3
0
mirror of https://git.kernel.org/pub/scm/network/wireless/iwd.git synced 2025-01-22 11:34:07 +01:00
iwd/unit/test-eap-sim.c
2019-10-25 00:43:08 +02:00

370 lines
12 KiB
C

/*
*
* Wireless daemon for Linux
*
* Copyright (C) 2017-2019 Intel Corporation. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <ell/ell.h>
#include "src/eap.h"
#include "src/eap-private.h"
#include "src/simutil.h"
static uint8_t attr_data[] = {
EAP_SIM_AT_RAND, /* attribute type */
0x02, /* length (4 * 2) == 8 bytes */
0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
EAP_SIM_AT_AUTN, /* next attribute */
0x01,
0x0f, 0x0f,
EAP_SIM_AT_RES, /* next attribute */
0x03,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00
};
static void test_next_attribute(const void *data)
{
struct eap_sim_tlv_iter iter;
/* basic attribute iteration */
uint8_t rand = 0, autn = 0, res = 0;
eap_sim_tlv_iter_init(&iter, attr_data, sizeof(attr_data));
while (eap_sim_tlv_iter_next(&iter)) {
switch (iter.tag) {
case EAP_SIM_AT_RAND:
rand = 1;
break;
case EAP_SIM_AT_AUTN:
autn = 1;
break;
case EAP_SIM_AT_RES:
res = 1;
break;
default:
assert(0);
}
}
assert(rand && autn && res);
}
static void test_add_attribute(const void *data)
{
uint8_t buf[100];
char test[] = "test data";
/* test EAP_SIM_PAD_NONE */
eap_sim_add_attribute(buf, EAP_SIM_AT_RAND, EAP_SIM_PAD_NONE,
(uint8_t *)test, strlen(test));
/*
* Attribute should look like:
*
* buf[0] = AT_RAND
* buf[1] = 0x03
* buf[2 - 10] = "test data"
* buf[11] = 0x00 (padding)
*/
assert(buf[0] == EAP_SIM_AT_RAND);
assert(buf[1] == 3);
assert(!memcmp(buf + 2, test, 9));
assert(buf[11] == 0);
/* test EAP_SIM_PAD_ZERO */
memset(buf, 0, sizeof(buf));
eap_sim_add_attribute(buf, EAP_SIM_AT_RAND, EAP_SIM_PAD_ZERO,
(uint8_t *)test, strlen(test));
/*
* Attribute should look like:
*
* buf[0] = AT_RAND
* buf[1] = 0x04
* buf[2-3] = 0x0000
* buf[4-13] = "test data"
* buf[14-16] = 0x000000
*/
assert(buf[0] == EAP_SIM_AT_RAND);
assert(buf[1] == 4);
assert(buf[2] == 0 && buf[3] == 0);
assert(!memcmp(buf + 4, test, strlen(test)));
assert(buf[14] == 0 && buf[15] == 0 && buf[16] == 0);
/* test EAP_SIM_PAD_LENGTH */
memset(buf, 0, sizeof(buf));
eap_sim_add_attribute(buf, EAP_SIM_AT_RAND, EAP_SIM_PAD_LENGTH,
(uint8_t *)test, strlen(test));
/*
* Attribute should look like:
*
* buf[0] = AT_RAND
* buf[1] = 0x04
* buf[2-3] = 0x0009
* buf[4-13] = "test data"
* buf[14-16] = 0x000000
*/
assert(buf[0] == EAP_SIM_AT_RAND);
assert(buf[1] == 4);
assert(buf[2] == 0x00 && buf[3] == 0x09);
assert(!memcmp(buf + 4, test, strlen(test)));
assert(buf[14] == 0 && buf[15] == 0 && buf[16] == 0);
/* test EAP_SIM_PAD_LENGTH_BITS */
memset(buf, 0, sizeof(buf));
eap_sim_add_attribute(buf, EAP_SIM_AT_RAND, EAP_SIM_PAD_LENGTH_BITS,
(uint8_t *)test, strlen(test));
/*
* Attribute should look like:
*
* buf[0] = AT_RAND
* buf[1] = 0x04
* buf[2-3] = 0x0048
* buf[4-13] = "test data"
* buf[14-16] = 0x000000
*/
assert(buf[0] == EAP_SIM_AT_RAND);
assert(buf[1] == 4);
assert(buf[2] == 0x00 && buf[3] == 0x48);
assert(!memcmp(buf + 4, test, strlen(test)));
assert(buf[14] == 0 && buf[15] == 0 && buf[16] == 0);
}
static uint8_t ex_pkt[] = {
0x02, 0x02, 0x00, 0x1c, 0x12, 0x0b, 0x00, 0x00, 0x0b, 0x05,
0x00, 0x00, 0xf5, 0x6d, 0x64, 0x33, 0xe6, 0x8e, 0xd2, 0x97,
0x6a, 0xc1, 0x19, 0x37, 0xfc, 0x3d, 0x11, 0x54 };
static uint8_t ex_mac[] = {
0xf5, 0x6d, 0x64, 0x33, 0xe6, 0x8e, 0xd2, 0x97,
0x6a, 0xc1, 0x19, 0x37, 0xfc, 0x3d, 0x11, 0x54 };
static uint8_t ex_sres[] = {
0xd1, 0xd2, 0xd3, 0xd4,
0xe1, 0xe2, 0xe3, 0xe4,
0xf1, 0xf2, 0xf3, 0xf4 };
static uint8_t ex_k_aut[] = {
0x25, 0xaf, 0x19, 0x42, 0xef, 0xcb, 0xf4, 0xbc,
0x72, 0xb3, 0x94, 0x34, 0x21, 0xf2, 0xa9, 0x74 };
static void test_calc_mac(const void *data)
{
uint8_t pkt[100];
uint8_t pos = 0;
/* header */
memcpy(pkt, ex_pkt, 8);
pos += 8;
/* add MAC attribute */
pos += eap_sim_add_attribute(pkt + 8, EAP_SIM_AT_MAC, EAP_SIM_PAD_ZERO,
NULL, EAP_SIM_MAC_LEN);
memcpy(pkt + pos, ex_sres, 12);
eap_sim_derive_mac(EAP_TYPE_SIM, pkt, sizeof(ex_pkt) + 12, ex_k_aut,
pkt + pos - EAP_SIM_MAC_LEN);
assert(!memcmp(ex_mac, pkt + pos - EAP_SIM_MAC_LEN, EAP_SIM_MAC_LEN));
assert(!memcmp(ex_pkt, pkt, sizeof(ex_pkt)));
}
static uint8_t ex_mk[] = {
0xe5, 0x76, 0xd5, 0xca, 0x33, 0x2e, 0x99, 0x30, 0x01, 0x8b,
0xf1, 0xba, 0xee, 0x27, 0x63, 0xc7, 0x95, 0xb3, 0xc7, 0x12 };
static uint8_t ex_keys[] = {
0x53, 0x6e, 0x5e, 0xbc, 0x44, 0x65, 0x58, 0x2a, 0xa6, 0xa8,
0xec, 0x99, 0x86, 0xeb, 0xb6, 0x20, 0x25, 0xaf, 0x19, 0x42,
0xef, 0xcb, 0xf4, 0xbc, 0x72, 0xb3, 0x94, 0x34, 0x21, 0xf2,
0xa9, 0x74, 0x39, 0xd4, 0x5a, 0xea, 0xf4, 0xe3, 0x06, 0x01,
0x98, 0x3e, 0x97, 0x2b, 0x6c, 0xfd, 0x46, 0xd1, 0xc3, 0x63,
0x77, 0x33, 0x65, 0x69, 0x0d, 0x09, 0xcd, 0x44, 0x97, 0x6b,
0x52, 0x5f, 0x47, 0xd3, 0xa6, 0x0a, 0x98, 0x5e, 0x95, 0x5c,
0x53, 0xb0, 0x90, 0xb2, 0xe4, 0xb7, 0x37, 0x19, 0x19, 0x6a,
0x40, 0x25, 0x42, 0x96, 0x8f, 0xd1, 0x4a, 0x88, 0x8f, 0x46,
0xb9, 0xa7, 0x88, 0x6e, 0x44, 0x88, 0x59, 0x49, 0xea, 0xb0,
0xff, 0xf6, 0x9d, 0x52, 0x31, 0x5c, 0x6c, 0x63, 0x4f, 0xd1,
0x4a, 0x7f, 0x0d, 0x52, 0x02, 0x3d, 0x56, 0xf7, 0x96, 0x98,
0xfa, 0x65, 0x96, 0xab, 0xee, 0xd4, 0xf9, 0x3f, 0xbb, 0x48,
0xeb, 0x53, 0x4d, 0x98, 0x54, 0x14, 0xce, 0xed, 0x0d, 0x9a,
0x8e, 0xd3, 0x3c, 0x38, 0x7c, 0x9d, 0xfd, 0xab, 0x92, 0xff,
0xbd, 0xf2, 0x40, 0xfc, 0xec, 0xf6, 0x5a, 0x2c, 0x93, 0xb9 };
static void test_prng(const void *data)
{
uint8_t prng_buf[160];
eap_sim_fips_prf((uint8_t *)ex_mk, 20, prng_buf, sizeof(ex_keys));
assert(!memcmp(prng_buf, (uint8_t *)ex_keys, sizeof(ex_keys)));
}
struct aka_prime_data {
const char *identity;
const char *network;
uint8_t ik[EAP_AKA_IK_LEN];
uint8_t ck[EAP_AKA_CK_LEN];
uint8_t autn[16];
uint8_t ik_p[EAP_AKA_IK_LEN];
uint8_t ck_p[EAP_AKA_CK_LEN];
uint8_t k_encr[EAP_SIM_K_ENCR_LEN];
uint8_t k_aut[EAP_AKA_PRIME_K_AUT_LEN];
uint8_t k_re[32];
uint8_t msk[EAP_SIM_MSK_LEN];
uint8_t emsk[EAP_SIM_EMSK_LEN];
};
/*
* RFC 5448, Appendix C: Case 1
*/
struct aka_prime_data test_case_1 = {
.identity = "0555444333222111",
.network = "WLAN",
.autn = { 0xbb, 0x52, 0xe9, 0x1c, 0x74, 0x7a, 0xc3, 0xab,
0x2a, 0x5c, 0x23, 0xd1, 0x5e, 0xe3, 0x51, 0xd5 },
.ik = { 0x97, 0x44, 0x87, 0x1a, 0xd3, 0x2b, 0xf9, 0xbb,
0xd1, 0xdd, 0x5c, 0xe5, 0x4e, 0x3e, 0x2e, 0x5a },
.ck = { 0x53, 0x49, 0xfb, 0xe0, 0x98, 0x64, 0x9f, 0x94,
0x8f, 0x5d, 0x2e, 0x97, 0x3a, 0x81, 0xc0, 0x0f },
.ik_p = { 0xcc, 0xfc, 0x23, 0x0c, 0xa7, 0x4f, 0xcc, 0x96,
0xc0, 0xa5, 0xd6, 0x11, 0x64, 0xf5, 0xa7, 0x6c },
.ck_p = { 0x00, 0x93, 0x96, 0x2d, 0x0d, 0xd8, 0x4a, 0xa5,
0x68, 0x4b, 0x04, 0x5c, 0x9e, 0xdf, 0xfa, 0x04 },
.k_encr = { 0x76, 0x6f, 0xa0, 0xa6, 0xc3, 0x17, 0x17, 0x4b,
0x81, 0x2d, 0x52, 0xfb, 0xcd, 0x11, 0xa1, 0x79 },
.k_aut = { 0x08, 0x42, 0xea, 0x72, 0x2f, 0xf6, 0x83, 0x5b, 0xfa, 0x20,
0x32, 0x49, 0x9f, 0xc3, 0xec, 0x23, 0xc2, 0xf0, 0xe3,
0x88, 0xb4, 0xf0, 0x75, 0x43, 0xff, 0xc6, 0x77, 0xf1,
0x69, 0x6d, 0x71, 0xea },
.k_re = { 0xcf, 0x83, 0xaa, 0x8b, 0xc7, 0xe0, 0xac, 0xed, 0x89, 0x2a,
0xcc, 0x98, 0xe7, 0x6a, 0x9b, 0x20, 0x95, 0xb5, 0x58,
0xc7, 0x79, 0x5c, 0x70, 0x94, 0x71, 0x5c, 0xb3, 0x39,
0x3a, 0xa7, 0xd1, 0x7a },
.msk = { 0x67, 0xc4, 0x2d, 0x9a, 0xa5, 0x6c, 0x1b, 0x79, 0xe2, 0x95,
0xe3, 0x45, 0x9f, 0xc3, 0xd1, 0x87, 0xd4, 0x2b, 0xe0,
0xbf, 0x81, 0x8d, 0x30, 0x70, 0xe3, 0x62, 0xc5, 0xe9,
0x67, 0xa4, 0xd5, 0x44, 0xe8, 0xec, 0xfe, 0x19, 0x35,
0x8a, 0xb3, 0x03, 0x9a, 0xff, 0x03, 0xb7, 0xc9, 0x30,
0x58, 0x8c, 0x05, 0x5b, 0xab, 0xee, 0x58, 0xa0, 0x26,
0x50, 0xb0, 0x67, 0xec, 0x4e, 0x93, 0x47, 0xc7, 0x5a },
.emsk = { 0xf8, 0x61, 0x70, 0x3c, 0xd7, 0x75, 0x59, 0x0e, 0x16, 0xc7,
0x67, 0x9e, 0xa3, 0x87, 0x4a, 0xda, 0x86, 0x63, 0x11,
0xde, 0x29, 0x07, 0x64, 0xd7, 0x60, 0xcf, 0x76, 0xdf,
0x64, 0x7e, 0xa0, 0x1c, 0x31, 0x3f, 0x69, 0x92, 0x4b,
0xdd, 0x76, 0x50, 0xca, 0x9b, 0xac, 0x14, 0x1e, 0xa0,
0x75, 0xc4, 0xef, 0x9e, 0x80, 0x29, 0xc0, 0xe2, 0x90,
0xcd, 0xba, 0xd5, 0x63, 0x8b, 0x63, 0xbc, 0x23, 0xfb }
};
/*
* RFC 5448, Appendix C: Case 2
*/
struct aka_prime_data test_case_2 = {
.identity = "0555444333222111",
.network = "HRPD",
.autn = { 0xbb, 0x52, 0xe9, 0x1c, 0x74, 0x7a, 0xc3, 0xab,
0x2a, 0x5c, 0x23, 0xd1, 0x5e, 0xe3, 0x51, 0xd5 },
.ik = { 0x97, 0x44, 0x87, 0x1a, 0xd3, 0x2b, 0xf9, 0xbb,
0xd1, 0xdd, 0x5c, 0xe5, 0x4e, 0x3e, 0x2e, 0x5a },
.ck = { 0x53, 0x49, 0xfb, 0xe0, 0x98, 0x64, 0x9f, 0x94,
0x8f, 0x5d, 0x2e, 0x97, 0x3a, 0x81, 0xc0, 0x0f },
.ik_p = { 0xdb, 0x94, 0xa0, 0xab, 0x55, 0x7e, 0xf6, 0xc9,
0xab, 0x48, 0x61, 0x9c, 0xa0, 0x5b, 0x9a, 0x9f },
.ck_p = { 0x38, 0x20, 0xf0, 0x27, 0x7f, 0xa5, 0xf7, 0x77,
0x32, 0xb1, 0xfb, 0x1d, 0x90, 0xc1, 0xa0, 0xda },
.k_encr = { 0x05, 0xad, 0x73, 0xac, 0x91, 0x5f, 0xce, 0x89,
0xac, 0x77, 0xe1, 0x52, 0x0d, 0x82, 0x18, 0x7b },
.k_aut = { 0x5b, 0x4a, 0xca, 0xef, 0x62, 0xc6, 0xeb, 0xb8, 0x88, 0x2b,
0x2f, 0x3d, 0x53, 0x4c, 0x4b, 0x35, 0x27, 0x73, 0x37,
0xa0, 0x01, 0x84, 0xf2, 0x0f, 0xf2, 0x5d, 0x22, 0x4c,
0x04, 0xbe, 0x2a, 0xfd },
.k_re = { 0x3f, 0x90, 0xbf, 0x5c, 0x6e, 0x5e, 0xf3, 0x25, 0xff, 0x04,
0xeb, 0x5e, 0xf6, 0x53, 0x9f, 0xa8, 0xcc, 0xa8, 0x39,
0x81, 0x94, 0xfb, 0xd0, 0x0b, 0xe4, 0x25, 0xb3, 0xf4,
0x0d, 0xba, 0x10, 0xac },
.msk = { 0x87, 0xb3, 0x21, 0x57, 0x01, 0x17, 0xcd, 0x6c, 0x95, 0xab,
0x6c, 0x43, 0x6f, 0xb5, 0x07, 0x3f, 0xf1, 0x5c, 0xf8,
0x55, 0x05, 0xd2, 0xbc, 0x5b, 0xb7, 0x35, 0x5f, 0xc2,
0x1e, 0xa8, 0xa7, 0x57, 0x57, 0xe8, 0xf8, 0x6a, 0x2b,
0x13, 0x80, 0x02, 0xe0, 0x57, 0x52, 0x91, 0x3b, 0xb4,
0x3b, 0x82, 0xf8, 0x68, 0xa9, 0x61, 0x17, 0xe9, 0x1a,
0x2d, 0x95, 0xf5, 0x26, 0x67, 0x7d, 0x57, 0x29, 0x00 },
.emsk = { 0xc8, 0x91, 0xd5, 0xf2, 0x0f, 0x14, 0x8a, 0x10, 0x07, 0x55,
0x3e, 0x2d, 0xea, 0x55, 0x5c, 0x9c, 0xb6, 0x72, 0xe9,
0x67, 0x5f, 0x4a, 0x66, 0xb4, 0xba, 0xfa, 0x02, 0x73,
0x79, 0xf9, 0x3a, 0xee, 0x53, 0x9a, 0x59, 0x79, 0xd0,
0xa0, 0x04, 0x2b, 0x9d, 0x2a, 0xe2, 0x8b, 0xed, 0x3b,
0x17, 0xa3, 0x1d, 0xc8, 0xab, 0x75, 0x07, 0x2b, 0x80,
0xbd, 0x0c, 0x1d, 0xa6, 0x12, 0x46, 0x6e, 0x40, 0x2c }
};
static void test_aka_prf_prime(const void *data)
{
struct aka_prime_data *vals = (struct aka_prime_data *)data;
uint8_t k_encr[16];
uint8_t k_aut[32];
uint8_t k_re[32];
uint8_t msk[64];
uint8_t emsk[64];
uint8_t ik_p[16];
uint8_t ck_p[16];
eap_aka_derive_primes(vals->ck, vals->ik, vals->autn,
(const uint8_t *)vals->network, strlen(vals->network),
ck_p, ik_p);
assert(memcmp(ik_p, vals->ik_p, EAP_AKA_IK_LEN) == 0);
assert(memcmp(ck_p, vals->ck_p, EAP_AKA_CK_LEN) == 0);
eap_aka_prf_prime(ik_p, ck_p, vals->identity, k_encr, k_aut, k_re,
msk, emsk);
assert(memcmp(k_encr, vals->k_encr, EAP_SIM_K_ENCR_LEN) == 0);
assert(memcmp(k_aut, vals->k_aut, EAP_AKA_PRIME_K_AUT_LEN) == 0);
assert(memcmp(k_re, vals->k_re, EAP_AKA_K_RE_LEN) == 0);
assert(memcmp(msk, vals->msk, EAP_SIM_MSK_LEN) == 0);
assert(memcmp(emsk, vals->emsk, EAP_SIM_EMSK_LEN) == 0);
}
int main(int argc, char *argv[])
{
l_test_init(&argc, &argv);
l_test_add("EAP-SIM next attribute test", test_next_attribute, NULL);
l_test_add("EAP-SIM add attribute test", test_add_attribute, NULL);
l_test_add("EAP-SIM calculate MAC test", test_calc_mac, NULL);
l_test_add("EAP-SIM PRNG test", test_prng, NULL);
l_test_add("EAP-AKA' Test Case 1", test_aka_prf_prime, &test_case_1);
l_test_add("EAP-AKA' Test Case 2", test_aka_prf_prime, &test_case_2);
return l_test_run();
}