blacklist, ',');
s = l_settings_get_value(config, "General",
"AddressRandomizationRange");
if (s) {
if (!strcmp(s, "nic"))
mac_randomize_bytes = 3;
else if (!strcmp(s, "full"))
mac_randomize_bytes = 6;
else
l_warn("Invalid [General].AddressRandomizationRange"
" value: %s", s);
}
if (!l_genl_family_register(nl80211, NL80211_MULTICAST_GROUP_REG,
wiphy_reg_notify, NULL, NULL))
l_error("Registering for regulatory notifications failed");
return 0;
}
static void wiphy_exit(void)
{
l_strfreev(whitelist_filter);
l_strfreev(blacklist_filter);
if (wiphy_dump_id) {
l_genl_family_cancel(nl80211, wiphy_dump_id);
wiphy_dump_id = 0;
}
l_queue_destroy(wiphy_list, wiphy_free);
wiphy_list = NULL;
l_genl_family_free(nl80211);
nl80211 = NULL;
mac_randomize_bytes = 6;
l_dbus_unregister_interface(dbus_get_bus(), IWD_WIPHY_INTERFACE);
l_hwdb_unref(hwdb);
}
IWD_MODULE(wiphy, wiphy_init, wiphy_exit);
IWD_MODULE_DEPENDS(wiphy, rfkill);