3
0
mirror of https://git.kernel.org/pub/scm/network/wireless/iwd.git synced 2024-11-18 01:59:31 +01:00
iwd/TODO
2016-07-18 13:58:25 -05:00

375 lines
13 KiB
Plaintext

Background
==========
- Priority scale: High, Medium and Low
- Complexity scale: C1, C2, C4 and C8. The complexity scale is exponential,
with complexity 1 being the lowest complexity. Complexity is a function
of both task 'complexity' and task 'scope'.
The general rule of thumb is that a complexity 1 task should take 1-2 weeks
for a person very familiar with the codebase. Higher complexity tasks
require more time and have higher uncertainty.
Higher complexity tasks should be refined into several lower complexity tasks
once the task is better understood.
mac80211_hwsim
==============
- Add support for HWSIM_CMD_SET_RADIO command
To allow modifying an existing radio, add the HWSIM_CMD_SET_RADIO. The
first possible feature should be to emulate the hardware RFKILL switch.
It might be required to add a HWSIM_ATTR_RADIO_HW_RFKILL attribute flag
to the HWSIM_CMD_NEW_RADIO to enable virtual radios with a hardware
level RFKILL switch.
Priority: Medium
Complexity: C1
- Allow configuration of MAC address or list of MAC addresses
The radios are auto-generating a fake MAC address. It would be useful
to allow specifying a MAC address to be used. In certain cases it might
be also useful to provide a list of MAC addresses so that for example
with secondary interfaces these can be used.
Priority: Low
Complexity: C2
- Move mac80211_hwsim.h header file to UAPI includes
The mac80211_hwsim.h is the public API description of this netlink
interface and thus it should be provided via UAPI includes.
For this work work the mac80211_hwsim.h header needs to be modified
so that it also compiles from userspace. At the moment it throws
errors. And it needs to become part of the UAPI headers of the
Linux kernel.
In addition it should provide HWSIM_GENL_NAME that provides the
generic netlink "MAC82011_HWSIM" family string.
Priority: Low
Complexity: C1
- Provide kernel option to allow defining the number of initial radios
By default the mac80211_hwsim modules creates 2 radios by default unless
it is overwritten with the radios=x module parameter.
To allow loading the mac80211_hwsim by default and even with accidental
loading of the module, it would be good to provide a kernel configuration
option that allows changing the default value here.
For our testing we want to load mac80211_hwsim without any radios. Maybe
this should be the default for the new kernel option.
If the default of initial radios can be changed to zero, then it is also
possible to add MODULE_ALIAS_GENL_FAMILY to support auto-loading of
the mac80211_hwsim kernel module.
Priority: Low
Complexity: C1
- New configuration options for radios
At the moment the radios created are all equal and feature rich. However
for testing we want to create radios with different emulated hardware
capabilities. Provide new attributes or flags that allow enabling or
disabling certain mac80211 features.
For example AP mode, P2P mode, number of interface combinations, TDLS
support, number of Scan SSIDs, supported ciphers and so on.
Priority: Low
Complexity: C2
cfg80211 / nl80211
==================
- Disconnect from network / station when client crashes
When associating or connecting to a network, it should be possible to
bind this transaction to a specific netlink client. So that in case
this client terminates without, any connection will be also terminated.
This should affect NL80211_CMD_ASSOCIATE and NL80211_CMD_CONNECT. It
seems that this is not needed for NL80211_CMD_AUTHENTICATE since that
command will eventually time out, but it might be a good idea to even
support it there.
Maybe a new attribute similar to NL80211_ATTR_IFACE_SOCKET_OWNER should
be used for this behavior.
Priority: High
Complexity: C4
- Add missing support for NL80211_CMD_GET_INTERFACE filtering
The NL80211_CMD_GET_INTERFACE command description indicates that you
can filter results based NL80211_ATTR_WIPHY. This feature has never
been implemented.
Either remove that feature from the description since it does not exist
or actually implemented the filtering on wiphy. Johannes indicated that
fixing the description might be the better approach. If the feature is
easy to add, then it should be added. However if filtering on wiphy is
a rather complicated task, then better just update the description to
match the reality.
Priority: Low
Complexity: C2
Owner: Denis Kenzior <denkenz@gmail.com>
Wireless monitor
================
- Add support for PACKET_RECV_OUTPUT socket option of AF_PACKET
Instead of having to switch every interface manually into promiscuous
mode, it would be useful to set PACKET_RECV_OUTPUT to receive also
the traffic that leaves the system.
This would make tracing PAE / EAPoL traffic easy and provides better
sniffing capabilities.
Unfortunately, PACKET_RECV_OUTPUT logic is not implemented at all in
the kernel. So, first implement it in the kernel, and then use it in
nlmon.c as a set_sockopt option.
Priority: Low
Complexity: C8
- Subscribe to all nl80211 multicast groups at startup
It seems the nlmon packets are limited to actual subscribed mutlicast
groups. To get a complete picture of all the nl80211 commands and
events, it is required that iwmon adds membership to all multicast
groups that the nl80211 lists.
This means that the netlink socket used for resolving nl80211 family
name needs to be kept open and actively processed since it will also
receive these multicast events. However the event itself can be dropped
since the one from nlmon with the proper kernel level timestamps should
be taken into account.
An alternative is to fix the netlink_deliver_tap() function in the
kernel netlink layer to not be affected by the broadcast filtering.
Priority: Medium
Complexity: C1
- Add support for writing PCAP files
The new -w <file> option should allow for writing PCAP files with the
Linux SLL link type.
When creating PCAP files using tcpdump a lot of extra information from
all netlink sockets are written. This write support should only write
the information related to nl80211. However parts from the generic
netlink control channel from resolving the nl80211 family name must
be included as well.
It might be also beneficial to include RTNL messages related to the
wireless network interfaces. Currently these are all filtered out.
Priority: Medium
Complexity: C2
- Print the 'group' of the decoded message
Whenever an event / message is received, iwmon should print the genl
group of the message (e.g. mlme, scan, config, regulatory). This will
make it easier to add handling of such events / commands inside iwd.
Priority: Medium
Complexity: C1
Wireless simulator
==================
- Add support for builtin wireless access point emulator
When creating a pair of mac80211_hwsim radios, allow one to operate as
access point. The hwsim utility will emulate the access point on the
second interface for as long as it is running. Which means that from
the first interface it is possible to scan and connect to this access
point using standard wireless tools (including iwd and iwctl).
Code for the AP mode can be shared from iwd feature for access point
operation once that has been implemented.
Priority: Medium
Complexity: C8
Wireless daemon
===============
- Add support for EAP based authentication and key generation
Provide full EAP support for enterprise wireless. However it should be
possible to build wireless daemon without EAP support.
It is also intended that this EAP code can be utilized as shared library
and be beneficial for systemd-networkd for wired authentication.
Priority: Medium
Complexity: C8
- Create a document to doc describing general architecture and relation
between different objects.
Current understanding is that diffrent relation between elements
looks probably like this:
Manager->Wiphy->NetDevice->AvailableNetwork
Wiphy is the actual physical device, NetDevice is the network interface
and AvailableNetwork is {SSID, security} combo. Each network can have
a list of BSSs.
Consider also multi-wifi device scenarios. If user has multiple USB
WiFi dongles and switches between those cards, all previously configured
networks should still be available.
Priority: High
Complexity: C2
- Allow Disconnect() method call to abort pending connections.
If we are in the process of connecting to an AP, the connection attempt
should be aborted and a de-authentication procedure should be triggered.
Priority: High
Complexity: C1
Owner: Andrew Zaborowski <andrew.zaborowski@intel.com>
- Add unit test data with 2nd RSNE in Authenticator 3/4 message
The specification allows the AP to send a second RSN element in its 4-way
handshake message 3/4. Find some test data for this case and create a unit
test case.
Priority: Low
Complexity: C1
- Handle "Use group cipher suite" option for pairwise ciphers
If the AP specifies "Use group cipher suite" as its only pairwise suite, then
handle this appropriately inside EAPoL handshaking code. The install_gtk
callback might need to be modified to handle this case.
Priority: Low
Complexity: C1
- Handle "Group addressed traffic not allowed" option for group ciphers
If the AP specifies "Group addressed traffic not allowed" as its group cipher
suite, then make sure that install_gtk callback is not used.
Priority: Low
Complexity: C1
- Add support for PMK Caching from 802.11-2007. This is sometimes referred to
as "fast, secure roam back". Essentially the client caches PMKIDs generated
when connecting to various APs. If the client roams back to an AP that has
already been connected to, and the PMK is cached by both, then the 802.1X
exchange can be skipped.
Priority: Low
Complexity: C4
- Add support for Pre-authentication from 802.11-2007. This allows the client
to pre-authenticate to a target AP. The 802.1X exchange is done through the
currently connected AP, but with the target AP as the 'authenticator'. The
process creates a new PMK which is cached by both the target AP and the
client. The client can then roam onto the target AP using a process similar
to PMK caching outlined above.
Priority: Low
Complexity: C4
- Add support for Opportunistic Key Caching (OKC). This is not defined by
any 802.11 standards, but is made available by major vendors such as Cisco
and Microsoft.
Priority: Low
Complexity: C4
- Add support for Direct Link Setup from 802.11e.
Priority: Low
Complexity: C8
- Add support for Automatic Power Save Delivery (APSD). This includes
scheduled (s-APSD) and unscheduled (u-APSD). This will require rudimentary
support of WMM protocol. This feature was introduced in 802.11e.
Priority: Low
Complexity: C4
- Add support for Radio Resource Management from 802.11k. If supported by the
AP, allows the client to optimize its scanning strategy by obtaining the
channels of nearby APs that are part of the same ESS as the currently
connected AP. This requires the client to enable 'RM Enabled Capabilities'
element (section 8.4.2.47) appropriately, and send appropriately formatted
Action frames to request relevant reports from the AP. The reports from the
AP will be received via Management frames and contain multiple Neighbor
Report elements (8.4.2.39). Also examine how AP Channel Report element
(8.4.2.38) is used.
Priority: Medium
Complexity: C4
- Add support for Fast BSS Transition (FT) from 802.11r. There are a couple
of modes for FT supported. 'FT over DS' and 'FT over air'. In FT over DS,
action frames can be used to perform a 4-way handshake to the target AP
while still connected to the current AP. FT over air folds 4-way handshake
messages into authenticate/authenticate response and
reassociate/reassociate response messages.
In theory, it is possible to use FT with PSK networks.
Priority: Medium
Complexity: C8
- Add support for 802.11u. This is required for Passpoint 2.0 support.
Priority: Low
Complexity: C8
- Add support for Wireless Network Management (WNM) from 802.11v. Parts of
this are needed for Passpoint support.
Priority: Low
Complexity: C8
- Add support for Protected Management Frames (PMF) from 802.11w. This allows
the management frames to be encrypted and thus secured. In particular, this
is extremely important for 802.11r (FT) and 802.11k (RRM) support.
Priority: High
Complexity: C4
- Add support for Tunneled Direct Link Setup (TDLS) from 802.11z.
Priority: Medium
Complexity: C8
Client
======
- Implement dbus-based command-line client for iwd using ell supporting at least
the following: Scanning, Connect, Disconnect and agent functionality
Priority: High
Complexity: C2