iwd/src/sae.c

957 lines
22 KiB
C

/*
*
* Wireless daemon for Linux
*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <ell/ell.h>
#include "src/util.h"
#include "src/ie.h"
#include "src/handshake.h"
#include "src/crypto.h"
#include "src/mpdu.h"
#include "src/sae.h"
#define SAE_RETRANSMIT_TIMEOUT 2
#define SAE_SYNC_MAX 3
enum sae_state {
SAE_STATE_NOTHING = 0,
SAE_STATE_COMMITTED = 1,
SAE_STATE_CONFIRMED = 2,
SAE_STATE_ACCEPTED = 3,
};
struct sae_sm {
struct handshake_state *handshake;
struct l_ecc_point *pwe;
enum sae_state state;
const struct l_ecc_curve *curve;
struct l_ecc_scalar *rand;
struct l_ecc_scalar *scalar;
struct l_ecc_scalar *p_scalar;
struct l_ecc_point *element;
struct l_ecc_point *p_element;
uint16_t send_confirm;
uint8_t kck[32];
uint8_t pmk[32];
uint8_t pmkid[16];
uint8_t *token;
size_t token_len;
/* number of state resyncs that have occurred */
uint16_t sync;
/* number of SAE confirm messages that have been sent */
uint16_t sc;
/* received value of the send-confirm counter */
uint16_t rc;
/* remote peer */
uint8_t peer[6];
sae_tx_packet_func_t tx;
sae_complete_func_t complete;
void *user_data;
};
static bool sae_pwd_seed(const uint8_t *addr1, const uint8_t *addr2,
uint8_t *base, size_t base_len,
uint8_t counter, uint8_t *out)
{
uint8_t key[12];
if (memcmp(addr1, addr2, 6) > 0) {
memcpy(key, addr1, 6);
memcpy(key + 6, addr2, 6);
} else {
memcpy(key, addr2, 6);
memcpy(key + 6, addr1, 6);
}
return hkdf_extract(L_CHECKSUM_SHA256, key, 12, 2, out, base, base_len,
&counter, 1);
}
static struct l_ecc_scalar *sae_pwd_value(const struct l_ecc_curve *curve,
uint8_t *pwd_seed)
{
uint8_t pwd_value[L_ECC_SCALAR_MAX_BYTES];
uint8_t prime[L_ECC_SCALAR_MAX_BYTES];
ssize_t len;
struct l_ecc_scalar *p = l_ecc_curve_get_prime(curve);
len = l_ecc_scalar_get_data(p, prime, sizeof(prime));
l_ecc_scalar_free(p);
if (!kdf_sha256(pwd_seed, 32, "SAE Hunting and Pecking",
strlen("SAE Hunting and Pecking"), prime, len,
pwd_value, 32))
return false;
return l_ecc_scalar_new(curve, pwd_value, sizeof(pwd_value));
}
/* IEEE 802.11-2016 - Section 12.4.2 Assumptions on SAE */
static bool sae_cn(const uint8_t *kck, uint16_t send_confirm,
struct l_ecc_scalar *scalar1,
struct l_ecc_point *element1,
struct l_ecc_scalar *scalar2,
struct l_ecc_point *element2,
uint8_t *confirm)
{
uint8_t s1[L_ECC_SCALAR_MAX_BYTES];
uint8_t s2[L_ECC_SCALAR_MAX_BYTES];
uint8_t e1[L_ECC_POINT_MAX_BYTES];
uint8_t e2[L_ECC_POINT_MAX_BYTES];
struct l_checksum *hmac;
struct iovec iov[5];
int ret;
hmac = l_checksum_new_hmac(L_CHECKSUM_SHA256, kck, 32);
if (!hmac)
return false;
iov[0].iov_base = &send_confirm;
iov[0].iov_len = 2;
iov[1].iov_base = (void *) s1;
iov[1].iov_len = l_ecc_scalar_get_data(scalar1, s1, sizeof(s1));
iov[2].iov_base = (void *) e1;
iov[2].iov_len = l_ecc_point_get_data(element1, e1, sizeof(e1));
iov[3].iov_base = (void *) s2;
iov[3].iov_len = l_ecc_scalar_get_data(scalar2, s2, sizeof(s2));;
iov[4].iov_base = (void *) e2;
iov[4].iov_len = l_ecc_point_get_data(element2, e2, sizeof(e2));;
l_checksum_updatev(hmac, iov, 5);
ret = l_checksum_get_digest(hmac, confirm, 32);
l_checksum_free(hmac);
return (ret == 32);
}
static void sae_authentication_failed(struct sae_sm *sm, uint16_t reason)
{
sm->complete(reason, sm->user_data);
sae_sm_free(sm);
}
static void sae_reject_authentication(struct sae_sm *sm, uint16_t reason)
{
uint8_t reject[6];
uint8_t *ptr = reject;
/* transaction */
l_put_u16(1, ptr);
ptr += 2;
/* status success */
l_put_u16(reason, ptr);
ptr += 2;
if (reason == MMPDU_REASON_CODE_UNSUPP_FINITE_CYCLIC_GROUP) {
l_put_u16(19, ptr);
ptr += 2;
}
sm->tx(sm->peer, reject, ptr - reject, sm->user_data);
sae_authentication_failed(sm, reason);
}
static struct l_ecc_scalar *sae_new_residue(const struct l_ecc_curve *curve,
bool residue)
{
struct l_ecc_scalar *s = l_ecc_scalar_new_random(curve);
while (l_ecc_scalar_legendre(s) != ((residue) ? -1 : 1)) {
l_ecc_scalar_free(s);
s = l_ecc_scalar_new_random(curve);
}
return s;
}
static bool sae_is_quadradic_residue(const struct l_ecc_curve *curve,
struct l_ecc_scalar *value,
struct l_ecc_scalar *qr,
struct l_ecc_scalar *qnr)
{
uint64_t rbuf[L_ECC_MAX_DIGITS];
struct l_ecc_scalar *y_sqr = l_ecc_scalar_new(curve, NULL, 0);
struct l_ecc_scalar *r = l_ecc_scalar_new_random(curve);
struct l_ecc_scalar *num = l_ecc_scalar_new(curve, NULL, 0);
size_t bytes;
l_ecc_scalar_sum_x(y_sqr, value);
l_ecc_scalar_multiply(num, y_sqr, r);
l_ecc_scalar_multiply(num, num, r);
l_ecc_scalar_free(y_sqr);
bytes = l_ecc_scalar_get_data(r, rbuf, sizeof(rbuf));
l_ecc_scalar_free(r);
if (bytes <= 0) {
l_ecc_scalar_free(num);
return false;
}
if (rbuf[bytes / 8 - 1] & 1) {
l_ecc_scalar_multiply(num, num, qr);
if (l_ecc_scalar_legendre(num) == -1) {
l_ecc_scalar_free(num);
return true;
}
} else {
l_ecc_scalar_multiply(num, num, qnr);
if (l_ecc_scalar_legendre(num) == 1) {
l_ecc_scalar_free(num);
return true;
}
}
l_ecc_scalar_free(num);
return false;
}
/*
* IEEE 802.11-2016 Section 12.4.4.2.2
* Generation of the password element with ECC groups
*/
static bool sae_compute_pwe(struct sae_sm *sm, char *password,
const uint8_t *addr1, const uint8_t *addr2)
{
bool found = false;
uint8_t counter = 1;
uint8_t k = 20;
uint8_t pwd_seed[32];
struct l_ecc_scalar *pwd_value;
uint8_t random[32];
uint8_t *base = (uint8_t *) password;
size_t base_len = strlen(password);
uint8_t save[32] = { 0 };
struct l_ecc_scalar *qr;
struct l_ecc_scalar *qnr;
uint8_t x[L_ECC_SCALAR_MAX_BYTES];
/* create qr/qnr prior to beginning hunting-and-pecking loop */
qr = sae_new_residue(sm->curve, true);
qnr = sae_new_residue(sm->curve, false);
do {
/* pwd-seed = H(max(addr1, addr2) || min(addr1, addr2),
* base || counter)
* pwd-value = KDF-256(pwd-seed, "SAE Hunting and Pecking", p)
*/
sae_pwd_seed(addr1, addr2, base, base_len, counter, pwd_seed);
pwd_value = sae_pwd_value(sm->curve, pwd_seed);
if (sae_is_quadradic_residue(sm->curve, pwd_value, qr, qnr)) {
if (found == false) {
l_ecc_scalar_get_data(pwd_value, x, sizeof(x));
memcpy(save, pwd_seed, 32);
l_getrandom(random, 32);
base = random;
base_len = 32;
found = true;
}
}
l_ecc_scalar_free(pwd_value);
counter++;
} while ((counter <= k) || (found == false));
l_ecc_scalar_free(qr);
l_ecc_scalar_free(qnr);
if (!found) {
l_error("max PWE iterations reached!");
return false;
}
if (!(save[31] & 1))
sm->pwe = l_ecc_point_from_data(sm->curve,
L_ECC_POINT_TYPE_COMPRESSED_BIT1,
x, sizeof(x));
else
sm->pwe = l_ecc_point_from_data(sm->curve,
L_ECC_POINT_TYPE_COMPRESSED_BIT0,
x, sizeof(x));
if (!sm->pwe) {
l_error("computing y failed, was x quadratic residue?");
return false;
}
return true;
}
static bool sae_build_commit(struct sae_sm *sm, const uint8_t *addr1,
const uint8_t *addr2, uint8_t *commit,
size_t *len, bool retry)
{
struct l_ecc_scalar *mask;
uint8_t *ptr = commit;
struct l_ecc_scalar *order;
if (retry)
goto old_commit;
if (!sm->handshake->passphrase) {
l_error("no handshake passphrase found");
return false;
}
if (!sae_compute_pwe(sm, sm->handshake->passphrase, addr1, addr2)) {
l_error("could not compute PWE");
return false;
}
sm->scalar = l_ecc_scalar_new(sm->curve, NULL, 0);
sm->rand = l_ecc_scalar_new_random(sm->curve);
mask = l_ecc_scalar_new_random(sm->curve);
order = l_ecc_curve_get_order(sm->curve);
/* commit-scalar = (rand + mask) mod r */
l_ecc_scalar_add(sm->scalar, sm->rand, mask, order);
l_ecc_scalar_free(order);
/* commit-element = inv(mask * PWE) */
sm->element = l_ecc_point_new(sm->curve);
l_ecc_point_multiply(sm->element, mask, sm->pwe);
l_ecc_point_inverse(sm->element);
l_ecc_scalar_free(mask);
/*
* Several cases require retransmitting the same commit message. The
* anti-clogging code path requires this as well as the retransmition
* timeout.
*/
old_commit:
/* transaction */
l_put_le16(1, ptr);
ptr += 2;
/* status success */
l_put_le16(0, ptr);
ptr += 2;
/* group */
l_put_le16(19, ptr);
ptr += 2;
if (sm->token) {
memcpy(ptr, sm->token, sm->token_len);
ptr += sm->token_len;
}
ptr += l_ecc_scalar_get_data(sm->scalar, ptr, L_ECC_SCALAR_MAX_BYTES);
ptr += l_ecc_point_get_data(sm->element, ptr, L_ECC_POINT_MAX_BYTES);
*len = ptr - commit;
return true;
}
static void sae_send_confirm(struct sae_sm *sm)
{
uint8_t confirm[32];
uint8_t body[38];
uint8_t *ptr = body;
/*
* confirm = CN(KCK, send-confirm, commit-scalar, COMMIT-ELEMENT,
* peer-commit-scalar, PEER-COMMIT-ELEMENT)
*/
sae_cn(sm->kck, sm->sc, sm->scalar, sm->element, sm->p_scalar,
sm->p_element, confirm);
l_put_le16(2, ptr);
ptr += 2;
l_put_le16(0, ptr);
ptr += 2;
l_put_le16(sm->sc, ptr);
ptr += 2;
memcpy(ptr, confirm, 32);
ptr += 32;
sm->state = SAE_STATE_CONFIRMED;
sm->tx(sm->peer, body, 38, sm->user_data);
}
static void sae_process_commit(struct sae_sm *sm, const uint8_t *from,
const uint8_t *frame, size_t len)
{
uint8_t *ptr = (uint8_t *) frame;
uint8_t k[L_ECC_SCALAR_MAX_BYTES];
struct l_ecc_point *k_point;
uint8_t zero_key[32] = { 0 };
uint8_t keyseed[32];
uint8_t kck_and_pmk[2][32];
uint8_t tmp[L_ECC_SCALAR_MAX_BYTES];
struct l_ecc_scalar *tmp_scalar;
uint16_t group;
uint16_t reason = MMPDU_REASON_CODE_UNSPECIFIED;
ssize_t klen;
struct l_ecc_scalar *order;
if (sm->state != SAE_STATE_COMMITTED) {
l_error("bad state %u", sm->state);
goto reject;
}
if (len < 98) {
l_error("bad packet length");
goto reject;
}
group = l_get_le16(ptr);
ptr += 2;
if (group != 19) {
l_error("unsupported group: %u", group);
reason = MMPDU_REASON_CODE_UNSUPP_FINITE_CYCLIC_GROUP;
goto reject;
}
sm->p_scalar = l_ecc_scalar_new(sm->curve, ptr, 32);
ptr += 32;
sm->p_element = l_ecc_point_from_data(sm->curve, L_ECC_POINT_TYPE_FULL,
ptr, 64);
if (!sm->p_element) {
reason = MMPDU_REASON_CODE_UNSPECIFIED;
goto reject;
}
if (l_ecc_scalars_are_equal(sm->p_scalar, sm->scalar) ||
l_ecc_points_are_equal(sm->p_element, sm->element)) {
/* possible reflection attack, silently discard message */
l_warn("peer scalar or element matched own, discarding frame");
return;
}
sm->sc++;
/*
* K = scalar-op(rand, (element-op(scalar-op(peer-commit-scalar, PWE),
* PEER-COMMIT-ELEMENT)))
*/
k_point = l_ecc_point_new(sm->curve);
/* k_point = scalar-op(peer-commit-scalar, PWE) */
l_ecc_point_multiply(k_point, sm->p_scalar, sm->pwe);
/* k_point = element-op(k_point, PEER-COMMIT-ELEMENT) */
l_ecc_point_add(k_point, k_point, sm->p_element);
/* k_point = scalar-op(rand, k_point) */
l_ecc_point_multiply(k_point, sm->rand, k_point);
/*
* IEEE 802.11-2016 - Section 12.4.4.2.1 ECC group definition
* ECC groups make use of a mapping function, F, that maps a
* point (x, y) that satisfies the curve equation to its x-coordinate—
* i.e., if P = (x, y) then F(P) = x.
*/
klen = l_ecc_point_get_x(k_point, k, sizeof(k));
l_ecc_point_free(k_point);
/* keyseed = H(<0>32, k) */
hmac_sha256(zero_key, 32, k, klen, keyseed, 32);
/*
* kck_and_pmk = KDF-Hash-512(keyseed, "SAE KCK and PMK",
(commit-scalar + peer-commit-scalar) mod r)
*/
tmp_scalar = l_ecc_scalar_new(sm->curve, NULL, 0);
order = l_ecc_curve_get_order(sm->curve);
l_ecc_scalar_add(tmp_scalar, sm->p_scalar, sm->scalar, order);
l_ecc_scalar_get_data(tmp_scalar, tmp, sizeof(tmp));
kdf_sha256(keyseed, 32, "SAE KCK and PMK", strlen("SAE KCK and PMK"),
tmp, 32, kck_and_pmk, 64);
memcpy(sm->kck, kck_and_pmk[0], 32);
memcpy(sm->pmk, kck_and_pmk[1], 32);
/*
* PMKID = L((commit-scalar + peer-commit-scalar) mod r, 0, 128)
*/
l_ecc_scalar_add(tmp_scalar, sm->scalar, sm->p_scalar, order);
l_ecc_scalar_get_data(tmp_scalar, tmp, sizeof(tmp));
l_ecc_scalar_free(order);
l_ecc_scalar_free(tmp_scalar);
/* don't set the handshakes pmkid until confirm is verified */
memcpy(sm->pmkid, tmp, 16);
sae_send_confirm(sm);
return;
reject:
sae_reject_authentication(sm, reason);
}
static bool sae_verify_confirm(struct sae_sm *sm, const uint8_t *frame)
{
uint8_t check[32];
uint16_t rc = l_get_le16(frame);
sae_cn(sm->kck, rc, sm->p_scalar, sm->p_element, sm->scalar,
sm->element, check);
if (memcmp(frame + 2, check, 32)) {
l_error("confirm did not match");
return false;
}
sm->rc = rc;
return true;
}
static void sae_process_confirm(struct sae_sm *sm, const uint8_t *from,
const uint8_t *frame, size_t len)
{
const uint8_t *ptr = frame;
if (sm->state != SAE_STATE_CONFIRMED) {
l_error("bad state %u", sm->state);
goto reject;
}
if (len < 34) {
l_error("bad length");
goto reject;
}
if (!sae_verify_confirm(sm, ptr))
goto reject;
/* Sc shall be set to the value 2^16 - 1 */
sm->sc = 0xffff;
handshake_state_set_pmkid(sm->handshake, sm->pmkid);
handshake_state_set_pmk(sm->handshake, sm->pmk, 32);
sm->complete(0, sm->user_data);
sm->state = SAE_STATE_ACCEPTED;
return;
reject:
sae_reject_authentication(sm, MMPDU_REASON_CODE_UNSPECIFIED);
}
static void sae_send_commit(struct sae_sm *sm, bool retry)
{
struct handshake_state *hs = sm->handshake;
/* regular commit + possible 256 byte token */
uint8_t commit[358];
size_t len;
if (!sae_build_commit(sm, hs->spa, hs->aa, commit, &len, retry))
return;
sm->state = SAE_STATE_COMMITTED;
sm->tx(sm->peer, commit, len, sm->user_data);
}
void sae_timeout(struct sae_sm *sm)
{
/* regardless of state, reject if sync exceeds max */
if (sm->sync > SAE_SYNC_MAX) {
sae_reject_authentication(sm, MMPDU_REASON_CODE_UNSPECIFIED);
return;
}
sm->sync++;
switch (sm->state) {
case SAE_STATE_COMMITTED:
sae_send_commit(sm, true);
break;
case SAE_STATE_CONFIRMED:
sm->sc++;
sae_send_confirm(sm);
break;
default:
/* should never happen */
l_error("SAE timeout in bad state %u", sm->state);
return;
}
}
/*
* 802.11-2016 - Section 12.4.8.6.4
* If the Status code is ANTI_CLOGGING_TOKEN_REQUIRED, a new SAE Commit message
* shall be constructed with the Anti-Clogging Token from the received
* Authentication frame, and the commit-scalar and COMMIT-ELEMENT previously
* sent. The new SAE Commit message shall be transmitted to the peer, Sync shall
* be zeroed, and the t0 (retransmission) timer shall be set.
*/
static void sae_process_anti_clogging(struct sae_sm *sm, const uint8_t *ptr,
size_t len)
{
/*
* IEEE 802.11-2016 - Section 12.4.6 Anti-clogging tokens
*
* It is suggested that an Anti-Clogging Token not exceed 256 octets
*/
if (len > 256) {
l_error("anti-clogging token size %zu too large, 256 max", len);
return;
}
sm->token = l_memdup(ptr + 2, len - 2);
sm->token_len = len - 2;
sm->sync = 0;
sae_send_commit(sm, true);
}
/*
* 802.11-2016 - 12.4.8.6.3 Protocol instance behavior - Nothing state
*/
static bool sae_verify_nothing(struct sae_sm *sm, uint16_t transaction,
uint16_t status, const uint8_t *frame,
size_t len)
{
/*
* TODO: This does not handle the transition from NOTHING -> CONFIRMED
* as this is only relevant to the AP or in Mesh mode which is not
* yet supported.
*/
if (transaction != SAE_STATE_COMMITTED)
return false;
/* frame shall be silently discarded and Del event sent */
if (status != 0) {
sae_authentication_failed(sm, MMPDU_REASON_CODE_UNSPECIFIED);
return false;
}
/* reject with unsupported group */
if (l_get_le16(frame) != 19) {
sae_reject_authentication(sm,
MMPDU_REASON_CODE_UNSUPP_FINITE_CYCLIC_GROUP);
return false;
}
return true;
}
/*
* 802.11-2016 - 12.4.8.6.4 Protocol instance behavior - Committed state
*/
static bool sae_verify_committed(struct sae_sm *sm, uint16_t transaction,
uint16_t status, const uint8_t *frame,
size_t len)
{
/*
* Upon receipt of a Con event...
* Then the protocol instance checks the value of Sync. If it
* is greater than dot11RSNASAESync, the protocol instance shall send a
* Del event to the parent process and transition back to Nothing state.
* If Sync is not greater than dot11RSNASAESync, the protocol instance
* shall increment Sync, transmit the last SAE Commit message sent to
* the peer...
*/
if (transaction == SAE_STATE_CONFIRMED) {
if (sm->sync > SAE_SYNC_MAX) {
sae_authentication_failed(sm,
MMPDU_REASON_CODE_UNSPECIFIED);
return false;
}
sm->sync++;
sae_send_commit(sm, true);
return false;
}
switch (status) {
case MMPDU_REASON_CODE_ANTI_CLOGGING_TOKEN_REQ:
sae_process_anti_clogging(sm, frame, len);
return false;
case MMPDU_REASON_CODE_UNSUPP_FINITE_CYCLIC_GROUP:
l_error("AP requested unsupported FCC group %d",
l_get_le16(frame));
goto reject_unsupp_group;
case 0:
if (l_get_le16(frame) != 19) {
if (sm->sync > SAE_SYNC_MAX) {
sae_authentication_failed(sm,
MMPDU_REASON_CODE_UNSPECIFIED);
return false;
}
sm->sync++;
goto reject_unsupp_group;
}
return true;
default:
/*
* If the Status is some other nonzero value, the frame shall
* be silently discarded...
*/
return false;
}
reject_unsupp_group:
sae_reject_authentication(sm,
MMPDU_REASON_CODE_UNSUPP_FINITE_CYCLIC_GROUP);
return false;
}
/*
* 802.11-2016 - 12.4.8.6.5 Protocol instance behavior - Confirmed state
*/
static bool sae_verify_confirmed(struct sae_sm *sm, uint16_t trans,
uint16_t status, const uint8_t *frame,
size_t len)
{
if (trans == SAE_STATE_CONFIRMED)
return true;
/*
* If the Status is nonzero, the frame shall be silently discarded...
*/
if (status != 0)
return false;
/*
* If Sync is greater than dot11RSNASAESync, the protocol instance
* shall send the parent process a Del event and transitions back to
* Nothing state.
*/
if (sm->sync > SAE_SYNC_MAX) {
sae_authentication_failed(sm, MMPDU_REASON_CODE_UNSPECIFIED);
return false;
}
/* frame shall be silently discarded */
if (l_get_le16(frame) != 19)
return false;
/*
* the protocol instance shall increment Sync, increment Sc, and
* transmit its Commit and Confirm (with the new Sc value) messages.
*/
sm->sync++;
sm->sc++;
sae_send_commit(sm, true);
sae_send_confirm(sm);
return false;
}
/*
* 802.11-2016 - 12.4.8.6.6 Protocol instance behavior - Accepted state
*/
static bool sae_verify_accepted(struct sae_sm *sm, uint16_t trans,
uint16_t status, const uint8_t *frame,
size_t len)
{
uint16_t sc;
/* spec does not specify what to do here, so print and discard */
if (trans != SAE_STATE_CONFIRMED) {
l_error("received transaction %u in accepted state", trans);
return false;
}
if (sm->sync > SAE_SYNC_MAX) {
sae_authentication_failed(sm, MMPDU_REASON_CODE_UNSPECIFIED);
return false;
}
sc = l_get_le16(frame);
/*
* ... the value of send-confirm shall be checked. If the value is not
* greater than Rc or is equal to 2^16 - 1, the received frame shall be
* silently discarded.
*/
if (sc <= sm->rc || sc == 0xffff)
return false;
/*
* If the verification fails, the received frame shall be silently
* discarded.
*/
if (!sae_verify_confirm(sm, frame))
return false;
/*
* If the verification succeeds, the Rc variable shall be set to the
* send-confirm portion of the frame, the Sync shall be incremented and
* a new SAE Confirm message shall be constructed (with Sc set to
* 2^16 - 1) and sent to the peer.
*/
sm->sync++;
sm->sc = 0xffff;
sae_send_confirm(sm);
/*
* Since the confirmed needed special processing because of accepted
* state we don't want the standard code path to execute.
*/
return false;
}
static bool sae_verify_packet(struct sae_sm *sm, uint16_t trans,
uint16_t status, const uint8_t *frame,
size_t len)
{
if (trans != SAE_STATE_COMMITTED && trans != SAE_STATE_CONFIRMED)
return false;
switch (sm->state) {
case SAE_STATE_NOTHING:
return sae_verify_nothing(sm, trans, status, frame, len);
case SAE_STATE_COMMITTED:
return sae_verify_committed(sm, trans, status, frame, len);
case SAE_STATE_CONFIRMED:
return sae_verify_confirmed(sm, trans, status, frame, len);
case SAE_STATE_ACCEPTED:
return sae_verify_accepted(sm, trans, status, frame, len);
}
/* should never get here */
return false;
}
void sae_rx_packet(struct sae_sm *sm, const uint8_t *from, const uint8_t *frame,
size_t len)
{
uint16_t transaction;
uint16_t status;
const uint8_t *ptr = frame;
if (len < 4) {
l_error("bad packet length");
goto reject;
}
transaction = l_get_le16(ptr);
ptr += 2;
status = l_get_le16(ptr);
ptr += 2;
/* AP rejected authentication */
if (len == 4) {
sae_authentication_failed(sm, status);
return;
}
if (!sae_verify_packet(sm, transaction, status, ptr, len - 4))
return;
switch (transaction) {
case SAE_STATE_COMMITTED:
sae_process_commit(sm, from, ptr, len - 4);
return;
case SAE_STATE_CONFIRMED:
sae_process_confirm(sm, from, ptr, len - 4);
return;
default:
l_error("invalid transaction sequence %u", transaction);
}
reject:
sae_reject_authentication(sm, MMPDU_REASON_CODE_UNSPECIFIED);
}
void sae_start(struct sae_sm *sm)
{
if (sm->handshake->authenticator)
memcpy(sm->peer, sm->handshake->spa, 6);
else
memcpy(sm->peer, sm->handshake->aa, 6);
sae_send_commit(sm, false);
}
struct sae_sm *sae_sm_new(struct handshake_state *hs, sae_tx_packet_func_t tx,
sae_complete_func_t complete, void *user_data)
{
struct sae_sm *sm;
sm = l_new(struct sae_sm, 1);
if (!sm)
return NULL;
sm->tx = tx;
sm->complete = complete;
sm->user_data = user_data;
sm->handshake = hs;
sm->state = SAE_STATE_NOTHING;
sm->curve = l_ecc_curve_get_ike_group(19);
return sm;
}
void sae_sm_free(struct sae_sm *sm)
{
l_free(sm->token);
l_ecc_scalar_free(sm->scalar);
l_ecc_scalar_free(sm->p_scalar);
l_ecc_scalar_free(sm->rand);
l_ecc_point_free(sm->element);
l_ecc_point_free(sm->p_element);
l_ecc_point_free(sm->pwe);
/* zero out whole structure, including keys */
memset(sm, 0, sizeof(struct sae_sm));
l_free(sm);
}