mirror of
https://git.kernel.org/pub/scm/network/wireless/iwd.git
synced 2024-11-02 18:19:23 +01:00
94cdbb4669
This serializes a scan_freq_set into a uint32_t array.
506 lines
10 KiB
C
506 lines
10 KiB
C
/*
|
|
*
|
|
* Wireless daemon for Linux
|
|
*
|
|
* Copyright (C) 2014-2019 Intel Corporation. All rights reserved.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/time.h>
|
|
#include <netinet/in.h>
|
|
#include <arpa/inet.h>
|
|
|
|
#include <ell/ell.h>
|
|
|
|
#include "ell/useful.h"
|
|
#include "src/util.h"
|
|
#include "src/band.h"
|
|
|
|
const char *util_ssid_to_utf8(size_t len, const uint8_t *ssid)
|
|
{
|
|
static char buf[3* 32 + 1];
|
|
size_t i = 0, pos = 0;
|
|
const uint8_t *start = ssid, *end;
|
|
|
|
memset(buf, 0, sizeof(buf));
|
|
|
|
if (len > 32)
|
|
goto no_ssid;
|
|
|
|
while (i < len && !ssid[i])
|
|
i++;
|
|
|
|
if (i == len)
|
|
goto no_ssid;
|
|
|
|
i = len;
|
|
|
|
while (i && (!l_utf8_validate((const char *)start, i,
|
|
(const char **)&end))) {
|
|
const char replacement[] = { 0xEF, 0xBF, 0xBD };
|
|
int bytes = end - start;
|
|
|
|
memcpy(&buf[pos], start, bytes);
|
|
pos += bytes;
|
|
|
|
memcpy(&buf[pos], replacement, sizeof(replacement));
|
|
pos += sizeof(replacement);
|
|
|
|
start = end + 1;
|
|
i -= (bytes + 1);
|
|
}
|
|
|
|
if (i) {
|
|
memcpy(&buf[pos], start, i);
|
|
pos += i;
|
|
}
|
|
|
|
no_ssid:
|
|
buf[pos] = '\0';
|
|
|
|
return buf;
|
|
}
|
|
|
|
bool util_ssid_is_utf8(size_t len, const uint8_t *ssid)
|
|
{
|
|
if (len > 32)
|
|
return false;
|
|
|
|
return l_utf8_validate((const char *)ssid, len, NULL);
|
|
}
|
|
|
|
/*
|
|
* Checks whether this is a hidden SSID. Two conditions are checked:
|
|
* 1. If the SSID is length 0
|
|
* 2. If the SSID length > 0 and all bytes are 0
|
|
*
|
|
* The length is not sanitized so the caller must have sanitized the arguments
|
|
* beforehand.
|
|
*/
|
|
bool util_ssid_is_hidden(size_t len, const uint8_t *ssid)
|
|
{
|
|
if (!len)
|
|
return true;
|
|
|
|
return l_memeqzero(ssid, len);
|
|
}
|
|
|
|
const char *util_address_to_string(const uint8_t *addr)
|
|
{
|
|
static char str[18];
|
|
|
|
sprintf(str, "%02x:%02x:%02x:%02x:%02x:%02x",
|
|
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
|
|
|
|
return str;
|
|
}
|
|
|
|
bool util_string_to_address(const char *str, uint8_t *out_addr)
|
|
{
|
|
unsigned int i;
|
|
uint8_t addr[6];
|
|
|
|
if (!str)
|
|
return false;
|
|
|
|
if (strlen(str) != 17)
|
|
return false;
|
|
|
|
for (i = 0; i < 15; i += 3) {
|
|
if (!l_ascii_isxdigit(str[i]))
|
|
return false;
|
|
|
|
if (!l_ascii_isxdigit(str[i + 1]))
|
|
return false;
|
|
|
|
if (str[i + 2] != ':')
|
|
return false;
|
|
}
|
|
|
|
if (!l_ascii_isxdigit(str[i]))
|
|
return false;
|
|
|
|
if (!l_ascii_isxdigit(str[i + 1]))
|
|
return false;
|
|
|
|
if (sscanf(str, "%2hhx:%2hhx:%2hhx:%2hhx:%2hhx:%2hhx",
|
|
&addr[0], &addr[1], &addr[2],
|
|
&addr[3], &addr[4], &addr[5]) != 6)
|
|
return false;
|
|
|
|
memcpy(out_addr, addr, sizeof(addr));
|
|
|
|
return true;
|
|
}
|
|
|
|
bool util_is_group_address(const uint8_t *addr)
|
|
{
|
|
/* 802.11-2016 section 9.2.2 */
|
|
return test_bit(addr, 0);
|
|
}
|
|
|
|
bool util_is_broadcast_address(const uint8_t *addr)
|
|
{
|
|
/* 802.11-2016 section 9.2.4.3 */
|
|
static const uint8_t bcast_addr[6] = {
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
|
|
};
|
|
|
|
return !memcmp(addr, bcast_addr, 6);
|
|
}
|
|
|
|
bool util_is_valid_sta_address(const uint8_t *addr)
|
|
{
|
|
return !util_is_broadcast_address(addr) && !util_is_group_address(addr);
|
|
}
|
|
|
|
/* This function assumes that identity is not bigger than 253 bytes */
|
|
const char *util_get_domain(const char *identity)
|
|
{
|
|
static char domain[256];
|
|
const char *c;
|
|
|
|
memset(domain, 0, sizeof(domain));
|
|
|
|
for (c = identity; *c; c++) {
|
|
switch (*c) {
|
|
case '\\':
|
|
memcpy(domain, identity, c - identity);
|
|
return domain;
|
|
case '@':
|
|
l_strlcpy(domain, c + 1, sizeof(domain));
|
|
return domain;
|
|
default:
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return identity;
|
|
}
|
|
|
|
/* This function assumes that identity is not bigger than 253 bytes */
|
|
const char *util_get_username(const char *identity)
|
|
{
|
|
static char username[256];
|
|
const char *c;
|
|
|
|
memset(username, 0, sizeof(username));
|
|
|
|
for (c = identity; *c; c++) {
|
|
switch (*c) {
|
|
case '\\':
|
|
l_strlcpy(username, c + 1, sizeof(username));
|
|
return username;
|
|
case '@':
|
|
memcpy(username, identity, c - identity);
|
|
return username;
|
|
default:
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return identity;
|
|
}
|
|
|
|
static bool is_prefix_valid(uint32_t ip, unsigned int prefix)
|
|
{
|
|
int i;
|
|
|
|
for (i = 31 - prefix; i >= 0; i--) {
|
|
if (ip & (1 << i))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Parse a prefix notation IP string (e.g. A.B.C.D/E) into an IP range and
|
|
* netmask. All returned IP addresses/mask will be in host order. The start/end
|
|
* IP will only include the usable IP range where the last octet is not zero or
|
|
* 255.
|
|
*/
|
|
bool util_ip_prefix_tohl(const char *ip, uint8_t *prefix_out,
|
|
uint32_t *start_out, uint32_t *end_out,
|
|
uint32_t *mask_out)
|
|
{
|
|
struct in_addr ia;
|
|
int i;
|
|
unsigned int prefix = 0;
|
|
char no_prefix[INET_ADDRSTRLEN];
|
|
char *endp;
|
|
uint32_t start_ip;
|
|
uint32_t end_ip;
|
|
uint32_t netmask = 0xffffffff;
|
|
|
|
/*
|
|
* Only iterate over the max length of an IP in case of invalid long
|
|
* inputs.
|
|
*/
|
|
for (i = 0; i < INET_ADDRSTRLEN && ip[i] != '\0'; i++) {
|
|
/* Found '/', check the next byte exists and parse prefix */
|
|
if (ip[i] == '/' && ip[i + 1] != '\0') {
|
|
prefix = strtoul(ip + i + 1, &endp, 10);
|
|
if (*endp != '\0')
|
|
return false;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (prefix < 1 || prefix > 31)
|
|
return false;
|
|
|
|
/* 'i' will be at most INET_ADDRSTRLEN - 1 */
|
|
l_strlcpy(no_prefix, ip, i + 1);
|
|
|
|
/* Check if IP preceeding prefix is valid */
|
|
if (inet_pton(AF_INET, no_prefix, &ia) != 1 || ia.s_addr == 0)
|
|
return false;
|
|
|
|
start_ip = ntohl(ia.s_addr);
|
|
|
|
if (!is_prefix_valid(start_ip, prefix))
|
|
return false;
|
|
|
|
/* Usable range is start + 1 .. end - 1 */
|
|
start_ip += 1;
|
|
|
|
/* Calculate end IP and netmask */
|
|
end_ip = start_ip;
|
|
for (i = 31 - prefix; i >= 0; i--) {
|
|
end_ip |= (1 << i);
|
|
netmask &= ~(1 << i);
|
|
}
|
|
|
|
end_ip -= 1;
|
|
|
|
if (prefix_out)
|
|
*prefix_out = prefix;
|
|
|
|
if (start_out)
|
|
*start_out = start_ip;
|
|
|
|
if (end_out)
|
|
*end_out = end_ip;
|
|
|
|
if (mask_out)
|
|
*mask_out = netmask;
|
|
|
|
return true;
|
|
}
|
|
|
|
struct scan_freq_set {
|
|
uint16_t channels_2ghz;
|
|
struct l_uintset *channels_5ghz;
|
|
};
|
|
|
|
struct scan_freq_set *scan_freq_set_new(void)
|
|
{
|
|
struct scan_freq_set *ret = l_new(struct scan_freq_set, 1);
|
|
|
|
/* 802.11-2012, 8.4.2.10 hints that 200 is the largest channel number */
|
|
ret->channels_5ghz = l_uintset_new_from_range(1, 200);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void scan_freq_set_free(struct scan_freq_set *freqs)
|
|
{
|
|
l_uintset_free(freqs->channels_5ghz);
|
|
l_free(freqs);
|
|
}
|
|
|
|
bool scan_freq_set_add(struct scan_freq_set *freqs, uint32_t freq)
|
|
{
|
|
enum band_freq band;
|
|
uint8_t channel;
|
|
|
|
channel = band_freq_to_channel(freq, &band);
|
|
if (!channel)
|
|
return false;
|
|
|
|
switch (band) {
|
|
case BAND_FREQ_2_4_GHZ:
|
|
freqs->channels_2ghz |= 1 << (channel - 1);
|
|
return true;
|
|
case BAND_FREQ_5_GHZ:
|
|
return l_uintset_put(freqs->channels_5ghz, channel);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool scan_freq_set_contains(const struct scan_freq_set *freqs, uint32_t freq)
|
|
{
|
|
enum band_freq band;
|
|
uint8_t channel;
|
|
|
|
channel = band_freq_to_channel(freq, &band);
|
|
if (!channel)
|
|
return false;
|
|
|
|
switch (band) {
|
|
case BAND_FREQ_2_4_GHZ:
|
|
return freqs->channels_2ghz & (1 << (channel - 1));
|
|
case BAND_FREQ_5_GHZ:
|
|
return l_uintset_contains(freqs->channels_5ghz, channel);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
uint32_t scan_freq_set_get_bands(struct scan_freq_set *freqs)
|
|
{
|
|
uint32_t bands = 0;
|
|
uint32_t max;
|
|
|
|
if (freqs->channels_2ghz)
|
|
bands |= BAND_FREQ_2_4_GHZ;
|
|
|
|
max = l_uintset_get_max(freqs->channels_5ghz);
|
|
|
|
if (l_uintset_find_min(freqs->channels_5ghz) <= max)
|
|
bands |= BAND_FREQ_5_GHZ;
|
|
|
|
return bands;
|
|
}
|
|
|
|
static void scan_channels_5ghz_add(uint32_t channel, void *user_data)
|
|
{
|
|
struct l_uintset *to = user_data;
|
|
|
|
l_uintset_put(to, channel);
|
|
}
|
|
|
|
void scan_freq_set_merge(struct scan_freq_set *to,
|
|
const struct scan_freq_set *from)
|
|
{
|
|
to->channels_2ghz |= from->channels_2ghz;
|
|
|
|
l_uintset_foreach(from->channels_5ghz, scan_channels_5ghz_add,
|
|
to->channels_5ghz);
|
|
}
|
|
|
|
bool scan_freq_set_isempty(const struct scan_freq_set *set)
|
|
{
|
|
if (set->channels_2ghz == 0 && l_uintset_isempty(set->channels_5ghz))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
struct channels_5ghz_foreach_data {
|
|
scan_freq_set_func_t func;
|
|
void *user_data;
|
|
};
|
|
|
|
static void scan_channels_5ghz_frequency(uint32_t channel, void *user_data)
|
|
{
|
|
const struct channels_5ghz_foreach_data *channels_5ghz_data = user_data;
|
|
uint32_t freq;
|
|
|
|
freq = band_channel_to_freq(channel, BAND_FREQ_5_GHZ);
|
|
|
|
channels_5ghz_data->func(freq, channels_5ghz_data->user_data);
|
|
}
|
|
|
|
void scan_freq_set_foreach(const struct scan_freq_set *freqs,
|
|
scan_freq_set_func_t func, void *user_data)
|
|
{
|
|
struct channels_5ghz_foreach_data data = { };
|
|
uint8_t channel;
|
|
uint32_t freq;
|
|
|
|
if (unlikely(!freqs || !func))
|
|
return;
|
|
|
|
data.func = func;
|
|
data.user_data = user_data;
|
|
|
|
l_uintset_foreach(freqs->channels_5ghz, scan_channels_5ghz_frequency,
|
|
&data);
|
|
|
|
if (!freqs->channels_2ghz)
|
|
return;
|
|
|
|
for (channel = 1; channel <= 14; channel++) {
|
|
if (freqs->channels_2ghz & (1 << (channel - 1))) {
|
|
freq = band_channel_to_freq(channel, BAND_FREQ_2_4_GHZ);
|
|
|
|
func(freq, user_data);
|
|
}
|
|
}
|
|
}
|
|
|
|
void scan_freq_set_constrain(struct scan_freq_set *set,
|
|
const struct scan_freq_set *constraint)
|
|
{
|
|
struct l_uintset *intersection;
|
|
|
|
intersection = l_uintset_intersect(constraint->channels_5ghz,
|
|
set->channels_5ghz);
|
|
if (!intersection)
|
|
/* This shouldn't ever be the case. */
|
|
return;
|
|
|
|
l_uintset_free(set->channels_5ghz);
|
|
set->channels_5ghz = intersection;
|
|
|
|
set->channels_2ghz &= constraint->channels_2ghz;
|
|
}
|
|
|
|
static void add_foreach(uint32_t freq, void *user_data)
|
|
{
|
|
uint32_t **list = user_data;
|
|
|
|
**list = freq;
|
|
|
|
*list = *list + 1;
|
|
}
|
|
|
|
uint32_t *scan_freq_set_to_fixed_array(const struct scan_freq_set *set,
|
|
size_t *len_out)
|
|
{
|
|
uint8_t count = 0;
|
|
uint32_t *freqs;
|
|
|
|
count = __builtin_popcount(set->channels_2ghz) +
|
|
l_uintset_size(set->channels_5ghz);
|
|
|
|
if (!count)
|
|
return NULL;
|
|
|
|
freqs = l_new(uint32_t, count);
|
|
|
|
scan_freq_set_foreach(set, add_foreach, &freqs);
|
|
|
|
/* Move pointer back to start of list */
|
|
freqs -= count;
|
|
|
|
*len_out = count;
|
|
|
|
return freqs;
|
|
}
|