3
0
mirror of https://git.kernel.org/pub/scm/network/wireless/iwd.git synced 2025-01-22 03:14:05 +01:00
iwd/src/p2p.c
James Prestwood b7e2a98628 ap: add error out param to ap_start
This allows the caller to extract a bit more information about what
exactly went wrong.
2020-10-26 14:30:34 -05:00

4840 lines
134 KiB
C

/*
*
* Wireless daemon for Linux
*
* Copyright (C) 2020 Intel Corporation. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <linux/rtnetlink.h>
#include <linux/if_ether.h>
#include <unistd.h>
#include <limits.h>
#include <stdio.h>
#include <time.h>
#include <errno.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <ell/ell.h>
#include "linux/nl80211.h"
#include "src/missing.h"
#include "src/iwd.h"
#include "src/wiphy.h"
#include "src/scan.h"
#include "src/p2putil.h"
#include "src/ie.h"
#include "src/util.h"
#include "src/dbus.h"
#include "src/netdev.h"
#include "src/mpdu.h"
#include "src/common.h"
#include "src/wsc.h"
#include "src/handshake.h"
#include "src/crypto.h"
#include "src/module.h"
#include "src/frame-xchg.h"
#include "src/nl80211util.h"
#include "src/netconfig.h"
#include "src/ap.h"
#include "src/p2p.h"
struct p2p_device {
uint64_t wdev_id;
uint8_t addr[6];
struct l_genl_family *nl80211;
struct wiphy *wiphy;
unsigned int connections_left;
struct p2p_capability_attr capability;
struct p2p_device_info_attr device_info;
uint32_t start_stop_cmd_id;
l_dbus_property_complete_cb_t pending_complete;
struct l_dbus_message *pending_message;
uint8_t listen_country[3];
uint8_t listen_oper_class;
uint32_t listen_channel;
unsigned int scan_interval;
time_t next_scan_ts;
struct l_timeout *scan_timeout;
uint32_t scan_id;
unsigned int chans_per_scan;
unsigned int scan_chan_idx;
uint64_t roc_cookie;
unsigned int listen_duration;
struct l_queue *discovery_users;
struct l_queue *peer_list;
unsigned int next_tie_breaker;
struct p2p_peer *conn_peer;
uint16_t conn_config_method;
char *conn_pin;
uint8_t conn_addr[6];
uint16_t conn_password_id;
unsigned int conn_num;
struct scan_bss *conn_wsc_bss;
struct netdev *conn_netdev;
uint32_t conn_netdev_watch_id;
uint32_t conn_new_intf_cmd_id;
struct wsc_enrollee *conn_enrollee;
struct netconfig *conn_netconfig;
struct l_settings *conn_netconfig_settings;
struct l_timeout *conn_dhcp_timeout;
char *conn_peer_ip;
struct p2p_wfd_properties *conn_own_wfd;
uint8_t conn_psk[32];
int conn_retry_count;
struct l_timeout *conn_peer_config_timeout;
unsigned long conn_config_delay;
struct l_timeout *conn_go_neg_req_timeout;
uint8_t conn_go_dialog_token;
unsigned int conn_go_scan_retry;
uint32_t conn_go_oper_freq;
uint8_t conn_peer_interface_addr[6];
struct p2p_capability_attr conn_peer_capability;
struct p2p_group_id_attr go_group_id;
struct ap_state *group;
bool enabled : 1;
bool have_roc_cookie : 1;
/*
* We need to track @disconnecting because while a connect action is
* always triggered by a DBus message, meaning that @pending_message
* is going to be non-NULL, a disconnect may also be a result of an
* error at a layer higher than netdev and may last until
* netdev_disconnect, or similar, finishes.
*/
bool disconnecting : 1;
bool is_go : 1;
bool conn_go_tie_breaker : 1;
bool conn_peer_added : 1;
};
struct p2p_discovery_user {
char *client;
struct p2p_device *dev;
unsigned int disconnect_watch;
};
struct p2p_peer {
struct scan_bss *bss;
struct p2p_device *dev;
struct wsc_dbus wsc;
char *name;
struct wsc_primary_device_type primary_device_type;
const uint8_t *device_addr;
struct p2p_wfd_properties *wfd;
/* Whether peer is currently a GO */
bool group;
};
struct p2p_wfd_properties {
bool available;
bool source;
bool sink;
uint16_t port;
uint16_t throughput;
bool audio;
bool uibc;
bool cp;
bool r2;
};
static struct l_queue *p2p_device_list;
static struct l_settings *p2p_dhcp_settings;
static struct p2p_wfd_properties *p2p_own_wfd;
static unsigned int p2p_wfd_disconnect_watch;
/*
* For now we only scan the common 2.4GHz channels, to be replaced with
* a query of actual allowed channels per band and reg-domain.
*/
static const int channels_social[] = { 1, 6, 11 };
static const int channels_scan_2_4_other[] = { 2, 3, 4, 5, 7, 8, 9, 10 };
/*
* The client side generally receives more testing and we know of fewer
* problematic drivers so set a low default Group Owner intent value.
*/
#define P2P_GO_INTENT 2
enum {
FRAME_GROUP_DEFAULT = 0,
FRAME_GROUP_LISTEN,
FRAME_GROUP_CONNECT,
};
static bool p2p_device_match(const void *a, const void *b)
{
const struct p2p_device *dev = a;
const uint64_t *wdev_id = b;
return dev->wdev_id == *wdev_id;
}
struct p2p_device *p2p_device_find(uint64_t wdev_id)
{
return l_queue_find(p2p_device_list, p2p_device_match, &wdev_id);
}
static const char *p2p_device_get_path(const struct p2p_device *dev)
{
return wiphy_get_path(dev->wiphy);
}
static bool p2p_discovery_user_match(const void *a, const void *b)
{
const struct p2p_discovery_user *user = a;
return !strcmp(user->client, b);
}
static void p2p_discovery_user_free(void *data)
{
struct p2p_discovery_user *user = data;
if (user->disconnect_watch)
l_dbus_remove_watch(dbus_get_bus(), user->disconnect_watch);
l_free(user->client);
l_free(user);
}
static inline bool p2p_peer_operational(struct p2p_peer *peer)
{
return peer && peer->dev->conn_netdev && !peer->dev->disconnecting &&
((!peer->dev->is_go && !peer->dev->conn_wsc_bss) ||
(peer->dev->is_go && peer->dev->conn_peer_added));
}
static bool p2p_peer_match(const void *a, const void *b)
{
const struct p2p_peer *peer = a;
const uint8_t *addr = b;
return !memcmp(peer->bss->addr, addr, 6);
}
static const char *p2p_peer_get_path(const struct p2p_peer *peer)
{
static char path[256];
snprintf(path, sizeof(path),
"%s/p2p_peers/%02x_%02x_%02x_%02x_%02x_%02x",
p2p_device_get_path(peer->dev),
peer->bss->addr[0], peer->bss->addr[1],
peer->bss->addr[2], peer->bss->addr[3],
peer->bss->addr[4], peer->bss->addr[5]);
return path;
}
static void p2p_peer_free(void *user_data)
{
struct p2p_peer *peer = user_data;
scan_bss_free(peer->bss);
l_free(peer->wfd);
l_free(peer->name);
l_free(peer);
}
static void p2p_peer_put(void *user_data)
{
struct p2p_peer *peer = user_data;
/*
* Removes all interfaces with one call, no need to call
* wsc_dbus_remove_interface.
*/
l_dbus_unregister_object(dbus_get_bus(), p2p_peer_get_path(peer));
p2p_peer_free(peer);
}
static void p2p_device_discovery_start(struct p2p_device *dev);
static void p2p_device_discovery_stop(struct p2p_device *dev);
/* Callers should reserve 32 bytes */
static size_t p2p_build_wfd_ie(const struct p2p_wfd_properties *wfd,
uint8_t *buf)
{
/*
* Wi-Fi Display Technical Specification v2.1.0
* Probe req: Section 5.2.2
* Negotiation req: Section 5.2.6.1
* Negotiation resp: Section 5.2.6.2
* Negotiation confirm: Section 5.2.6.3
* Provision disc req: Section 5.2.6.6
*/
size_t size = 0;
uint16_t dev_type =
wfd->source ? (wfd->sink ? WFD_DEV_INFO_TYPE_DUAL_ROLE :
WFD_DEV_INFO_TYPE_SOURCE) :
WFD_DEV_INFO_TYPE_PRIMARY_SINK;
buf[size++] = IE_TYPE_VENDOR_SPECIFIC;
size++; /* IE Data length */
buf[size++] = wifi_alliance_oui[0];
buf[size++] = wifi_alliance_oui[1];
buf[size++] = wifi_alliance_oui[2];
buf[size++] = 0x0a; /* OUI Type: WFD */
buf[size++] = WFD_SUBELEM_WFD_DEVICE_INFORMATION;
buf[size++] = 0; /* WFD Subelement length */
buf[size++] = 6;
buf[size++] = 0x00; /* WFD Device Information bitmap: */
buf[size++] = dev_type |
(wfd->available ? WFD_DEV_INFO_SESSION_AVAILABLE :
WFD_DEV_INFO_SESSION_NOT_AVAILABLE) |
(wfd->audio ? 0 : WFD_DEV_INFO_NO_AUDIO_AT_PRIMARY_SINK) |
(wfd->cp ? WFD_DEV_INFO_CONTENT_PROTECTION_SUPPORT : 0);
buf[size++] = wfd->port >> 8; /* Session Mgmt Ctrl Port */
buf[size++] = wfd->port & 255;
buf[size++] = wfd->throughput >> 8; /* Maximum throughput */
buf[size++] = wfd->throughput & 255;
if (wfd->uibc) {
buf[size++] = WFD_SUBELEM_EXTENDED_CAPABILITY;
buf[size++] = 0; /* WFD Subelement length */
buf[size++] = 2;
buf[size++] = 0x00; /* WFD Extended Capability Bitmap: */
buf[size++] = 0x01; /* UIBC Support */
}
if (wfd->r2) {
buf[size++] = WFD_SUBELEM_R2_DEVICE_INFORMATION;
buf[size++] = 0; /* WFD Subelement length */
buf[size++] = 2;
buf[size++] = 0x00; /* WFD R2 Device Information bitmap: */
buf[size++] = wfd->source ? wfd->sink ? 3 : 0 : 1;
}
buf[1] = size - 2;
return size;
}
/* TODO: convert to iovecs */
static uint8_t *p2p_build_scan_ies(struct p2p_device *dev, uint8_t *buf,
size_t buf_len, size_t *out_len)
{
struct p2p_probe_req p2p_info = {};
struct wsc_probe_request wsc_info = {};
L_AUTO_FREE_VAR(uint8_t *, p2p_ie) = NULL;
size_t p2p_ie_size;
uint8_t *wsc_data;
size_t wsc_data_size;
L_AUTO_FREE_VAR(uint8_t *, wsc_ie) = NULL;
size_t wsc_ie_size;
uint8_t wfd_ie[32];
size_t wfd_ie_size;
const uint8_t *addr;
p2p_info.capability = dev->capability;
memcpy(p2p_info.listen_channel.country, dev->listen_country, 3);
p2p_info.listen_channel.oper_class = dev->listen_oper_class;
p2p_info.listen_channel.channel_num = dev->listen_channel;
/*
* Note that through an attribute we can also request Group Owners
* to send us info on clients within their groups and could also
* show those on D-Bus. Doesn't seem useful at this time but may
* be desired at some point.
*/
p2p_ie = p2p_build_probe_req(&p2p_info, &p2p_ie_size);
if (!p2p_ie)
return NULL;
wsc_info.version2 = true;
wsc_info.request_type = WSC_REQUEST_TYPE_ENROLLEE_INFO;
wsc_info.config_methods = dev->device_info.wsc_config_methods;
/*
* If we're doing the provisioning scan, we need to use the same UUID-E
* that we'll use in the WSC enrollee registration protocol because the
* GO might validate it.
*/
addr = dev->conn_peer ? dev->conn_addr : dev->addr;
if (!wsc_uuid_from_addr(addr, wsc_info.uuid_e))
return NULL;
wsc_info.primary_device_type = dev->device_info.primary_device_type;
wsc_info.rf_bands = WSC_RF_BAND_2_4_GHZ;
wsc_info.association_state = WSC_ASSOCIATION_STATE_NOT_ASSOCIATED;
wsc_info.configuration_error = WSC_CONFIGURATION_ERROR_NO_ERROR;
wsc_info.device_password_id = WSC_DEVICE_PASSWORD_ID_DEFAULT;
l_strlcpy(wsc_info.device_name, dev->device_info.device_name,
sizeof(wsc_info.device_name));
wsc_data = wsc_build_probe_request(&wsc_info, &wsc_data_size);
if (!wsc_data)
return NULL;
wsc_ie = ie_tlv_encapsulate_wsc_payload(wsc_data, wsc_data_size,
&wsc_ie_size);
l_free(wsc_data);
if (!wsc_ie)
return NULL;
if (p2p_own_wfd)
wfd_ie_size = p2p_build_wfd_ie(p2p_own_wfd, wfd_ie);
else
wfd_ie_size = 0;
if (buf_len < wsc_ie_size + p2p_ie_size + wfd_ie_size)
return NULL;
memcpy(buf + 0, wsc_ie, wsc_ie_size);
memcpy(buf + wsc_ie_size, p2p_ie, p2p_ie_size);
if (wfd_ie_size)
memcpy(buf + wsc_ie_size + p2p_ie_size, wfd_ie, wfd_ie_size);
*out_len = wsc_ie_size + p2p_ie_size + wfd_ie_size;
return buf;
}
static void p2p_connection_reset(struct p2p_device *dev)
{
struct p2p_peer *peer = dev->conn_peer;
if (!peer)
return;
/*
* conn_peer is currently not refcounted and we make sure it's always
* on the dev->peer_list so we can just drop our reference. Since we
* may not have been scanning for a while, don't drop the peer object
* now just because it's not been seen in scan results recently, its
* age will be checked on the next scan.
*/
dev->conn_peer = NULL;
dev->disconnecting = false;
dev->connections_left++;
if (dev->conn_pin) {
explicit_bzero(dev->conn_pin, strlen(dev->conn_pin));
l_free(dev->conn_pin);
dev->conn_pin = NULL;
}
l_dbus_property_changed(dbus_get_bus(), p2p_device_get_path(dev),
IWD_P2P_INTERFACE, "AvailableConnections");
l_timeout_remove(dev->conn_peer_config_timeout);
l_timeout_remove(dev->conn_go_neg_req_timeout);
l_timeout_remove(dev->conn_dhcp_timeout);
if (dev->conn_netconfig) {
netconfig_destroy(dev->conn_netconfig);
dev->conn_netconfig = NULL;
l_settings_free(dev->conn_netconfig_settings);
l_free(dev->conn_peer_ip);
dev->conn_peer_ip = NULL;
}
if (dev->conn_new_intf_cmd_id)
/*
* Note this may result in the interface being created
* and unused, we don't have its ifindex or wdev_id here
* to be able to delete it. Could use a separate netlink
* socket for each connection or disallowing .Disconnect
* calls while this command runs.
*/
l_genl_family_cancel(dev->nl80211, dev->conn_new_intf_cmd_id);
if (dev->conn_enrollee)
wsc_enrollee_cancel(dev->conn_enrollee, false);
if (dev->group) {
ap_free(dev->group);
dev->group = NULL;
dev->conn_peer_added = false;
}
dev->capability.group_caps = 0;
if (dev->conn_netdev) {
struct l_genl_msg *msg;
uint64_t wdev_id = netdev_get_wdev_id(dev->conn_netdev);
msg = l_genl_msg_new(NL80211_CMD_DEL_INTERFACE);
l_genl_msg_append_attr(msg, NL80211_ATTR_WDEV, 8, &wdev_id);
if (!l_genl_family_send(dev->nl80211, msg, NULL, NULL, NULL)) {
l_genl_msg_unref(msg);
l_error("Sending DEL_INTERFACE for %s failed",
netdev_get_name(dev->conn_netdev));
}
netdev_destroy(dev->conn_netdev);
dev->conn_netdev = NULL;
}
/*
* Removing the netdev above makes sure that both the WSC connection
* and the final WPA2 connection (wsc.c and netdev.c) no longer need
* the bss so we can free it now -- if it wasn't freed as a result
* of wsc_enrollee_cancel or netdev_destroy triggering
* p2p_peer_provision_done in the first place.
*/
if (dev->conn_wsc_bss) {
scan_bss_free(dev->conn_wsc_bss);
dev->conn_wsc_bss = NULL;
}
netdev_watch_remove(dev->conn_netdev_watch_id);
frame_watch_group_remove(dev->wdev_id, FRAME_GROUP_CONNECT);
frame_xchg_stop_wdev(dev->wdev_id);
if (!dev->enabled || (dev->enabled && dev->start_stop_cmd_id)) {
/*
* The device has been disabled in the mean time, all peers
* have been removed except this one. Now it's safe to
* drop this peer from the scan results too.
*/
l_queue_destroy(dev->peer_list, p2p_peer_put);
dev->peer_list = NULL;
}
if (dev->conn_own_wfd) {
l_free(dev->conn_own_wfd);
dev->conn_own_wfd = NULL;
if (p2p_own_wfd)
p2p_own_wfd->available = true;
}
explicit_bzero(dev->conn_psk, 32);
dev->conn_retry_count = 0;
dev->is_go = false;
if (dev->enabled && !dev->start_stop_cmd_id &&
!l_queue_isempty(dev->discovery_users))
p2p_device_discovery_start(dev);
}
static void p2p_connect_failed(struct p2p_device *dev)
{
struct p2p_peer *peer = dev->conn_peer;
if (!peer)
return;
/* Are we in the scan for the WSC provision bss */
if (dev->scan_id)
scan_cancel(dev->wdev_id, dev->scan_id);
if (l_queue_isempty(dev->discovery_users))
p2p_device_discovery_stop(dev);
if (peer->wsc.pending_connect)
dbus_pending_reply(&peer->wsc.pending_connect,
dbus_error_failed(peer->wsc.pending_connect));
p2p_connection_reset(dev);
}
static void p2p_peer_frame_xchg(struct p2p_peer *peer, struct iovec *tx_body,
const uint8_t *bssid,
unsigned int retry_interval,
unsigned int resp_timeout,
unsigned int retries_on_ack, bool own_channel,
uint32_t group_id, frame_xchg_cb_t cb, ...)
{
struct p2p_device *dev = peer->dev;
struct iovec *frame;
const struct iovec *iov;
struct mmpdu_header *header;
uint8_t header_buf[32] __attribute__ ((aligned));
int iov_cnt;
uint32_t freq;
va_list args;
/* Header */
memset(header_buf, 0, sizeof(header_buf));
header = (void *) header_buf;
header->fc.protocol_version = 0;
header->fc.type = MPDU_TYPE_MANAGEMENT;
header->fc.subtype = MPDU_MANAGEMENT_SUBTYPE_ACTION;
/* Section 2.4.3 */
memcpy(header->address_1, peer->device_addr, 6); /* DA */
memcpy(header->address_2, dev->addr, 6); /* SA */
memcpy(header->address_3, bssid, 6); /* BSSID */
for (iov = tx_body, iov_cnt = 0; iov->iov_base; iov++)
iov_cnt++;
frame = l_new(struct iovec, iov_cnt + 2);
frame[0].iov_base = header_buf;
frame[0].iov_len = (const uint8_t *) mmpdu_body(header) - header_buf;
memcpy(frame + 1, tx_body, sizeof(struct iovec) * iov_cnt);
freq = own_channel ?
scan_channel_to_freq(dev->listen_channel, SCAN_BAND_2_4_GHZ) :
peer->bss->frequency;
va_start(args, cb);
frame_xchg_startv(dev->wdev_id, frame, freq,
retry_interval, resp_timeout, retries_on_ack,
group_id, cb, dev, NULL, args);
va_end(args);
l_free(frame);
}
static const struct frame_xchg_prefix p2p_frame_go_neg_req = {
/* Management -> Public Action -> P2P -> GO Negotiation Request */
.data = (uint8_t []) {
0x04, 0x09, 0x50, 0x6f, 0x9a, 0x09,
P2P_ACTION_GO_NEGOTIATION_REQ
},
.len = 7,
};
static const struct frame_xchg_prefix p2p_frame_go_neg_resp = {
/* Management -> Public Action -> P2P -> GO Negotiation Response */
.data = (uint8_t []) {
0x04, 0x09, 0x50, 0x6f, 0x9a, 0x09,
P2P_ACTION_GO_NEGOTIATION_RESP
},
.len = 7,
};
static const struct frame_xchg_prefix p2p_frame_go_neg_confirm = {
/* Management -> Public Action -> P2P -> GO Negotiation Confirm */
.data = (uint8_t []) {
0x04, 0x09, 0x50, 0x6f, 0x9a, 0x09,
P2P_ACTION_GO_NEGOTIATION_CONFIRM
},
.len = 7,
};
static const struct frame_xchg_prefix p2p_frame_pd_resp = {
/* Management -> Public Action -> P2P -> Provision Discovery Response */
.data = (uint8_t []) {
0x04, 0x09, 0x50, 0x6f, 0x9a, 0x09,
P2P_ACTION_PROVISION_DISCOVERY_RESP
},
.len = 7,
};
static void p2p_peer_connect_done(struct p2p_device *dev)
{
struct p2p_peer *peer = dev->conn_peer;
if (!dev->is_go) {
/* We can free anything potentially needed for a retry */
scan_bss_free(dev->conn_wsc_bss);
dev->conn_wsc_bss = NULL;
explicit_bzero(dev->conn_psk, 32);
}
dbus_pending_reply(&peer->wsc.pending_connect,
l_dbus_message_new_method_return(
peer->wsc.pending_connect));
l_dbus_property_changed(dbus_get_bus(),
p2p_peer_get_path(dev->conn_peer),
IWD_P2P_PEER_INTERFACE, "Connected");
l_dbus_property_changed(dbus_get_bus(),
p2p_peer_get_path(dev->conn_peer),
IWD_P2P_PEER_INTERFACE,
"ConnectedInterface");
l_dbus_property_changed(dbus_get_bus(),
p2p_peer_get_path(dev->conn_peer),
IWD_P2P_PEER_INTERFACE,
"ConnectedIP");
}
static void p2p_group_event(enum ap_event_type type, const void *event_data,
void *user_data)
{
struct p2p_device *dev = user_data;
l_debug("type=%i", type);
switch (type) {
case AP_EVENT_START_FAILED:
case AP_EVENT_STOPPING:
dev->group = NULL;
p2p_connect_failed(dev);
break;
case AP_EVENT_STARTED:
ap_push_button(dev->group);
break;
case AP_EVENT_STATION_ADDED:
dev->conn_peer_added = true;
p2p_peer_connect_done(dev);
break;
case AP_EVENT_STATION_REMOVED:
dev->conn_peer_added = false;
p2p_connect_failed(dev);
break;
case AP_EVENT_REGISTRATION_START:
/* Don't validate the P2P IE or WFD IE at this stage */
break;
case AP_EVENT_REGISTRATION_SUCCESS:
dev->capability.group_caps &= ~P2P_GROUP_CAP_GROUP_FORMATION;
break;
case AP_EVENT_PBC_MODE_EXIT:
break;
};
}
static const struct ap_ops p2p_go_ops = {
.handle_event = p2p_group_event,
};
static void p2p_group_start(struct p2p_device *dev)
{
struct ap_config *config = l_new(struct ap_config, 1);
config->ssid = l_strdup(dev->go_group_id.ssid);
config->channel = dev->listen_channel;
config->wsc_name = l_strdup(dev->device_info.device_name);
config->wsc_primary_device_type = dev->device_info.primary_device_type;
config->no_cck_rates = true;
/*
* Section 3.2.1: "The Credentials for a P2P Group issued to a
* P2P Device shall: [...]
* - Use a Network Key Type of 64 Hex characters."
*
* This implies we have to send the PSK and not the passphrase to
* the WSC clients. For simplicity we directly generate random
* PSKs and don't currently respect the requirement to maintain
* a passphrase. We have no practical use for the passphrase and
* it's a little costlier to generate for the same cryptographic
* strength as the PSK.
*/
if (!l_getrandom(config->psk, 32)) {
l_error("l_getrandom() failed");
ap_config_free(config);
p2p_connect_failed(dev);
return;
}
/*
* Section 3.1.4.4: "It shall only allow association by the
* P2P Device that it is currently in Group Formation with."
*/
config->authorized_macs = l_memdup(dev->conn_peer_interface_addr, 6);
config->authorized_macs_num = 1;
dev->capability.group_caps |= P2P_GROUP_CAP_GO;
dev->capability.group_caps |= P2P_GROUP_CAP_GROUP_FORMATION;
dev->group = ap_start(dev->conn_netdev, config, &p2p_go_ops, NULL, dev);
if (!dev->group) {
ap_config_free(config);
p2p_connect_failed(dev);
return;
}
}
static void p2p_netconfig_event_handler(enum netconfig_event event,
void *user_data)
{
struct p2p_device *dev = user_data;
switch (event) {
case NETCONFIG_EVENT_CONNECTED:
l_timeout_remove(dev->conn_dhcp_timeout);
if (!dev->conn_peer_ip)
dev->conn_peer_ip = netconfig_get_dhcp_server_ipv4(
dev->conn_netconfig);
p2p_peer_connect_done(dev);
break;
default:
l_error("station: Unsupported netconfig event: %d.", event);
p2p_connect_failed(dev);
break;
}
}
static void p2p_dhcp_timeout(struct l_timeout *timeout, void *user_data)
{
struct p2p_device *dev = user_data;
l_debug("");
p2p_connect_failed(dev);
}
static void p2p_dhcp_timeout_destroy(void *user_data)
{
struct p2p_device *dev = user_data;
dev->conn_dhcp_timeout = NULL;
}
static void p2p_start_client_netconfig(struct p2p_device *dev)
{
uint32_t ifindex = netdev_get_ifindex(dev->conn_netdev);
unsigned int dhcp_timeout_val;
struct l_settings *settings;
if (!l_settings_get_uint(iwd_get_config(), "P2P", "DHCPTimeout",
&dhcp_timeout_val))
dhcp_timeout_val = 20; /* 20s default */
if (!dev->conn_netconfig) {
dev->conn_netconfig = netconfig_new(ifindex);
if (!dev->conn_netconfig) {
p2p_connect_failed(dev);
return;
}
}
settings = dev->conn_netconfig_settings ?: p2p_dhcp_settings;
netconfig_configure(dev->conn_netconfig, settings, dev->conn_addr,
p2p_netconfig_event_handler, dev);
dev->conn_dhcp_timeout = l_timeout_create(dhcp_timeout_val,
p2p_dhcp_timeout, dev,
p2p_dhcp_timeout_destroy);
}
static void p2p_netdev_connect_cb(struct netdev *netdev,
enum netdev_result result,
void *event_data, void *user_data)
{
struct p2p_device *dev = user_data;
struct p2p_peer *peer = dev->conn_peer;
l_debug("result: %i", result);
if (!peer->wsc.pending_connect || dev->disconnecting) {
/* Shouldn't happen except maybe in the ABORTED case */
return;
}
switch (result) {
case NETDEV_RESULT_OK:
p2p_start_client_netconfig(dev);
break;
case NETDEV_RESULT_AUTHENTICATION_FAILED:
case NETDEV_RESULT_ASSOCIATION_FAILED:
case NETDEV_RESULT_HANDSHAKE_FAILED:
case NETDEV_RESULT_KEY_SETTING_FAILED:
/*
* In the AUTHENTICATION_FAILED and ASSOCIATION_FAILED
* cases there's nothing to disconnect. In the
* HANDSHAKE_FAILED and KEY_SETTINGS failed cases
* netdev disconnects from the GO automatically and we are
* called already from within the disconnect callback,
* so we can directly free the netdev.
*/
p2p_connect_failed(dev);
break;
case NETDEV_RESULT_ABORTED:
/*
* This case can only be triggered by netdev_disconnect so
* we'll wait for its callback before freeing the netdev.
* We will also have already replied to
* @peer->wsc.pending_connect so we have nothing to do here.
*/
break;
}
}
static void p2p_try_connect_group(struct p2p_device *dev);
static void p2p_netdev_event(struct netdev *netdev, enum netdev_event event,
void *event_data, void *user_data)
{
struct p2p_device *dev = user_data;
const uint16_t *reason_code;
switch (event) {
case NETDEV_EVENT_DISCONNECT_BY_AP:
reason_code = event_data;
if (*reason_code == MMPDU_REASON_CODE_PREV_AUTH_NOT_VALID &&
dev->conn_wsc_bss &&
dev->conn_retry_count < 5) {
/*
* Sometimes a retry helps here, may be that we haven't
* waited long enough for the GO setup.
*/
l_timeout_remove(dev->conn_dhcp_timeout);
if (dev->conn_netconfig)
netconfig_reset(dev->conn_netconfig);
p2p_try_connect_group(dev);
break;
}
/* Fall through. */
case NETDEV_EVENT_DISCONNECT_BY_SME:
/*
* We may get a DISCONNECT_BY_SME as a result of a
* netdev_disconnect(). In that case let the callback handle
* that.
*/
if (dev->disconnecting)
break;
/* If we're not connected, .Connected is already False */
if (!p2p_peer_operational(dev->conn_peer)) {
p2p_connect_failed(dev);
break;
}
l_dbus_property_changed(dbus_get_bus(),
p2p_peer_get_path(dev->conn_peer),
IWD_P2P_PEER_INTERFACE, "Connected");
l_dbus_property_changed(dbus_get_bus(),
p2p_peer_get_path(dev->conn_peer),
IWD_P2P_PEER_INTERFACE,
"ConnectedInterface");
l_dbus_property_changed(dbus_get_bus(),
p2p_peer_get_path(dev->conn_peer),
IWD_P2P_PEER_INTERFACE,
"ConnectedIP");
p2p_connection_reset(dev);
break;
default:
break;
};
}
static const char *p2p_ip_to_string(uint32_t addr)
{
struct in_addr ia = { .s_addr = L_CPU_TO_BE32(addr) };
return inet_ntoa(ia);
}
static void p2p_handshake_event(struct handshake_state *hs,
enum handshake_event event, void *user_data,
...)
{
va_list args;
va_start(args, user_data);
switch (event) {
case HANDSHAKE_EVENT_COMPLETE:
{
struct p2p_device *dev = user_data;
struct l_settings *ip_config;
if (!hs->support_ip_allocation)
break;
ip_config = l_settings_new();
l_settings_set_string(ip_config, "IPv4", "Address",
p2p_ip_to_string(hs->client_ip_addr));
l_settings_set_string(ip_config, "IPv4", "Netmask",
p2p_ip_to_string(hs->subnet_mask));
dev->conn_netconfig_settings = ip_config;
dev->conn_peer_ip = l_strdup(p2p_ip_to_string(hs->go_ip_addr));
break;
}
case HANDSHAKE_EVENT_FAILED:
netdev_handshake_failed(hs, va_arg(args, int));
break;
default:
break;
}
va_end(args);
}
static void p2p_try_connect_group(struct p2p_device *dev)
{
struct scan_bss *bss = dev->conn_wsc_bss;
struct handshake_state *hs = NULL;
struct iovec ie_iov[16];
int ie_num = 0;
int r;
struct p2p_association_req info = {};
struct ie_rsn_info bss_info = {};
struct ie_rsn_info rsn_info = {};
uint8_t rsne_buf[256];
uint8_t wfd_ie[32];
info.capability = dev->capability;
info.device_info = dev->device_info;
ie_iov[0].iov_base = p2p_build_association_req(&info,
&ie_iov[0].iov_len);
L_WARN_ON(!ie_iov[0].iov_base);
ie_num = 1;
if (dev->conn_own_wfd) {
ie_iov[ie_num].iov_base = wfd_ie;
ie_iov[ie_num].iov_len = p2p_build_wfd_ie(dev->conn_own_wfd,
wfd_ie);
ie_num++;
}
scan_bss_get_rsn_info(bss, &bss_info);
rsn_info.akm_suites = wiphy_select_akm(dev->wiphy, bss, false);
if (!rsn_info.akm_suites)
goto not_supported;
rsn_info.pairwise_ciphers = wiphy_select_cipher(dev->wiphy,
bss_info.pairwise_ciphers);
rsn_info.group_cipher = wiphy_select_cipher(dev->wiphy,
bss_info.group_cipher);
if (!rsn_info.pairwise_ciphers || !rsn_info.group_cipher)
goto not_supported;
rsn_info.group_management_cipher = wiphy_select_cipher(dev->wiphy,
bss_info.group_management_cipher);
rsn_info.mfpc = rsn_info.group_management_cipher != 0;
ie_build_rsne(&rsn_info, rsne_buf);
hs = netdev_handshake_state_new(dev->conn_netdev);
if (!handshake_state_set_authenticator_ie(hs, bss->rsne))
goto not_supported;
if (!handshake_state_set_supplicant_ie(hs, rsne_buf))
goto not_supported;
handshake_state_set_event_func(hs, p2p_handshake_event, dev);
handshake_state_set_ssid(hs, bss->ssid, bss->ssid_len);
handshake_state_set_pmk(hs, dev->conn_psk, 32);
if (dev->conn_peer_capability.group_caps & P2P_GROUP_CAP_IP_ALLOCATION)
hs->support_ip_allocation = true;
r = netdev_connect(dev->conn_netdev, bss, hs, ie_iov, ie_num,
p2p_netdev_event, p2p_netdev_connect_cb, dev);
if (r < 0) {
l_error("netdev_connect error: %s (%i)", strerror(-r), -r);
goto error;
}
dev->conn_retry_count++;
done:
l_free(ie_iov[0].iov_base);
return;
error:
not_supported:
if (hs)
handshake_state_free(hs);
p2p_connect_failed(dev);
goto done;
}
static void p2p_peer_provision_done(int err, struct wsc_credentials_info *creds,
unsigned int n_creds, void *user_data)
{
struct p2p_peer *peer = user_data;
struct p2p_device *dev = peer->dev;
struct scan_bss *bss = dev->conn_wsc_bss;
l_debug("err=%i n_creds=%u", err, n_creds);
dev->conn_enrollee = NULL;
l_timeout_remove(dev->conn_peer_config_timeout);
l_timeout_remove(dev->conn_go_neg_req_timeout);
if (err < 0) {
if (err == -ECANCELED && peer->wsc.pending_cancel) {
dbus_pending_reply(&peer->wsc.pending_cancel,
l_dbus_message_new_method_return(
peer->wsc.pending_cancel));
p2p_connection_reset(dev);
return;
} else
goto error;
}
if (strlen(creds[0].ssid) != bss->ssid_len ||
memcmp(creds[0].ssid, bss->ssid, bss->ssid_len)) {
l_error("Unsupported: the SSID from the P2P peer's WSC "
"credentials doesn't match the SSID from the "
"Probe Response IEs");
goto not_supported;
}
/*
* Apparently some implementations send the intended client's address
* here (i.e. our), and some send the target BSS's (their own).
*/
if (memcmp(creds[0].addr, netdev_get_address(dev->conn_netdev), 6) &&
memcmp(creds[0].addr, bss->addr, 6)) {
char addr1[32], addr2[32];
l_strlcpy(addr1, util_address_to_string(creds[0].addr),
sizeof(addr1));
l_strlcpy(addr2, util_address_to_string(
netdev_get_address(dev->conn_netdev)),
sizeof(addr2));
l_error("Error: WSC credentials are not for our client "
"interface (%s vs. %s)", addr1, addr2);
goto error;
}
if (!bss->rsne || creds[0].security != SECURITY_PSK)
goto not_supported;
if (creds[0].has_passphrase) {
if (crypto_psk_from_passphrase(creds[0].passphrase, bss->ssid,
bss->ssid_len,
dev->conn_psk) < 0)
goto error;
} else
memcpy(dev->conn_psk, creds[0].psk, 32);
dev->conn_retry_count = 0;
p2p_try_connect_group(dev);
return;
error:
not_supported:
p2p_connect_failed(dev);
}
static void p2p_provision_connect(struct p2p_device *dev)
{
struct iovec iov[16];
int iov_num;
uint8_t wfd_ie[32];
struct p2p_association_req info = {};
/* Ready to start the provisioning */
info.capability = dev->capability;
info.device_info = dev->device_info;
iov[0].iov_base = p2p_build_association_req(&info, &iov[0].iov_len);
L_WARN_ON(!iov[0].iov_base);
iov_num = 1;
if (dev->conn_own_wfd) {
iov[iov_num].iov_base = wfd_ie;
iov[iov_num].iov_len = p2p_build_wfd_ie(dev->conn_own_wfd,
wfd_ie);
iov_num++;
}
dev->conn_enrollee = wsc_enrollee_new(dev->conn_netdev,
dev->conn_wsc_bss,
dev->conn_pin, iov, iov_num,
p2p_peer_provision_done,
dev->conn_peer);
l_free(iov[0].iov_base);
}
static void p2p_device_netdev_watch_destroy(void *user_data)
{
struct p2p_device *dev = user_data;
dev->conn_netdev_watch_id = 0;
}
static void p2p_device_netdev_notify(struct netdev *netdev,
enum netdev_watch_event event,
void *user_data)
{
struct p2p_device *dev = user_data;
if (dev->conn_netdev != netdev)
return;
switch (event) {
case NETDEV_WATCH_EVENT_UP:
case NETDEV_WATCH_EVENT_NEW:
/* Ignore the event if we're already connecting/connected */
if (dev->conn_enrollee || dev->conn_retry_count ||
dev->group || !netdev_get_is_up(netdev))
break;
if (dev->is_go)
p2p_group_start(dev);
else
p2p_provision_connect(dev);
break;
case NETDEV_WATCH_EVENT_DEL:
dev->conn_netdev = NULL;
/* Fall through */
case NETDEV_WATCH_EVENT_DOWN:
case NETDEV_WATCH_EVENT_ADDRESS_CHANGE:
p2p_connect_failed(dev);
break;
default:
break;
}
}
static void p2p_device_new_interface_cb(struct l_genl_msg *msg,
void *user_data)
{
struct p2p_device *dev = user_data;
l_debug("");
if (l_genl_msg_get_error(msg) < 0) {
l_error("NEW_INTERFACE failed: %s",
strerror(-l_genl_msg_get_error(msg)));
p2p_connect_failed(dev);
return;
}
/* Create the netdev so we don't have to parse the message ourselves */
dev->conn_netdev = netdev_create_from_genl(msg, dev->conn_addr);
if (!dev->conn_netdev) {
p2p_connect_failed(dev);
return;
}
/*
* Register a watch for each connection rather than having one
* global watch. Each connection's watch will receive events
* related to all other connections too, and will check that its
* conn_netdev != netdev and exit immediately. This is not ideal
* but it's the same complexity (n^2) as that of one global watch
* that receives all events and iterates over p2p_device_list to
* find the connection.
*/
dev->conn_netdev_watch_id = netdev_watch_add(p2p_device_netdev_notify,
dev, p2p_device_netdev_watch_destroy);
}
static void p2p_device_new_interface_destroy(void *user_data)
{
struct p2p_device *dev = user_data;
dev->conn_new_intf_cmd_id = 0;
}
static void p2p_device_interface_create(struct p2p_device *dev)
{
uint32_t iftype = dev->is_go ? NL80211_IFTYPE_P2P_GO :
NL80211_IFTYPE_P2P_CLIENT;
char ifname[32];
uint32_t wiphy_id = dev->wdev_id >> 32;
struct l_genl_msg *msg;
snprintf(ifname, sizeof(ifname), "wlan%i-p2p-%s%i",
wiphy_id, dev->is_go ? "go" : "cl", dev->conn_num++);
l_debug("creating %s", ifname);
msg = l_genl_msg_new(NL80211_CMD_NEW_INTERFACE);
l_genl_msg_append_attr(msg, NL80211_ATTR_WIPHY, 4, &wiphy_id);
l_genl_msg_append_attr(msg, NL80211_ATTR_IFTYPE, 4, &iftype);
l_genl_msg_append_attr(msg, NL80211_ATTR_IFNAME,
strlen(ifname) + 1, ifname);
l_genl_msg_append_attr(msg, NL80211_ATTR_4ADDR, 1, "\0");
l_genl_msg_append_attr(msg, NL80211_ATTR_SOCKET_OWNER, 0, "");
dev->conn_new_intf_cmd_id = l_genl_family_send(dev->nl80211, msg,
p2p_device_new_interface_cb, dev,
p2p_device_new_interface_destroy);
if (!dev->conn_new_intf_cmd_id) {
l_genl_msg_unref(msg);
l_error("Error sending NEW_INTERFACE for %s", ifname);
p2p_connect_failed(dev);
}
}
static void p2p_scan_destroy(void *user_data)
{
struct p2p_device *dev = user_data;
dev->scan_id = 0;
}
static void p2p_provision_scan_start(struct p2p_device *dev);
static bool p2p_provision_scan_notify(int err, struct l_queue *bss_list,
void *user_data)
{
struct p2p_device *dev = user_data;
const struct l_queue_entry *entry;
static const uint8_t wildcard_addr[6] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
l_debug("err=%i, len(bss_list)=%i", err, l_queue_length(bss_list));
if (err) {
l_error("P2P provision scan failed: %s (%i)", strerror(-err),
-err);
p2p_connect_failed(dev);
return false;
}
for (entry = l_queue_get_entries(bss_list); entry;
entry = entry->next) {
struct scan_bss *bss = entry->data;
const uint8_t *group_id;
bool selected_reg;
struct p2p_capability_attr *capability;
enum wsc_device_password_id device_password_id;
const uint8_t *amacs;
/*
* Check if we found our target GO, some of these checks may
* need to be gradually relaxed as we discover non-compliant
* implementations but at least print a debug statement when
* something doesn't match.
*/
if (strncmp((const char *) bss->ssid, dev->go_group_id.ssid,
bss->ssid_len))
continue;
if (dev->go_group_id.ssid[bss->ssid_len] != '\0')
continue;
if (!util_mem_is_zero(dev->conn_peer_interface_addr, 6) &&
memcmp(bss->addr, dev->conn_peer_interface_addr,
6))
l_debug("SSID matched but BSSID didn't match the GO's "
"intended interface addr, proceeding anyway");
if (!bss->wsc) {
l_error("SSID matched but no valid WSC IE");
continue;
}
if (bss->source_frame == SCAN_BSS_PROBE_RESP) {
struct wsc_probe_response wsc_info;
if (!bss->p2p_probe_resp_info) {
l_error("SSID matched but no valid P2P IE");
continue;
}
if (wsc_parse_probe_response(bss->wsc, bss->wsc_size,
&wsc_info) < 0) {
l_error("SSID matched but can't parse WSC "
"Probe Response info");
continue;
}
group_id = bss->p2p_probe_resp_info->
device_info.device_addr;
selected_reg = wsc_info.selected_registrar;
capability = &bss->p2p_probe_resp_info->capability;
device_password_id = wsc_info.device_password_id;
amacs = wsc_info.authorized_macs;
} else if (bss->source_frame == SCAN_BSS_BEACON) {
struct wsc_beacon wsc_info;
if (!bss->p2p_beacon_info) {
l_error("SSID matched but no valid P2P IE");
continue;
}
if (wsc_parse_beacon(bss->wsc, bss->wsc_size,
&wsc_info) < 0) {
l_error("SSID matched but can't parse WSC "
"Beacon info");
continue;
}
group_id = bss->p2p_beacon_info->device_addr;
selected_reg = wsc_info.selected_registrar;
capability = &bss->p2p_beacon_info->capability;
device_password_id = wsc_info.device_password_id;
amacs = wsc_info.authorized_macs;
} else
continue;
if (memcmp(group_id, dev->go_group_id.device_addr, 6)) {
l_error("SSID matched but Group ID address didn't");
continue;
}
if (!selected_reg) {
/*
* Debug level because this will sometimes happen
* while the target is setting up the GO mode in the
* course of normal operation, and gets set to true
* in a few seconds, we just need to keep scanning.
*/
l_debug("SSID matched but not a Selected Reg");
continue;
}
if (dev->conn_peer->group && (capability->group_caps &
P2P_GROUP_CAP_GROUP_FORMATION)) {
l_error("SSID matched but not in Group Formation");
continue;
}
if (!dev->conn_peer->group && !(capability->group_caps &
P2P_GROUP_CAP_GROUP_FORMATION))
/*
* We have to ignore this one for interoperability
* with some devices.
*/
l_debug("SSID matched but GO not in Group Formation, "
"proceeding anyway");
if (capability->group_caps & P2P_GROUP_CAP_GROUP_LIMIT) {
l_error("SSID matched but group already full");
continue;
}
if (device_password_id != dev->conn_password_id) {
l_error("SSID matched wrong Password ID");
continue;
}
if (!util_mem_is_zero(amacs, 30)) {
bool amacs_match = false;
int i;
for (i = 0; i < 5; i++, amacs += 6)
if (!memcmp(amacs, dev->addr, 6) ||
!memcmp(amacs, wildcard_addr, 6))
amacs_match = true;
if (!amacs_match) {
l_error("SSID matched we're not in AMacs");
continue;
}
}
l_debug("GO found in the scan results");
dev->conn_wsc_bss = bss;
dev->conn_peer_capability = *capability;
p2p_device_interface_create(dev);
l_queue_remove(bss_list, bss);
l_queue_destroy(bss_list,
(l_queue_destroy_func_t) scan_bss_free);
return true;
}
/* Retry a few times if the WSC AP not found or not ready */
dev->conn_go_scan_retry++;
if (dev->conn_go_scan_retry > 15) {
p2p_connect_failed(dev);
return false;
}
p2p_provision_scan_start(dev);
return false;
}
static void p2p_provision_scan_start(struct p2p_device *dev)
{
struct scan_parameters params = {};
uint8_t buf[256];
params.flush = true;
params.no_cck_rates = true;
params.ssid = dev->go_group_id.ssid;
params.extra_ie = p2p_build_scan_ies(dev, buf, sizeof(buf),
&params.extra_ie_size);
L_WARN_ON(!params.extra_ie);
/*
* Rather than create the new interface and create a new
* scan_context on it, use the P2P-Device interface and set
* params.source_mac to our future P2P-Client address.
*/
params.source_mac = dev->conn_addr;
/*
* Initially scan just the Operating Channel the GO reported
* during the negotiation. In theory there's no guarantee that
* it is going to be on that channel so we should fall back
* to scanning all the channels listed in the Channel List
* attribute. For simplicity we just do a full scan in that
* scenario -- for most target P2P devices we wouldn't be saving
* ourselves any work anyway as the Channel List is going to
* contain all of the 2.4 and 5G channels.
*/
if (dev->conn_go_scan_retry < 12) {
params.freqs = scan_freq_set_new();
scan_freq_set_add(params.freqs, dev->conn_go_oper_freq);
}
dev->scan_id = scan_active_full(dev->wdev_id, &params, NULL,
p2p_provision_scan_notify, dev,
p2p_scan_destroy);
if (params.freqs)
scan_freq_set_free(params.freqs);
}
static void p2p_start_client_provision(struct p2p_device *dev)
{
char bssid_str[18];
memcpy(bssid_str, util_address_to_string(dev->conn_peer_interface_addr),
18);
l_debug("freq=%u ssid=%s group_addr=%s bssid=%s",
dev->conn_go_oper_freq, dev->go_group_id.ssid,
util_address_to_string(dev->go_group_id.device_addr),
bssid_str);
dev->conn_go_scan_retry = 0;
p2p_provision_scan_start(dev);
}
static void p2p_config_timeout_destroy(void *user_data)
{
struct p2p_device *dev = user_data;
dev->conn_peer_config_timeout = NULL;
}
static void p2p_config_timeout(struct l_timeout *timeout, void *user_data)
{
struct p2p_device *dev = user_data;
l_timeout_remove(dev->conn_peer_config_timeout);
/* Ready to start WSC */
p2p_start_client_provision(dev);
}
static void p2p_go_negotiation_resp_done(int error, void *user_data)
{
struct p2p_device *dev = user_data;
if (error)
l_error("Sending the GO Negotiation Response failed: %s (%i)",
strerror(-error), -error);
else
l_error("No GO Negotiation Confirmation frame received");
p2p_connect_failed(dev);
}
static void p2p_go_negotiation_resp_err_done(int error, void *user_data)
{
if (error)
l_error("Sending the GO Negotiation Response failed: %s (%i)",
strerror(-error), -error);
}
/*
* Called by GO Negotiation Response and Confirmation receive handlers,
* in both cases the channel lists are required to be subsets of our
* own supported channels and the Operating Channel must appear in the
* channel list.
*/
static bool p2p_device_validate_channel_list(struct p2p_device *dev,
const struct p2p_channel_list_attr *attr,
const struct p2p_channel_attr *oper_channel)
{
if (l_queue_isempty(attr->channel_entries))
return false;
/* TODO */
return true;
}
/*
* It seems that sending more than about 42 channels in a frame's Channel
* List attribute will baffle some devices enough that they will ignore
* the frame.
*/
#define MAX_CHANNELS 40
static void p2p_add_freq_func(uint32_t freq, void *user_data)
{
struct p2p_channel_entries *channel_entry = user_data;
uint8_t channel;
enum scan_band band;
if (channel_entry->n_channels >= MAX_CHANNELS)
return;
channel = scan_freq_to_channel(freq, &band);
if (band != scan_oper_class_to_band((const uint8_t *) "XX\x4",
channel_entry->oper_class))
return;
channel_entry->channels[channel_entry->n_channels++] = channel;
}
static void p2p_device_fill_channel_list(struct p2p_device *dev,
struct p2p_channel_list_attr *attr)
{
struct p2p_channel_entries *channel_entry;
unsigned int total_channels;
memcpy(attr->country, dev->listen_country, 3);
attr->channel_entries = l_queue_new();
channel_entry = l_malloc(sizeof(struct p2p_channel_entries) +
MAX_CHANNELS);
channel_entry->oper_class = 81;
channel_entry->n_channels = 0;
scan_freq_set_foreach(wiphy_get_supported_freqs(dev->wiphy),
p2p_add_freq_func, channel_entry);
l_queue_push_tail(attr->channel_entries, channel_entry);
total_channels = channel_entry->n_channels;
if (total_channels >= MAX_CHANNELS)
return;
channel_entry = l_malloc(sizeof(struct p2p_channel_entries) +
MAX_CHANNELS);
channel_entry->oper_class = 115;
channel_entry->n_channels = 0;
scan_freq_set_foreach(wiphy_get_supported_freqs(dev->wiphy),
p2p_add_freq_func, channel_entry);
if (total_channels + channel_entry->n_channels > MAX_CHANNELS)
channel_entry->n_channels = MAX_CHANNELS - total_channels;
l_queue_push_tail(attr->channel_entries, channel_entry);
}
static bool p2p_extract_wfd_properties(const uint8_t *ie, size_t ie_size,
struct p2p_wfd_properties *out)
{
struct wfd_subelem_iter iter;
const uint8_t *devinfo = NULL;
const uint8_t *ext_caps = NULL;
const uint8_t *r2 = NULL;
if (!ie)
return false;
wfd_subelem_iter_init(&iter, ie, ie_size);
while (wfd_subelem_iter_next(&iter)) {
enum wfd_subelem_type type = wfd_subelem_iter_get_type(&iter);
size_t len = wfd_subelem_iter_get_length(&iter);
const uint8_t *data = wfd_subelem_iter_get_data(&iter);
switch (type) {
#define SUBELEM_CHECK(var, expected_len, name) \
if (len != expected_len) { \
l_debug(name " length wrong in WFD IE");\
return false; \
} \
\
if (var) { \
l_debug("Duplicate" name " in WFD IE");\
return false; \
} \
\
var = data;
case WFD_SUBELEM_WFD_DEVICE_INFORMATION:
SUBELEM_CHECK(devinfo, 6, "Device Information");
break;
case WFD_SUBELEM_EXTENDED_CAPABILITY:
SUBELEM_CHECK(ext_caps, 2, "Extended Capability");
break;
case WFD_SUBELEM_R2_DEVICE_INFORMATION:
SUBELEM_CHECK(r2, 2, "R2 Device Information");
break;
#undef SUBELEM_CHECK
default:
/* Skip unknown IEs */
break;
}
}
if (devinfo) {
uint16_t capability = l_get_be16(devinfo + 0);
bool source;
bool sink;
uint16_t port;
source = (capability & WFD_DEV_INFO_DEVICE_TYPE) ==
WFD_DEV_INFO_TYPE_SOURCE ||
(capability & WFD_DEV_INFO_DEVICE_TYPE) ==
WFD_DEV_INFO_TYPE_DUAL_ROLE;
sink = (capability & WFD_DEV_INFO_DEVICE_TYPE) ==
WFD_DEV_INFO_TYPE_PRIMARY_SINK ||
(capability & WFD_DEV_INFO_DEVICE_TYPE) ==
WFD_DEV_INFO_TYPE_DUAL_ROLE;
if (!source && !sink)
return false;
port = l_get_be16(devinfo + 2);
if (source && port == 0) {
l_debug("0 port number in WFD IE Device Information");
return false;
}
memset(out, 0, sizeof(*out));
out->available =
(capability & WFD_DEV_INFO_SESSION_AVAILABILITY) ==
WFD_DEV_INFO_SESSION_AVAILABLE;
out->source = source;
out->sink = sink;
out->port = port;
out->cp = capability & WFD_DEV_INFO_CONTENT_PROTECTION_SUPPORT;
out->audio = !sink ||
!(capability & WFD_DEV_INFO_NO_AUDIO_AT_PRIMARY_SINK);
} else {
l_error("Device Information missing in WFD IE");
return false;
}
if (ext_caps && (l_get_be16(ext_caps) & 1))
out->uibc = 1;
if (r2) {
uint8_t role = l_get_be16(r2) & 3;
if ((out->source && role != 0 && role != 3) ||
(out->sink && role != 1 && role != 3))
l_debug("Invalid role in WFD R2 Device Information");
else
out->r2 = true;
}
return true;
}
static bool p2p_device_validate_conn_wfd(struct p2p_device *dev,
const uint8_t *ie,
ssize_t ie_size)
{
struct p2p_wfd_properties wfd;
if (!dev->conn_own_wfd)
return true;
/*
* WFD IEs are optional in Association Request/Response and P2P Public
* Action frames for R2 devices and required for R1 devices.
* Wi-Fi Display Technical Specification v2.1.0 section 5.2:
* "A WFD R2 Device shall include the WFD IE in Beacon, Probe
* Request/Response, Association Request/Response and P2P Public Action
* frames in order to be interoperable with R1 devices. If a WFD R2
* Device discovers that the peer device is also a WFD R2 Device, then
* it may include the WFD IE in Association Request/Response and P2P
* Public Action frames."
*/
if (!ie)
return dev->conn_own_wfd->r2;
if (!p2p_extract_wfd_properties(ie, ie_size, &wfd)) {
l_error("Could not parse the WFD IE contents");
return false;
}
if ((dev->conn_own_wfd->source && !wfd.sink) ||
(dev->conn_own_wfd->sink && !wfd.source)) {
l_error("Wrong role in peer's WFD IE");
return false;
}
if (wfd.r2 != dev->conn_own_wfd->r2) {
l_error("Wrong version in peer's WFD IE");
return false;
}
/*
* Ignore the session available state because it's not 100% clear
* at what point the peer switches to SESSION_NOT_AVAILABLE in its
* Device Information.
* But we might want to check that other bits have not changed from
* what the peer reported during discovery.
* Wi-Fi Display Technical Specification v2.1.0 section 4.5.2.1:
* "The content of the WFD Device Information subelement should be
* immutable during the period of P2P connection establishment, with
* [...] exceptions [...]"
*/
return true;
}
static bool p2p_go_negotiation_confirm_cb(const struct mmpdu_header *mpdu,
const void *body, size_t body_len,
int rssi, struct p2p_device *dev)
{
struct p2p_go_negotiation_confirmation info;
int r;
l_debug("");
if (body_len < 8) {
l_error("GO Negotiation Confirmation frame too short");
p2p_connect_failed(dev);
return true;
}
r = p2p_parse_go_negotiation_confirmation(body + 7, body_len - 7,
&info);
if (r < 0) {
l_error("GO Negotiation Confirmation parse error %s (%i)",
strerror(-r), -r);
p2p_connect_failed(dev);
return true;
}
if (info.dialog_token != dev->conn_go_dialog_token) {
l_error("GO Negotiation Response dialog token doesn't match");
p2p_connect_failed(dev);
goto cleanup;
}
if (info.status != P2P_STATUS_SUCCESS) {
l_error("GO Negotiation Confirmation status %i", info.status);
p2p_connect_failed(dev);
goto cleanup;
}
/* Check whether WFD IE is required, validate it if present */
if (!p2p_device_validate_conn_wfd(dev, info.wfd, info.wfd_size)) {
p2p_connect_failed(dev);
goto cleanup;
}
/*
* In both scenarios the Channel List is a subset of what we previously
* sent in the GO Negotiation Response and must contain the Operating
* Channel.
*/
if (!p2p_device_validate_channel_list(dev, &info.channel_list,
&info.operating_channel)) {
p2p_connect_failed(dev);
goto cleanup;
}
/*
* Not validating .capability.group_caps, it's either reserved
* (dev->is_go) or has to be identical to that in the GO Negotiation
* Request (!dev->is_go).
*/
if (dev->is_go) {
if (memcmp(info.operating_channel.country,
dev->listen_country, 3) ||
info.operating_channel.oper_class !=
dev->listen_oper_class ||
info.operating_channel.channel_num !=
dev->listen_channel) {
l_error("Bad operating channel in GO Negotiation "
"Confirmation");
p2p_connect_failed(dev);
goto cleanup;
}
/*
* Start setting the group up right away and we'll add the
* client's Configuation Timeout to the WSC start timeout's
* value.
*/
p2p_device_interface_create(dev);
} else {
enum scan_band band = scan_oper_class_to_band(
(const uint8_t *) info.operating_channel.country,
info.operating_channel.oper_class);
uint32_t frequency = scan_channel_to_freq(
info.operating_channel.channel_num,
band);
if (!frequency) {
l_error("Bad operating channel in GO Negotiation "
"Confirmation");
p2p_connect_failed(dev);
goto cleanup;
}
dev->conn_go_oper_freq = frequency;
memcpy(&dev->go_group_id, &info.group_id,
sizeof(struct p2p_group_id_attr));
/*
* Confirmation received. For simplicity wait idly the maximum
* amount of time indicated by the peer in the GO Negotiation
* Request's Configuration Timeout attribute and start the
* provisioning phase.
*/
dev->conn_peer_config_timeout = l_timeout_create_ms(
dev->conn_config_delay,
p2p_config_timeout, dev,
p2p_config_timeout_destroy);
}
cleanup:
p2p_clear_go_negotiation_confirmation(&info);
return true;
}
static void p2p_set_group_id(struct p2p_device *dev)
{
const char *name = dev->device_info.device_name;
char buf[2];
/* SSID format following section 3.2.1 */
p2p_get_random_string(buf, 2);
snprintf(dev->go_group_id.ssid, sizeof(dev->go_group_id.ssid),
"DIRECT-%c%c-%.22s", buf[0], buf[1], name);
memcpy(dev->go_group_id.device_addr, dev->addr, 6);
}
static void p2p_device_go_negotiation_req_cb(const struct mmpdu_header *mpdu,
const void *body,
size_t body_len, int rssi,
void *user_data)
{
struct p2p_device *dev = user_data;
struct p2p_go_negotiation_req req_info;
struct p2p_go_negotiation_resp resp_info = {};
int r;
uint8_t *resp_body;
size_t resp_len;
uint8_t wfd_ie[32];
struct iovec iov[16];
int iov_len = 0;
struct p2p_peer *peer;
enum p2p_attr_status_code status = P2P_STATUS_SUCCESS;
l_debug("");
/*
* Check the Destination Address and the BSSID. Section 2.4.3:
* "When communication is not within a P2P Group, e.g. during
* [...] GO Negotiation [...], a P2P Device shall use the
* P2P Device Address of the intended destination as the BSSID in
* Request, or Confirmation frames and its own P2P Device Address
* as the BSSID in Response frames."
*
* Some drivers (brcmfmac) will report the BSSID as all zeros and
* some Wi-Fi Display dongles will pass their own address as the
* BSSID in the GO Negotiation Request so allow all three possible
* values.
*/
if (memcmp(mpdu->address_1, dev->addr, 6) ||
(memcmp(mpdu->address_3, dev->addr, 6) &&
memcmp(mpdu->address_3, mpdu->address_2, 6) &&
!util_mem_is_zero(mpdu->address_3, 6)))
return;
peer = l_queue_find(dev->peer_list, p2p_peer_match, mpdu->address_2);
if (!peer)
return;
if (body_len < 8)
return;
if (!dev->conn_go_neg_req_timeout || peer != dev->conn_peer) {
status = P2P_STATUS_FAIL_INFO_NOT_AVAIL;
goto respond;
}
if (memcmp(mpdu->address_2, dev->conn_peer->bss->addr, 6)) {
status = P2P_STATUS_FAIL_UNABLE_TO_ACCOMMODATE_REQUEST;
goto respond;
}
r = p2p_parse_go_negotiation_req(body + 7, body_len - 7, &req_info);
if (r < 0) {
l_error("GO Negotiation Request parse error %s (%i)",
strerror(-r), -r);
p2p_connect_failed(dev);
status = P2P_STATUS_FAIL_INVALID_PARAMS;
goto respond;
}
dev->conn_go_tie_breaker = !req_info.go_tie_breaker;
dev->is_go = P2P_GO_INTENT * 2 + dev->conn_go_tie_breaker >
req_info.go_intent * 2;
if ((req_info.capability.group_caps & P2P_GROUP_CAP_PERSISTENT_GROUP) &&
!dev->is_go) {
if (peer->wsc.pending_connect) {
struct l_dbus_message *reply =
dbus_error_not_supported(
peer->wsc.pending_connect);
dbus_pending_reply(&peer->wsc.pending_connect, reply);
}
p2p_connect_failed(dev);
l_error("Persistent groups not supported");
status = P2P_STATUS_FAIL_INCOMPATIBLE_PARAMS;
goto p2p_free;
}
if (req_info.device_password_id != dev->conn_password_id) {
p2p_connect_failed(dev);
l_error("Incompatible Password ID in the GO Negotiation Req");
status = P2P_STATUS_FAIL_INCOMPATIBLE_PROVISIONING;
goto p2p_free;
}
if (!p2p_device_validate_channel_list(dev, &req_info.channel_list,
&req_info.operating_channel)) {
p2p_connect_failed(dev);
status = P2P_STATUS_FAIL_INCOMPATIBLE_PARAMS;
goto p2p_free;
}
if (dev->is_go) {
const struct l_queue_entry *entry;
const struct p2p_channel_entries *entries;
int i;
/*
* Section 3.1.4.2.1: "The Channel List attribute shall
* indicate the channels that the P2P Device can support as
* Operating Channel of the P2P Group if it becomes P2P Group
* Owner."
* Section 3.1.4.2.2: "The channels indicated in the Channel
* List shall only include channels from the Channel List
* attribute in the GO Negotiation Request frame. [...]
* The channel indicated in the Operating Channel attribute
* shall be one of the channels in the Channel List attribute
* in the GO Negotiation Response frame."
*
* Since the sender is not becoming the GO this shouldn't
* affect us but following 3.1.4.2.2 our operating channel
* should be one of those listed in the GO Negotiation
* Response which in turn are the subset of those in the
* Request. So effectively the list in the Request limits
* the peer's set of supported operating channels both as the
* GO and the Client. Check that our listen channel is in
* that set.
* TODO: if it's not, look for a different channel.
*/
for (entry = l_queue_get_entries(
req_info.channel_list.channel_entries);
entry; entry = entry->next) {
entries = entry->data;
if (entries->oper_class == dev->listen_oper_class)
break;
}
if (!entry) {
l_error("Our Operating Class not listed in "
"the GO Negotiation Request");
p2p_connect_failed(dev);
status = P2P_STATUS_FAIL_NO_COMMON_CHANNELS;
goto p2p_free;
}
for (i = 0; i < entries->n_channels; i++)
if (entries->channels[i] == dev->listen_channel)
break;
if (i == entries->n_channels) {
l_error("Our listen channel not listed in "
"the GO Negotiation Request");
p2p_connect_failed(dev);
status = P2P_STATUS_FAIL_NO_COMMON_CHANNELS;
goto p2p_free;
}
}
/* Check whether WFD IE is required, validate it if present */
if (!p2p_device_validate_conn_wfd(dev, req_info.wfd,
req_info.wfd_size)) {
p2p_connect_failed(dev);
status = P2P_STATUS_FAIL_INCOMPATIBLE_PARAMS;
goto p2p_free;
}
l_timeout_remove(dev->conn_go_neg_req_timeout);
p2p_device_discovery_stop(dev);
dev->conn_go_dialog_token = req_info.dialog_token;
memcpy(dev->conn_peer_interface_addr, req_info.intended_interface_addr,
6);
if (dev->is_go && dev->conn_peer) {
p2p_set_group_id(dev);
dev->conn_config_delay =
req_info.config_timeout.client_config_timeout * 10;
} else {
dev->conn_config_delay =
req_info.config_timeout.go_config_timeout * 10;
}
p2p_free:
dev->conn_go_tie_breaker = !req_info.go_tie_breaker;
p2p_clear_go_negotiation_req(&req_info);
respond:
/* Build and send the GO Negotiation Response */
resp_info.dialog_token = dev->conn_go_dialog_token;
resp_info.status = status;
if (dev->is_go && dev->conn_peer) {
struct l_queue *channel_list = l_queue_new();
struct p2p_channel_entries *channel_entries =
l_malloc(sizeof(struct p2p_channel_entries) + 1);
resp_info.capability = dev->capability;
memcpy(resp_info.operating_channel.country,
dev->listen_country, 3);
resp_info.operating_channel.oper_class = dev->listen_oper_class;
resp_info.operating_channel.channel_num = dev->listen_channel;
memcpy(&resp_info.group_id, &dev->go_group_id,
sizeof(struct p2p_group_id_attr));
channel_entries->oper_class = dev->listen_oper_class;
channel_entries->n_channels = 1;
channel_entries->channels[0] = dev->listen_channel;
l_queue_push_tail(channel_list, channel_entries);
memcpy(resp_info.channel_list.country, dev->listen_country, 3);
resp_info.channel_list.channel_entries = channel_list;
} else {
resp_info.capability.device_caps = dev->capability.device_caps;
resp_info.capability.group_caps = 0; /* Reserved */
p2p_device_fill_channel_list(dev, &resp_info.channel_list);
}
resp_info.go_intent = P2P_GO_INTENT;
resp_info.go_tie_breaker = dev->conn_go_tie_breaker;
resp_info.config_timeout.go_config_timeout = 50; /* 500ms */
resp_info.config_timeout.client_config_timeout = 50; /* 500ms */
if (dev->conn_peer)
memcpy(resp_info.intended_interface_addr, dev->conn_addr, 6);
resp_info.device_info = dev->device_info;
resp_info.device_info.wsc_config_methods = dev->conn_config_method;
resp_info.device_password_id = dev->conn_password_id;
if (dev->conn_own_wfd) {
resp_info.wfd = wfd_ie;
resp_info.wfd_size = p2p_build_wfd_ie(dev->conn_own_wfd,
wfd_ie);
}
resp_body = p2p_build_go_negotiation_resp(&resp_info, &resp_len);
resp_info.wfd = NULL;
p2p_clear_go_negotiation_resp(&resp_info);
if (!resp_body) {
p2p_connect_failed(dev);
return;
}
iov[iov_len].iov_base = resp_body;
iov[iov_len].iov_len = resp_len;
iov_len++;
iov[iov_len].iov_base = NULL;
if (status == P2P_STATUS_SUCCESS)
p2p_peer_frame_xchg(peer, iov, dev->addr, 0, 600, 0, true,
FRAME_GROUP_CONNECT,
p2p_go_negotiation_resp_done,
&p2p_frame_go_neg_confirm,
p2p_go_negotiation_confirm_cb, NULL);
else
p2p_peer_frame_xchg(peer, iov, dev->addr, 0, 0, 0, true,
FRAME_GROUP_CONNECT,
p2p_go_negotiation_resp_err_done, NULL);
l_debug("GO Negotiation Response sent with status %i", status);
l_free(resp_body);
}
static void p2p_go_negotiation_confirm_done(int error, void *user_data)
{
struct p2p_device *dev = user_data;
if (error) {
/* TODO: we should probably ignore the missing ACK error */
l_error("Sending the GO Negotiation Confirm failed: %s (%i)",
strerror(-error), -error);
p2p_connect_failed(dev);
return;
}
/*
* Frame was ACKed. On the GO start setting the group up right
* away and we'll add the client's Configuation Timeout to the
* WSC start timeout's value. On the client wait idly the
* maximum amount of time indicated by the peer in the GO
* Negotiation Response's Configuration Timeout attribute and
* start the provisioning phase.
*/
if (dev->is_go) {
p2p_device_interface_create(dev);
return;
}
dev->conn_peer_config_timeout = l_timeout_create_ms(
dev->conn_config_delay,
p2p_config_timeout, dev,
p2p_config_timeout_destroy);
}
static void p2p_go_neg_req_timeout_destroy(void *user_data)
{
struct p2p_device *dev = user_data;
dev->conn_go_neg_req_timeout = NULL;
}
static void p2p_go_neg_req_timeout(struct l_timeout *timeout, void *user_data)
{
struct p2p_device *dev = user_data;
l_debug("");
p2p_connect_failed(dev);
}
static bool p2p_go_negotiation_resp_cb(const struct mmpdu_header *mpdu,
const void *body, size_t body_len,
int rssi, struct p2p_device *dev)
{
struct p2p_go_negotiation_resp resp_info;
struct p2p_go_negotiation_confirmation confirm_info = {};
uint8_t *confirm_body;
size_t confirm_len;
uint8_t wfd_ie[32];
int r;
struct iovec iov[16];
int iov_len = 0;
enum scan_band band;
uint32_t frequency;
l_debug("");
if (!dev->conn_peer)
return true;
if (body_len < 8) {
l_error("GO Negotiation Response frame too short");
p2p_connect_failed(dev);
return true;
}
r = p2p_parse_go_negotiation_resp(body + 7, body_len - 7, &resp_info);
if (r < 0) {
l_error("GO Negotiation Response parse error %s (%i)",
strerror(-r), -r);
p2p_connect_failed(dev);
return true;
}
if (resp_info.dialog_token != 1) {
l_error("GO Negotiation Response dialog token doesn't match");
p2p_connect_failed(dev);
goto p2p_free;
}
if (resp_info.status != P2P_STATUS_SUCCESS) {
if (resp_info.status == P2P_STATUS_FAIL_INFO_NOT_AVAIL) {
/* Give the peer 120s to restart the GO Negotiation */
l_error("P2P_STATUS_FAIL_INFO_NOT_AVAIL: Will wait for "
"a new GO Negotiation Request before declaring "
"failure");
dev->conn_go_neg_req_timeout = l_timeout_create(120,
p2p_go_neg_req_timeout, dev,
p2p_go_neg_req_timeout_destroy);
p2p_device_discovery_start(dev);
goto p2p_free;
}
l_error("GO Negotiation Response status %i", resp_info.status);
p2p_connect_failed(dev);
goto p2p_free;
}
/*
* 3.1.4.2: "The Tie breaker bit in a GO Negotiation Response frame
* shall be toggled from the corresponding GO Negotiation Request
* frame."
*/
if (resp_info.go_tie_breaker == dev->conn_go_tie_breaker) {
l_error("GO Negotiation Response tie breaker value wrong");
/* Proceed anyway */
dev->conn_go_tie_breaker = !resp_info.go_tie_breaker;
}
dev->is_go = P2P_GO_INTENT * 2 + dev->conn_go_tie_breaker >
resp_info.go_intent * 2;
if ((resp_info.capability.group_caps & P2P_GROUP_CAP_PERSISTENT_GROUP)
&& !dev->is_go) {
l_error("Persistent groups not supported");
p2p_connect_failed(dev);
goto p2p_free;
}
if (resp_info.device_password_id != dev->conn_password_id) {
l_error("GO Negotiation Response WSC device password ID wrong");
p2p_connect_failed(dev);
goto p2p_free;
}
if (!p2p_device_validate_channel_list(dev, &resp_info.channel_list,
&resp_info.operating_channel)) {
p2p_connect_failed(dev);
goto p2p_free;
}
if (dev->is_go) {
const struct l_queue_entry *entry;
const struct p2p_channel_entries *entries;
int i;
/*
* Check that our listen channel is in the set supported by the
* Client.
* TODO: if it's not, look for a different channel.
*/
for (entry = l_queue_get_entries(
resp_info.channel_list.channel_entries);
entry; entry = entry->next) {
entries = entry->data;
if (entries->oper_class == dev->listen_oper_class)
break;
}
if (!entry) {
l_error("Our Operating Class not listed in "
"the GO Negotiation Response");
p2p_connect_failed(dev);
goto p2p_free;
}
for (i = 0; i < entries->n_channels; i++)
if (entries->channels[i] == dev->listen_channel)
break;
if (i == entries->n_channels) {
l_error("Our listen channel not listed in "
"the GO Negotiation Response");
p2p_connect_failed(dev);
goto p2p_free;
}
}
/* Check whether WFD IE is required, validate it if present */
if (!p2p_device_validate_conn_wfd(dev, resp_info.wfd,
resp_info.wfd_size)) {
p2p_connect_failed(dev);
goto p2p_free;
}
memcpy(dev->conn_peer_interface_addr, resp_info.intended_interface_addr,
6);
if (dev->is_go) {
struct l_queue *channel_list = l_queue_new();
struct p2p_channel_entries *channel_entries =
l_malloc(sizeof(struct p2p_channel_entries) + 1);
p2p_set_group_id(dev);
dev->conn_config_delay =
resp_info.config_timeout.client_config_timeout * 10;
channel_entries->oper_class = dev->listen_oper_class;
channel_entries->n_channels = 1;
channel_entries->channels[0] = dev->listen_channel;
l_queue_push_tail(channel_list, channel_entries);
/* Build and send the GO Negotiation Confirmation */
confirm_info.capability = dev->capability;
memcpy(confirm_info.operating_channel.country,
dev->listen_country, 3);
confirm_info.operating_channel.oper_class = dev->listen_oper_class;
confirm_info.operating_channel.channel_num = dev->listen_channel;
memcpy(confirm_info.channel_list.country, dev->listen_country, 3);
confirm_info.channel_list.channel_entries = channel_list;
memcpy(&confirm_info.group_id, &dev->go_group_id,
sizeof(struct p2p_group_id_attr));
} else {
band = scan_oper_class_to_band(
(const uint8_t *) resp_info.operating_channel.country,
resp_info.operating_channel.oper_class);
frequency = scan_channel_to_freq(
resp_info.operating_channel.channel_num,
band);
if (!frequency) {
l_error("Bad operating channel in GO Negotiation Response");
p2p_connect_failed(dev);
goto p2p_free;
}
dev->conn_config_delay =
resp_info.config_timeout.go_config_timeout * 10;
dev->conn_go_oper_freq = frequency;
memcpy(&dev->go_group_id, &resp_info.group_id,
sizeof(struct p2p_group_id_attr));
/* Build and send the GO Negotiation Confirmation */
confirm_info.capability.device_caps = 0; /* Reserved */
confirm_info.capability.group_caps = 0; /* Reserved */
confirm_info.operating_channel = resp_info.operating_channel;
confirm_info.channel_list = resp_info.channel_list;
resp_info.channel_list.channel_entries = NULL;
}
confirm_info.dialog_token = resp_info.dialog_token;
confirm_info.status = P2P_STATUS_SUCCESS;
if (dev->conn_own_wfd) {
confirm_info.wfd = wfd_ie;
confirm_info.wfd_size = p2p_build_wfd_ie(dev->conn_own_wfd,
wfd_ie);
}
confirm_body = p2p_build_go_negotiation_confirmation(&confirm_info,
&confirm_len);
confirm_info.wfd = NULL;
p2p_clear_go_negotiation_confirmation(&confirm_info);
if (!confirm_body) {
p2p_connect_failed(dev);
goto p2p_free;
}
iov[iov_len].iov_base = confirm_body;
iov[iov_len].iov_len = confirm_len;
iov_len++;
iov[iov_len].iov_base = NULL;
p2p_peer_frame_xchg(dev->conn_peer, iov, dev->conn_peer->device_addr,
0, 0, 0, false, FRAME_GROUP_CONNECT,
p2p_go_negotiation_confirm_done, NULL);
l_free(confirm_body);
p2p_free:
p2p_clear_go_negotiation_resp(&resp_info);
return true;
}
static void p2p_go_negotiation_req_done(int error, void *user_data)
{
struct p2p_device *dev = user_data;
if (error)
l_error("Sending the GO Negotiation Req failed: %s (%i)",
strerror(-error), -error);
else
l_error("No GO Negotiation Response after Request ACKed");
p2p_connect_failed(dev);
}
static void p2p_start_go_negotiation(struct p2p_device *dev)
{
struct p2p_go_negotiation_req info = {};
uint8_t *req_body;
size_t req_len;
uint8_t wfd_ie[32];
struct iovec iov[16];
int iov_len = 0;
/*
* Devices should respond within 100ms but times of ~400ms are
* often seen instead.
*
* 3.1.4.2: "The P2P Device that sent the Group Owner Negotiation
* frame shall assume that Group Owner Negotiation failed and is
* complete if it does not receive the next frame in the exchange
* within 100 milliseconds of receiving an acknowledgement frame."
*/
unsigned int resp_timeout = 600;
dev->conn_go_tie_breaker = dev->next_tie_breaker++ & 1;
info.dialog_token = 1;
info.capability = dev->capability;
info.go_intent = P2P_GO_INTENT;
info.go_tie_breaker = dev->conn_go_tie_breaker;
info.config_timeout.go_config_timeout = 50; /* 500ms */
info.config_timeout.client_config_timeout = 50; /* 500ms */
memcpy(info.listen_channel.country, dev->listen_country, 3);
info.listen_channel.oper_class = dev->listen_oper_class;
info.listen_channel.channel_num = dev->listen_channel;
memcpy(info.intended_interface_addr, dev->conn_addr, 6);
/*
* Even if P2P_GO_INTENT is 0, we have to include our supported
* channels because the peer can only choose their own channels
* from our list.
*/
p2p_device_fill_channel_list(dev, &info.channel_list);
memcpy(info.operating_channel.country, dev->listen_country, 3);
info.operating_channel.oper_class = dev->listen_oper_class;
info.operating_channel.channel_num = dev->listen_channel;
info.device_info = dev->device_info;
info.device_password_id = dev->conn_password_id;
if (dev->conn_own_wfd) {
info.wfd = wfd_ie;
info.wfd_size = p2p_build_wfd_ie(dev->conn_own_wfd, wfd_ie);
}
req_body = p2p_build_go_negotiation_req(&info, &req_len);
info.wfd = NULL;
p2p_clear_go_negotiation_req(&info);
if (!req_body) {
p2p_connect_failed(dev);
return;
}
iov[iov_len].iov_base = req_body;
iov[iov_len].iov_len = req_len;
iov_len++;
iov[iov_len].iov_base = NULL;
p2p_peer_frame_xchg(dev->conn_peer, iov, dev->conn_peer->device_addr,
100, resp_timeout, 256, false,
FRAME_GROUP_CONNECT,
p2p_go_negotiation_req_done,
&p2p_frame_go_neg_resp,
p2p_go_negotiation_resp_cb, NULL);
l_free(req_body);
}
static bool p2p_provision_disc_resp_cb(const struct mmpdu_header *mpdu,
const void *body, size_t body_len,
int rssi, struct p2p_device *dev)
{
struct p2p_provision_discovery_resp info;
int r;
l_debug("");
if (!dev->conn_peer)
return true;
if (body_len < 8) {
l_error("Provision Discovery Response frame too short");
p2p_connect_failed(dev);
return true;
}
r = p2p_parse_provision_disc_resp(body + 7, body_len - 7, &info);
if (r < 0) {
l_error("Provision Discovery Response parse error %s (%i)",
strerror(-r), -r);
p2p_connect_failed(dev);
return true;
}
if (info.dialog_token != 2) {
l_error("Provision Discovery Response dialog token doesn't "
"match");
p2p_connect_failed(dev);
return true;
}
if (info.wsc_config_method != dev->conn_config_method) {
l_error("Provision Discovery Response WSC device password ID "
"wrong");
p2p_connect_failed(dev);
return true;
}
/* Check whether WFD IE is required, validate it if present */
if (!p2p_device_validate_conn_wfd(dev, info.wfd, info.wfd_size)) {
p2p_connect_failed(dev);
return true;
}
/*
* If we're not joining an existing group, continue with Group
* Formation now.
*/
if (!dev->conn_peer->group) {
p2p_start_go_negotiation(dev);
return true;
}
/*
* Indended P2P Interface address is optional, we don't have the
* BSSID of the group here.
*
* We might want to make sure that Group Formation is false but the
* Capability attribute is also optional.
*/
dev->conn_go_oper_freq = dev->conn_peer->bss->frequency;
memset(dev->conn_peer_interface_addr, 0, 6);
memcpy(dev->go_group_id.device_addr, dev->conn_peer->device_addr, 6);
l_strlcpy(dev->go_group_id.ssid,
(const char *) dev->conn_peer->bss->ssid,
dev->conn_peer->bss->ssid_len + 1);
/* Ready to start WSC */
p2p_start_client_provision(dev);
return true;
}
static void p2p_provision_disc_req_done(int error, void *user_data)
{
struct p2p_device *dev = user_data;
if (error)
l_error("Sending the Provision Discovery Req failed: %s (%i)",
strerror(-error), -error);
else
l_error("No Provision Discovery Response after Request ACKed");
p2p_connect_failed(dev);
}
static void p2p_start_provision_discovery(struct p2p_device *dev)
{
struct p2p_provision_discovery_req info = { .status = -1 };
uint8_t *req_body;
size_t req_len;
uint8_t wfd_ie[32];
struct iovec iov[16];
int iov_len = 0;
/* This frame is pretty simple when P2Ps isn't supported */
info.dialog_token = 2;
info.capability = dev->capability;
info.device_info = dev->device_info;
if (dev->conn_peer->group) {
memcpy(info.group_id.device_addr, dev->conn_peer->bss->addr, 6);
memcpy(info.group_id.ssid, dev->conn_peer->bss->ssid,
dev->conn_peer->bss->ssid_len);
}
info.wsc_config_method = dev->conn_config_method;
if (dev->conn_own_wfd) {
info.wfd = wfd_ie;
info.wfd_size = p2p_build_wfd_ie(dev->conn_own_wfd, wfd_ie);
}
req_body = p2p_build_provision_disc_req(&info, &req_len);
info.wfd = NULL;
p2p_clear_provision_disc_req(&info);
if (!req_body) {
p2p_connect_failed(dev);
return;
}
iov[iov_len].iov_base = req_body;
iov[iov_len].iov_len = req_len;
iov_len++;
iov[iov_len].iov_base = NULL;
/*
* Section 3.2.3: "The Provision Discovery Request frame shall be
* sent to the P2P Device Address of the P2P Group Owner"
*/
p2p_peer_frame_xchg(dev->conn_peer, iov, dev->conn_peer->device_addr,
200, 600, 8, false, FRAME_GROUP_CONNECT,
p2p_provision_disc_req_done,
&p2p_frame_pd_resp, p2p_provision_disc_resp_cb,
NULL);
l_free(req_body);
}
static bool p2p_peer_get_info(struct p2p_peer *peer,
uint16_t *wsc_config_methods,
struct p2p_capability_attr **capability)
{
struct wsc_probe_request wsc_info;
switch (peer->bss->source_frame) {
case SCAN_BSS_PROBE_RESP:
if (!peer->bss->p2p_probe_resp_info)
return false;
if (wsc_config_methods)
*wsc_config_methods = peer->bss->p2p_probe_resp_info->
device_info.wsc_config_methods;
*capability = &peer->bss->p2p_probe_resp_info->capability;
return true;
case SCAN_BSS_PROBE_REQ:
if (!peer->bss->p2p_probe_req_info || !peer->bss->wsc)
return false;
if (wsc_parse_probe_request(peer->bss->wsc, peer->bss->wsc_size,
&wsc_info) < 0)
return false;
if (wsc_config_methods)
*wsc_config_methods = wsc_info.config_methods;
*capability = &peer->bss->p2p_probe_req_info->capability;
return true;
case SCAN_BSS_BEACON:
if (!peer->bss->p2p_beacon_info || !peer->bss->wsc)
return false;
if (wsc_parse_probe_request(peer->bss->wsc, peer->bss->wsc_size,
&wsc_info) < 0)
return false;
if (wsc_config_methods)
*wsc_config_methods = wsc_info.config_methods;
*capability = &peer->bss->p2p_beacon_info->capability;
break;
}
return false;
}
static void p2p_peer_connect(struct p2p_peer *peer, const char *pin)
{
struct p2p_device *dev = peer->dev;
uint16_t wsc_config_methods;
struct p2p_capability_attr *capability;
struct l_dbus_message *message = peer->wsc.pending_connect;
struct l_dbus_message *reply;
if (dev->conn_peer) {
reply = dbus_error_busy(message);
goto send_error;
}
/*
* Step 1, check if the device indicates it supports our WSC method
* and check other flags to make sure a connection is possible.
*/
if (!p2p_peer_get_info(peer, &wsc_config_methods, &capability)) {
reply = dbus_error_failed(message);
goto send_error;
}
dev->conn_config_method = pin ? WSC_CONFIGURATION_METHOD_KEYPAD :
WSC_CONFIGURATION_METHOD_PUSH_BUTTON;
dev->conn_password_id = pin ?
(strlen(pin) == 4 || wsc_pin_is_checksum_valid(pin) ?
WSC_DEVICE_PASSWORD_ID_DEFAULT :
WSC_DEVICE_PASSWORD_ID_USER_SPECIFIED) :
WSC_DEVICE_PASSWORD_ID_PUSH_BUTTON;
if (!(wsc_config_methods & dev->conn_config_method)) {
reply = dbus_error_not_supported(message);
goto send_error;
}
if (capability->device_caps & P2P_DEVICE_CAP_DEVICE_LIMIT) {
reply = dbus_error_not_supported(message);
goto send_error;
}
if (capability->group_caps & P2P_GROUP_CAP_GROUP_LIMIT) {
reply = dbus_error_not_supported(message);
goto send_error;
}
if (capability->group_caps & P2P_GROUP_CAP_GROUP_FORMATION) {
reply = dbus_error_busy(message);
goto send_error;
}
/*
* Check WFD role compatibility. At least one of the devices
* (device A) must be non-dual-role and device B must implement the
* role that A does not. peer->wfd and p2p_own_wfd have both been
* validated and we know each device implements at least one role.
*/
if (p2p_own_wfd && p2p_own_wfd->available && peer->wfd) {
if (!(
(!peer->wfd->source && p2p_own_wfd->source) ||
(!peer->wfd->sink && p2p_own_wfd->sink) ||
(!p2p_own_wfd->source && peer->wfd->source) ||
(!p2p_own_wfd->sink && peer->wfd->sink))) {
l_error("Incompatible WFD roles");
reply = dbus_error_not_supported(message);
goto send_error;
}
}
p2p_device_discovery_stop(dev);
/* Generate the interface address for our P2P-Client connection */
wiphy_generate_random_address(dev->wiphy, dev->conn_addr);
dev->conn_peer = peer; /* No ref counting so just set the pointer */
dev->conn_pin = l_strdup(pin);
dev->connections_left--;
l_dbus_property_changed(dbus_get_bus(), p2p_device_get_path(dev),
IWD_P2P_INTERFACE, "AvailableConnections");
if (p2p_own_wfd && p2p_own_wfd->available && peer->wfd) {
dev->conn_own_wfd = l_memdup(p2p_own_wfd, sizeof(*p2p_own_wfd));
/*
* From now on we'll appear as SESSION_NOT_AVAILABLE to other
* peers but as SESSION_AVAILABLE to conn_peer.
*/
p2p_own_wfd->available = false;
/* If peer is R1, fall back to R1 as well */
dev->conn_own_wfd->r2 = p2p_own_wfd->r2 && peer->wfd->r2;
/*
* If we're a dual-role device, we have to select our role
* for this connection now.
*/
if (p2p_own_wfd->source && p2p_own_wfd->sink) {
dev->conn_own_wfd->source = !peer->wfd->source;
dev->conn_own_wfd->sink = !peer->wfd->sink;
}
}
/*
* Step 2, if peer is already a GO then send the Provision Discovery
* before doing WSC. If it's not then do Provision Discovery
* optionally as seems to be required by some implementations, and
* start GO negotiation following that.
* TODO: Add a AlwaysUsePD config setting.
*/
if (dev->conn_peer->group)
p2p_start_provision_discovery(dev);
else
p2p_start_go_negotiation(dev);
return;
send_error:
dbus_pending_reply(&peer->wsc.pending_connect, reply);
}
static void p2p_peer_disconnect_cb(struct netdev *netdev, bool result,
void *user_data)
{
struct p2p_peer *peer = user_data;
struct p2p_device *dev = peer->dev;
if (!peer->wsc.pending_cancel || !dev->disconnecting)
return;
dbus_pending_reply(&peer->wsc.pending_cancel,
l_dbus_message_new_method_return(
peer->wsc.pending_cancel));
/* Independent of the result this will just drop the whole netdev */
p2p_connection_reset(dev);
}
static void p2p_peer_disconnect(struct p2p_peer *peer)
{
struct p2p_device *dev = peer->dev;
struct l_dbus_message *message = peer->wsc.pending_cancel;
struct l_dbus_message *reply;
if (dev->conn_peer != peer) {
reply = dbus_error_not_connected(message);
goto send_reply;
}
if (dev->disconnecting) {
reply = dbus_error_busy(message);
goto send_reply;
}
if (peer->wsc.pending_connect)
dbus_pending_reply(&peer->wsc.pending_connect,
dbus_error_aborted(peer->wsc.pending_connect));
if (p2p_peer_operational(peer)) {
l_dbus_property_changed(dbus_get_bus(), p2p_peer_get_path(peer),
IWD_P2P_PEER_INTERFACE, "Connected");
l_dbus_property_changed(dbus_get_bus(), p2p_peer_get_path(peer),
IWD_P2P_PEER_INTERFACE,
"ConnectedInterface");
l_dbus_property_changed(dbus_get_bus(), p2p_peer_get_path(peer),
IWD_P2P_PEER_INTERFACE,
"ConnectedIP");
}
dev->disconnecting = true;
if (dev->conn_enrollee) {
wsc_enrollee_cancel(dev->conn_enrollee, true);
return;
}
if (dev->conn_netdev && dev->conn_retry_count) {
/* Note: in theory we need to add the P2P IEs here too */
if (netdev_disconnect(dev->conn_netdev, p2p_peer_disconnect_cb,
peer) == 0)
return;
l_error("netdev_disconnect failed");
}
p2p_connection_reset(dev);
reply = l_dbus_message_new_method_return(message);
send_reply:
dbus_pending_reply(&peer->wsc.pending_cancel, reply);
}
#define SCAN_INTERVAL_MAX 3
#define SCAN_INTERVAL_STEP 1
#define CHANS_PER_SCAN_INITIAL 2
#define CHANS_PER_SCAN 2
static bool p2p_device_scan_start(struct p2p_device *dev);
static void p2p_device_roc_start(struct p2p_device *dev);
static void p2p_device_roc_timeout(struct l_timeout *timeout, void *user_data)
{
struct p2p_device *dev = user_data;
l_timeout_remove(dev->scan_timeout);
if (time(NULL) < dev->next_scan_ts) {
/*
* dev->scan_timeout destroy function will have been called
* by now so it won't overwrite the new timeout set by
* p2p_device_roc_start.
*/
p2p_device_roc_start(dev);
return;
}
p2p_device_scan_start(dev);
}
static void p2p_device_roc_cancel(struct p2p_device *dev)
{
struct l_genl_msg *msg;
if (!dev->have_roc_cookie)
return;
l_debug("");
msg = l_genl_msg_new_sized(NL80211_CMD_CANCEL_REMAIN_ON_CHANNEL, 32);
l_genl_msg_append_attr(msg, NL80211_ATTR_WDEV, 8, &dev->wdev_id);
l_genl_msg_append_attr(msg, NL80211_ATTR_COOKIE, 8, &dev->roc_cookie);
l_genl_family_send(dev->nl80211, msg, NULL, NULL, NULL);
dev->have_roc_cookie = false;
}
static void p2p_scan_timeout_destroy(void *user_data)
{
struct p2p_device *dev = user_data;
dev->scan_timeout = NULL;
if (dev->nl80211) {
/*
* Most likely when the timer expires the ROC period
* has finished but send a cancel command to make sure,
* as well as handle situations like disabling P2P.
*/
p2p_device_roc_cancel(dev);
}
}
static void p2p_device_roc_cb(struct l_genl_msg *msg, void *user_data)
{
struct p2p_device *dev = user_data;
uint64_t cookie;
int error = l_genl_msg_get_error(msg);
l_debug("ROC: %s (%i)", strerror(-error), -error);
if (error)
return;
if (nl80211_parse_attrs(msg, NL80211_ATTR_COOKIE, &cookie,
NL80211_ATTR_UNSPEC) < 0)
return;
dev->roc_cookie = cookie;
dev->have_roc_cookie = true;
/*
* Has the command taken so long that P2P has been since disabled
* or the timeout otherwise ran out?
*/
if (!dev->scan_timeout)
p2p_device_roc_cancel(dev);
}
static void p2p_device_roc_start(struct p2p_device *dev)
{
struct l_genl_msg *msg;
uint32_t listen_freq;
uint32_t duration;
uint32_t cmd_id;
l_debug("");
/*
* One second granularity is fine here because some randomess
* is desired and the intervals don't have strictly defined
* limits.
*/
duration = (dev->next_scan_ts - time(NULL)) * 1000;
if (duration < 200)
duration = 200;
/*
* Driver max duration seems to be 5000ms or more for all drivers
* except mac80211_hwsim where it is only 1000ms.
*/
if (duration > wiphy_get_max_roc_duration(dev->wiphy))
duration = wiphy_get_max_roc_duration(dev->wiphy);
/*
* Some drivers seem to miss fewer frames if we start new requests
* often.
*/
if (duration > 1000)
duration = 1000;
/*
* Be on our listen channel, even if we're still in the 120s
* waiting period after a locally-initiated GO Negotiation and
* waiting for the peer's GO Negotiation Request. It's not
* totally clear that this is how the spec intended this
* mechanism to work. On one hand 3.1.4.1 says this:
* "A P2P Device may start Group Owner Negotiation by sending a
* GO Negotiation Request frame after receiving a Probe Request
* frame from the target P2P Device."
* and the Appendix D. scenarios also show GO Negotiation happening
* on the initiator's listen channel directly after the reception
* of the Probe Request from the target. But:
* 1. in 3.1.4.1 that is a MAY and doesn't exclude starting GO
* Negotiation also on the target's listen channel.
* 2. not all devices use the search state so we may never
* receive a Probe Request and may end up waiting indefinitely.
* 3. the time the peer spends on each channel in the scan state
* may be too short for the peer to receive the GO Negotiation
* Request after the Probe Request before moving to the next
* channel.
* 4. since we know the target is going to spend some time on
* their own listen channel, using that channel should work in
* every case.
*
* We also have this in 3.1.4.1:
* "When the P2P Devices arrive on a common channel and begin Group
* Owner Negotiation, they shall stay on that channel until Group
* Owner Negotiation completes."
* telling us that the whole negotiation should be happening on
* one channel seemingly supporting the new GO Negotiation being on
* the same channel as the original failed GO Negotiation.
* However the rest of the spec makes it clear they are not treated
* as a single GO Negotiation:
* 3.1.4.2:
* "Group Owner Negotiation is a three way frame exchange"
* 3.1.4.2.2:
* "Group Formation ends on transmission or reception of a GO
* Negotiation Response frame with the Status Code set to a value
* other than Success."
*
* 3.1.4.1 implies frame exchanges happen on the target device's
* Listen Channel, not our Listen Channel:
* "Prior to beginning the Group Formation Procedure the P2P Device
* shall arrive on a common channel with the target P2P Device.
* The Find Phase in In-band Device Discovery or Out-of-Band Device
* Discovery may be used for this purpose. In the former case, the
* P2P Device only needs to scan the Listen Channel of the target
* P2P Device, as opposed to all of the Social Channels."
*
* All in all we transmit our Negotiation Requests on the peer's
* listen channel since it is bound to spend more time on that
* channel than on any other channel and then we listen for a
* potential GO Negotiation restart on our listen channel.
*/
listen_freq = scan_channel_to_freq(dev->listen_channel,
SCAN_BAND_2_4_GHZ);
msg = l_genl_msg_new_sized(NL80211_CMD_REMAIN_ON_CHANNEL, 64);
l_genl_msg_append_attr(msg, NL80211_ATTR_WDEV, 8, &dev->wdev_id);
l_genl_msg_append_attr(msg, NL80211_ATTR_WIPHY_FREQ, 4, &listen_freq);
l_genl_msg_append_attr(msg, NL80211_ATTR_DURATION, 4, &duration);
cmd_id = l_genl_family_send(dev->nl80211, msg, p2p_device_roc_cb, dev,
NULL);
if (!cmd_id)
l_genl_msg_unref(msg);
/*
* Time out after @duration ms independent of whether we were able to
* start the ROC command. If we receive the CMD_REMAIN_ON_CHANNEL
* event we'll update the timeout to give the ROC command enough time
* to finish. On an error or if we time out before the ROC command
* even starts, we'll just retry after @duration ms so we don't even
* need to handle errors specifically.
*/
dev->scan_timeout = l_timeout_create_ms(duration,
p2p_device_roc_timeout, dev,
p2p_scan_timeout_destroy);
dev->listen_duration = duration;
dev->have_roc_cookie = false;
l_debug("started a ROC command on channel %i for %i ms",
(int) dev->listen_channel, (int) duration);
}
static void p2p_peer_update_wfd(struct p2p_peer *peer,
struct p2p_wfd_properties *new_wfd)
{
struct p2p_wfd_properties *orig_wfd = peer->wfd;
if (!orig_wfd && !new_wfd)
return;
peer->wfd = new_wfd ? l_memdup(new_wfd, sizeof(*new_wfd)) : NULL;
if (!orig_wfd && new_wfd) {
l_dbus_object_add_interface(dbus_get_bus(),
p2p_peer_get_path(peer),
IWD_P2P_WFD_INTERFACE, peer);
return;
} else if (orig_wfd && !new_wfd) {
l_free(orig_wfd);
l_dbus_object_remove_interface(dbus_get_bus(),
p2p_peer_get_path(peer),
IWD_P2P_WFD_INTERFACE);
return;
}
if (orig_wfd->source != new_wfd->source)
l_dbus_property_changed(dbus_get_bus(),
p2p_peer_get_path(peer),
IWD_P2P_WFD_INTERFACE, "Source");
if (orig_wfd->sink != new_wfd->sink)
l_dbus_property_changed(dbus_get_bus(),
p2p_peer_get_path(peer),
IWD_P2P_WFD_INTERFACE, "Sink");
if (orig_wfd->port != new_wfd->port)
l_dbus_property_changed(dbus_get_bus(),
p2p_peer_get_path(peer),
IWD_P2P_WFD_INTERFACE, "Port");
if (orig_wfd->audio != new_wfd->audio)
l_dbus_property_changed(dbus_get_bus(),
p2p_peer_get_path(peer),
IWD_P2P_WFD_INTERFACE, "HasAudio");
if (orig_wfd->uibc != new_wfd->uibc)
l_dbus_property_changed(dbus_get_bus(),
p2p_peer_get_path(peer),
IWD_P2P_WFD_INTERFACE, "HasUIBC");
if (orig_wfd->cp != new_wfd->cp)
l_dbus_property_changed(dbus_get_bus(),
p2p_peer_get_path(peer),
IWD_P2P_WFD_INTERFACE,
"HasContentProtection");
l_free(orig_wfd);
}
static const char *p2p_peer_wsc_get_path(struct wsc_dbus *wsc)
{
return p2p_peer_get_path(l_container_of(wsc, struct p2p_peer, wsc));
}
static void p2p_peer_wsc_connect(struct wsc_dbus *wsc, const char *pin)
{
p2p_peer_connect(l_container_of(wsc, struct p2p_peer, wsc), pin);
}
static void p2p_peer_wsc_cancel(struct wsc_dbus *wsc)
{
p2p_peer_disconnect(l_container_of(wsc, struct p2p_peer, wsc));
}
static void p2p_peer_wsc_remove(struct wsc_dbus *wsc)
{
/*
* The WSC removal is triggered in p2p_peer_put so we call
* p2p_peer_free directly from there too.
*/
}
static bool p2p_device_peer_add(struct p2p_device *dev, struct p2p_peer *peer)
{
struct p2p_wfd_properties wfd;
if (!strlen(peer->name) || !l_utf8_validate(
peer->name, strlen(peer->name), NULL)) {
l_debug("Device name doesn't validate for bssid %s",
util_address_to_string(peer->bss->addr));
return false;
}
if (!l_dbus_object_add_interface(dbus_get_bus(),
p2p_peer_get_path(peer),
IWD_P2P_PEER_INTERFACE, peer)) {
l_debug("Unable to add the %s interface to %s",
IWD_P2P_PEER_INTERFACE, p2p_peer_get_path(peer));
return false;
}
if (!l_dbus_object_add_interface(dbus_get_bus(),
p2p_peer_get_path(peer),
L_DBUS_INTERFACE_PROPERTIES,
NULL)) {
l_dbus_unregister_object(dbus_get_bus(),
p2p_peer_get_path(peer));
l_debug("Unable to add the %s interface to %s",
L_DBUS_INTERFACE_PROPERTIES, p2p_peer_get_path(peer));
return false;
}
peer->wsc.get_path = p2p_peer_wsc_get_path;
peer->wsc.connect = p2p_peer_wsc_connect;
peer->wsc.cancel = p2p_peer_wsc_cancel;
peer->wsc.remove = p2p_peer_wsc_remove;
if (!wsc_dbus_add_interface(&peer->wsc)) {
l_dbus_unregister_object(dbus_get_bus(),
p2p_peer_get_path(peer));
return false;
}
/*
* We need to either only show peers that are available for a WFD
* session, or expose the availability information through a property,
* which we are not doing right now.
*/
if (p2p_own_wfd && p2p_extract_wfd_properties(peer->bss->wfd,
peer->bss->wfd_size, &wfd) &&
wfd.available)
p2p_peer_update_wfd(peer, &wfd);
l_queue_push_tail(dev->peer_list, peer);
return true;
}
struct p2p_peer_move_data {
struct l_queue *new_list;
struct p2p_peer *conn_peer;
uint64_t now;
};
static bool p2p_peer_move_recent(void *data, void *user_data)
{
struct p2p_peer *peer = data;
struct p2p_peer_move_data *move_data = user_data;
if (move_data->now > peer->bss->time_stamp + 30 * L_USEC_PER_SEC &&
peer != move_data->conn_peer)
return false; /* Old, keep on the list */
/* Recently seen or currently connected, move to the new list */
l_queue_push_tail(move_data->new_list, peer);
return true;
}
static bool p2p_peer_update_existing(struct scan_bss *bss,
struct l_queue *old_list,
struct l_queue *new_list)
{
struct p2p_peer *peer;
struct p2p_wfd_properties wfd;
peer = l_queue_remove_if(old_list, p2p_peer_match, bss->addr);
if (!peer)
return false;
/*
* We've seen this peer already, only update the scan_bss object
* and WFD state. We can update peer->bss even if
* peer == peer->dev->conn_peer because its .bss is not used by
* .conn_netdev or .conn_enrollee. .conn_wsc_bss is used for
* both connections and it doesn't come from the discovery scan
* results.
* Some property changes may need to be notified here.
*/
if (peer->device_addr == peer->bss->addr)
peer->device_addr = bss->addr;
else
peer->device_addr =
bss->p2p_probe_resp_info->device_info.device_addr;
scan_bss_free(peer->bss);
peer->bss = bss;
if (p2p_own_wfd && p2p_extract_wfd_properties(bss->wfd, bss->wfd_size,
&wfd) &&
wfd.available)
p2p_peer_update_wfd(peer, &wfd);
else if (peer->wfd)
p2p_peer_update_wfd(peer, NULL);
l_queue_push_tail(new_list, peer);
return true;
}
static bool p2p_scan_notify(int err, struct l_queue *bss_list,
void *user_data)
{
struct p2p_device *dev = user_data;
const struct l_queue_entry *entry;
struct l_queue *old_peer_list = dev->peer_list;
struct p2p_peer_move_data move_data;
if (err) {
l_debug("P2P scan failed: %s (%i)", strerror(-err), -err);
goto schedule;
}
dev->peer_list = l_queue_new();
for (entry = l_queue_get_entries(bss_list); entry;
entry = entry->next) {
struct scan_bss *bss = entry->data;
struct p2p_peer *peer;
if (bss->source_frame != SCAN_BSS_PROBE_RESP ||
!bss->p2p_probe_resp_info) {
scan_bss_free(bss);
continue;
}
if (p2p_peer_update_existing(bss, old_peer_list,
dev->peer_list))
continue;
peer = l_new(struct p2p_peer, 1);
peer->dev = dev;
peer->bss = bss;
peer->name = l_strdup(bss->p2p_probe_resp_info->
device_info.device_name);
peer->primary_device_type =
bss->p2p_probe_resp_info->device_info.primary_device_type;
peer->group =
!!(bss->p2p_probe_resp_info->capability.group_caps &
P2P_GROUP_CAP_GO);
/*
* Both P2P Devices and GOs can send Probe Responses so the
* frame's source address may not necessarily be the Device
* Address, use what's in the obligatory Device Info.
*/
peer->device_addr =
bss->p2p_probe_resp_info->device_info.device_addr;
if (!p2p_device_peer_add(dev, peer))
p2p_peer_free(peer);
}
/*
* old_peer_list now only contains peers not present in the new
* results. Move any peers seen in the last 30 secs to the new
* dev->peer_list and unref only the remaining peers.
*/
move_data.new_list = dev->peer_list;
move_data.conn_peer = dev->conn_peer;
move_data.now = l_time_now();
l_queue_foreach_remove(old_peer_list, p2p_peer_move_recent, &move_data);
l_queue_destroy(old_peer_list, p2p_peer_put);
l_queue_destroy(bss_list, NULL);
schedule:
/*
* Calculate interval between now and when we want the next active
* scan to start. Keep issuing Remain-on-Channel commands of
* maximum duration until it's time to start the new scan.
* The listen periods are actually like a passive scan except that
* instead of listening for Beacons only, we also look at Probe
* Requests and Probe Responses because they, too, carry P2P IEs
* with all the information we need about peer devices. Beacons
* also do, in case of GOs, but we will already get the same
* information from the Probe Responses and (even if we can
* receive the beacons in userspace in the first place) we don't
* want to handle so many frames.
*
* According to 3.1.2.1.1 we shall be available in listen state
* during Find for at least 500ms continuously at least once in
* every 5s. According to 3.1.2.1.3, the Listen State lasts for
* between 1 and 3 one-hundred TU Intervals.
*
* The Search State duration is implementation dependent.
*/
if (dev->scan_interval < SCAN_INTERVAL_MAX)
dev->scan_interval += SCAN_INTERVAL_STEP;
dev->next_scan_ts = time(NULL) + dev->scan_interval;
p2p_device_roc_start(dev);
return true;
}
static bool p2p_device_scan_start(struct p2p_device *dev)
{
struct scan_parameters params = {};
uint8_t buf[256];
unsigned int i;
wiphy_get_reg_domain_country(dev->wiphy, (char *) dev->listen_country);
dev->listen_country[2] = 4; /* Table E-4 */
dev->listen_oper_class = 81; /* 2.4 band */
params.extra_ie = p2p_build_scan_ies(dev, buf, sizeof(buf),
&params.extra_ie_size);
L_WARN_ON(!params.extra_ie);
params.flush = true;
/* P2P Wildcard SSID because we don't need legacy networks to reply */
params.ssid = "DIRECT-";
/*
* Must send probe requests at 6Mb/s, OFDM only. The no-CCK rates
* flag forces the drivers to do exactly this for 2.4GHz frames.
*
* "- P2P Devices shall not use 11b rates (1, 2, 5.5, 11 Mbps) for data
* and management frames except:
* * Probe Request frames sent to both P2P Devices and non-P2P
* Devices.
* - P2P Devices shall not respond to Probe Request frames that indicate
* support for 11b rates only.
* Note 1 - This means that the P2P Group Owner transmits Beacon frames
* using OFDM.
* Note 2 - This means that the P2P Group Owner transmits Probe Response
* frames using OFDM, including frames sent in response to Probe
* Requests received at 11b rates from non 11b-only devices.
* Note 3 - P2P Devices shall not include 11b rates in the list of
* supported rates in Probe Request frame intended only for P2P Devices.
* 11b rates may be included in the list of supported rates in Probe
* Request frames intended for both P2P Devices and non-P2P Devices."
*/
params.no_cck_rates = true;
params.freqs = scan_freq_set_new();
for (i = 0; i < L_ARRAY_SIZE(channels_social); i++) {
int chan = channels_social[i];
uint32_t freq = scan_channel_to_freq(chan, SCAN_BAND_2_4_GHZ);
scan_freq_set_add(params.freqs, freq);
}
/*
* Instead of doing a single Scan Phase at the beginning of the Device
* Discovery and then strictly a Find Phase loop as defined in the
* spec, mix both to keep watching for P2P groups on the non-social
* channels, slowly going through a few channels at a time in each
* Scan State iteration. Scan dev->chans_per_scan channels each time,
* use dev->scan_chan_idx to keep track of which channels we've
* visited recently.
*/
for (i = 0; i < dev->chans_per_scan; i++) {
int idx = dev->scan_chan_idx++;
int chan = channels_scan_2_4_other[idx];
uint32_t freq = scan_channel_to_freq(chan, SCAN_BAND_2_4_GHZ);
if (dev->scan_chan_idx >=
L_ARRAY_SIZE(channels_scan_2_4_other)) {
dev->scan_chan_idx = 0;
/*
* Do fewer channels per scan after we've initially
* gone through the 2.4 band.
*/
dev->chans_per_scan = CHANS_PER_SCAN;
}
scan_freq_set_add(params.freqs, freq);
}
dev->scan_id = scan_active_full(dev->wdev_id, &params, NULL,
p2p_scan_notify, dev, p2p_scan_destroy);
scan_freq_set_free(params.freqs);
return dev->scan_id != 0;
}
static void p2p_probe_resp_done(int error, void *user_data)
{
if (error)
l_error("Sending the Probe Response failed: %s (%i)",
strerror(-error), -error);
}
static void p2p_device_send_probe_resp(struct p2p_device *dev,
const uint8_t *dest_addr,
bool to_conn_peer)
{
uint8_t resp_buf[64] __attribute__ ((aligned));
size_t resp_len = 0;
struct p2p_probe_resp resp_info = {};
uint8_t *p2p_ie;
size_t p2p_ie_size;
struct wsc_probe_response wsc_info = {};
uint8_t *wsc_data;
size_t wsc_data_size;
uint8_t *wsc_ie;
size_t wsc_ie_size;
uint8_t wfd_ie[32];
struct iovec iov[16];
int iov_len = 0;
/* TODO: extract some of these from wiphy features */
uint16_t capability = IE_BSS_CAP_PRIVACY | IE_BSS_CAP_SHORT_PREAMBLE;
struct mmpdu_header *header;
uint32_t freq;
/* Header */
memset(resp_buf, 0, sizeof(resp_buf));
header = (void *) resp_buf;
header->fc.protocol_version = 0;
header->fc.type = MPDU_TYPE_MANAGEMENT;
header->fc.subtype = MPDU_MANAGEMENT_SUBTYPE_PROBE_RESPONSE;
memcpy(header->address_1, dest_addr, 6); /* DA */
memcpy(header->address_2, dev->addr, 6); /* SA */
memcpy(header->address_3, dev->addr, 6); /* BSSID */
resp_len = (const uint8_t *) mmpdu_body(header) - resp_buf;
resp_len += 8; /* Timestamp */
resp_buf[resp_len++] = 0x64; /* Beacon Interval: 100 TUs */
resp_buf[resp_len++] = 0x00;
resp_buf[resp_len++] = capability >> 0;
resp_buf[resp_len++] = capability >> 8;
resp_buf[resp_len++] = IE_TYPE_SSID;
resp_buf[resp_len++] = 7;
resp_buf[resp_len++] = 'D';
resp_buf[resp_len++] = 'I';
resp_buf[resp_len++] = 'R';
resp_buf[resp_len++] = 'E';
resp_buf[resp_len++] = 'C';
resp_buf[resp_len++] = 'T';
resp_buf[resp_len++] = '-';
resp_buf[resp_len++] = IE_TYPE_SUPPORTED_RATES;
resp_buf[resp_len++] = 8;
resp_buf[resp_len++] = 0x8c;
resp_buf[resp_len++] = 0x12;
resp_buf[resp_len++] = 0x18;
resp_buf[resp_len++] = 0x24;
resp_buf[resp_len++] = 0x30;
resp_buf[resp_len++] = 0x48;
resp_buf[resp_len++] = 0x60;
resp_buf[resp_len++] = 0x6c;
resp_info.capability = dev->capability;
resp_info.device_info = dev->device_info;
/*
* Note the SSID and resp_info.group_clients are not updated with
* our group information because we generally won't be in the
* Listen State on the P2P Device when running a group. Otherwise
* we'd be sending two Probe Responses, one from the P2P Interface
* and another from the P2P Device. According to this part in
* Wi-Fi P2P Technical Specification v1.7 section 3.2.2 it seems
* only the P2P Interface is supposed to be sending Probe
* Responses in that situation:
* "In all Probe Responses that it sends, a P2P Group Owner shall
* set the SSID to the SSID of the group, and shall set the SA and
* BSSID to its P2P Interface Address."
*/
p2p_ie = p2p_build_probe_resp(&resp_info, &p2p_ie_size);
if (!p2p_ie) {
l_error("Can't build our Probe Response P2P IE");
return;
}
if (to_conn_peer) {
wsc_info.device_password_id = dev->conn_password_id;
wsc_info.config_methods = dev->conn_config_method;
wsc_uuid_from_addr(dev->conn_addr, wsc_info.uuid_e);
} else {
wsc_info.config_methods = dev->device_info.wsc_config_methods;
wsc_uuid_from_addr(dev->addr, wsc_info.uuid_e);
}
wsc_info.state = WSC_STATE_NOT_CONFIGURED;
wsc_info.response_type = WSC_RESPONSE_TYPE_ENROLLEE_INFO;
wsc_info.serial_number[0] = '0';
wsc_info.primary_device_type = dev->device_info.primary_device_type;
l_strlcpy(wsc_info.device_name, dev->device_info.device_name,
sizeof(wsc_info.device_name));
wsc_info.rf_bands = WSC_RF_BAND_2_4_GHZ;
wsc_info.version2 = true;
wsc_data = wsc_build_probe_response(&wsc_info, &wsc_data_size);
if (!wsc_data) {
l_free(p2p_ie);
l_error("Can't build our Probe Response WSC payload");
return;
}
wsc_ie = ie_tlv_encapsulate_wsc_payload(wsc_data, wsc_data_size,
&wsc_ie_size);
l_free(wsc_data);
if (!wsc_ie) {
l_free(p2p_ie);
l_error("Can't build our Probe Response WSC IE");
return;
}
iov[iov_len].iov_base = resp_buf;
iov[iov_len].iov_len = resp_len;
iov_len++;
iov[iov_len].iov_base = p2p_ie;
iov[iov_len].iov_len = p2p_ie_size;
iov_len++;
iov[iov_len].iov_base = wsc_ie;
iov[iov_len].iov_len = wsc_ie_size;
iov_len++;
if (to_conn_peer && dev->conn_own_wfd) {
iov[iov_len].iov_base = wfd_ie;
iov[iov_len].iov_len = p2p_build_wfd_ie(dev->conn_own_wfd,
wfd_ie);
iov_len++;
} else if (p2p_own_wfd) {
iov[iov_len].iov_base = wfd_ie;
iov[iov_len].iov_len = p2p_build_wfd_ie(p2p_own_wfd, wfd_ie);
iov_len++;
}
iov[iov_len].iov_base = NULL;
freq = scan_channel_to_freq(dev->listen_channel, SCAN_BAND_2_4_GHZ);
frame_xchg_start(dev->wdev_id, iov, freq, 0, 0, false, 0,
p2p_probe_resp_done, dev, NULL, NULL);
l_debug("Probe Response tx queued");
l_free(p2p_ie);
l_free(wsc_ie);
}
static void p2p_device_probe_cb(const struct mmpdu_header *mpdu,
const void *body, size_t body_len,
int rssi, void *user_data)
{
struct p2p_device *dev = user_data;
struct p2p_peer *peer;
struct p2p_probe_req p2p_info;
struct wsc_probe_request wsc_info;
int r;
uint8_t *wsc_payload;
ssize_t wsc_len;
struct scan_bss *bss;
struct p2p_channel_attr *channel;
enum scan_band band;
uint32_t frequency;
bool from_conn_peer;
l_debug("");
if (!dev->scan_timeout && !dev->scan_id)
return;
from_conn_peer =
dev->conn_go_neg_req_timeout && dev->conn_peer &&
!memcmp(mpdu->address_2, dev->conn_peer->bss->addr, 6);
wsc_payload = ie_tlv_extract_wsc_payload(body, body_len, &wsc_len);
if (!wsc_payload) /* Not a P2P Probe Req, ignore */
return;
r = wsc_parse_probe_request(wsc_payload, wsc_len, &wsc_info);
l_free(wsc_payload);
if (r < 0) {
l_error("Probe Request WSC IE parse error %s (%i)",
strerror(-r), -r);
/*
* Ignore requests with erroneous WSC IEs except if they
* come from the peer we're currently connecting to as a
* workaround for implementations sending invalid Probe
* Requests.
*/
if (!from_conn_peer)
return;
}
r = p2p_parse_probe_req(body, body_len, &p2p_info);
if (r < 0) {
if (r == -ENOENT) /* Not a P2P Probe Req, ignore */
return;
l_error("Probe Request P2P IE parse error %s (%i)",
strerror(-r), -r);
return;
}
/*
* TODO: use ap.c code to check if we match the SSID, BSSID, DSSS
* Channel etc. in the Probe Request, and to build the Response body.
*/
p2p_device_send_probe_resp(dev, mpdu->address_2, from_conn_peer);
/*
* The peer's listen frequency may be different from ours.
* The Listen Channel attribute is optional but if neither
* it nor the Operating Channel are set then we have no way
* to contact that peer. Ignore such peers.
*/
if (p2p_info.listen_channel.country[0])
channel = &p2p_info.listen_channel;
else if (p2p_info.operating_channel.country[0])
channel = &p2p_info.operating_channel;
else
goto p2p_free;
band = scan_oper_class_to_band((const uint8_t *) channel->country,
channel->oper_class);
frequency = scan_channel_to_freq(channel->channel_num, band);
if (!frequency)
goto p2p_free;
bss = scan_bss_new_from_probe_req(mpdu, body, body_len, frequency,
rssi);
if (!bss)
goto p2p_free;
bss->time_stamp = l_time_now();
if (p2p_peer_update_existing(bss, dev->peer_list, dev->peer_list))
goto p2p_free;
peer = l_new(struct p2p_peer, 1);
peer->dev = dev;
peer->bss = bss;
peer->name = l_strdup(wsc_info.device_name);
peer->primary_device_type = wsc_info.primary_device_type;
peer->group = !!(p2p_info.capability.group_caps & P2P_GROUP_CAP_GO);
/*
* The Device Info attribute is present conditionally so we can't get
* the Device Address from there. In theory only P2P Devices send
* out Probe Requests, not P2P GOs, so we assume the source address
* is the Device Address.
*/
peer->device_addr = bss->addr;
if (!dev->peer_list)
dev->peer_list = l_queue_new();
if (!p2p_device_peer_add(dev, peer))
p2p_peer_free(peer);
/*
* TODO: check SSID/BSSID are wildcard values if present and
* reply with a Probe Response -- not useful in our current usage
* scenarios but required by the spec.
*/
p2p_free:
p2p_clear_probe_req(&p2p_info);
}
static void p2p_device_discovery_start(struct p2p_device *dev)
{
if (dev->scan_timeout || dev->scan_id)
return;
dev->scan_interval = 1;
dev->chans_per_scan = CHANS_PER_SCAN_INITIAL;
dev->scan_chan_idx = 0;
/*
* 3.1.2.1.1: "The Listen Channel shall be chosen at the beginning of
* the In-band Device Discovery"
*
* But keep the old channel if we're still waiting for the peer to
* restart the GO Negotiation because there may not be enough time
* for the peer to update our Listen Channel value before the user
* accepts the connection. In that case the GO Negotiation Request
* would be sent on the old channel.
*/
if (!(dev->listen_channel && dev->conn_peer))
dev->listen_channel = channels_social[l_getrandom_uint32() %
L_ARRAY_SIZE(channels_social)];
frame_watch_add(dev->wdev_id, FRAME_GROUP_LISTEN, 0x0040,
(uint8_t *) "", 0, p2p_device_probe_cb, dev, NULL);
frame_watch_add(dev->wdev_id, FRAME_GROUP_LISTEN, 0x00d0,
p2p_frame_go_neg_req.data, p2p_frame_go_neg_req.len,
p2p_device_go_negotiation_req_cb, dev, NULL);
p2p_device_scan_start(dev);
}
static void p2p_device_discovery_stop(struct p2p_device *dev)
{
dev->scan_interval = 0;
if (dev->scan_id)
scan_cancel(dev->wdev_id, dev->scan_id);
if (dev->scan_timeout)
l_timeout_remove(dev->scan_timeout);
p2p_device_roc_cancel(dev);
frame_watch_group_remove(dev->wdev_id, FRAME_GROUP_LISTEN);
}
static void p2p_device_enable_cb(struct l_genl_msg *msg, void *user_data)
{
struct p2p_device *dev = user_data;
int error = l_genl_msg_get_error(msg);
struct l_dbus_message *message = dev->pending_message;
l_debug("START/STOP_P2P_DEVICE: %s (%i)", strerror(-error), -error);
if (error)
goto done;
dev->enabled = !dev->enabled;
if (dev->enabled && !l_queue_isempty(dev->discovery_users))
p2p_device_discovery_start(dev);
done:
dev->pending_complete(dbus_get_bus(), message,
error ? dbus_error_failed(message) :
NULL);
dev->pending_message = NULL;
dev->pending_complete = NULL;
if (!error)
l_dbus_property_changed(dbus_get_bus(),
p2p_device_get_path(dev),
IWD_P2P_INTERFACE, "Enabled");
}
static void p2p_device_enable_destroy(void *user_data)
{
struct p2p_device *dev = user_data;
dev->start_stop_cmd_id = 0;
}
static bool p2p_peer_remove_disconnected(void *peer, void *conn_peer)
{
if (peer == conn_peer)
return false;
p2p_peer_put(peer);
return true;
}
static void p2p_device_start_stop(struct p2p_device *dev,
l_dbus_property_complete_cb_t complete,
struct l_dbus_message *message)
{
struct l_genl_msg *cmd;
if (dev->enabled)
p2p_device_discovery_stop(dev);
if (!dev->enabled)
cmd = l_genl_msg_new_sized(NL80211_CMD_START_P2P_DEVICE, 16);
else
cmd = l_genl_msg_new_sized(NL80211_CMD_STOP_P2P_DEVICE, 16);
l_genl_msg_append_attr(cmd, NL80211_ATTR_WDEV, 8, &dev->wdev_id);
dev->start_stop_cmd_id = l_genl_family_send(dev->nl80211, cmd,
p2p_device_enable_cb, dev,
p2p_device_enable_destroy);
if (!dev->start_stop_cmd_id) {
l_genl_msg_unref(cmd);
complete(dbus_get_bus(), message, dbus_error_failed(message));
return;
}
dev->pending_message = message;
dev->pending_complete = complete;
if (dev->enabled) {
/*
* Stopping the P2P device, drop all peers as we can't start
* new connections from now on. Check if we have a connection
* being set up without a .conn_netdev and without
* .conn_wsc_bss -- this will mean the connection is still in
* the PD or GO Negotiation phase or inside the scan. Those
* phases happen on the device interface so the connection
* gets immediately aborted.
*/
if (dev->conn_peer && !dev->conn_netdev && !dev->conn_wsc_bss)
p2p_connect_failed(dev);
if (!dev->conn_peer) {
l_queue_destroy(dev->peer_list, p2p_peer_put);
dev->peer_list = NULL;
} else
/*
* If the connection already depends on its own
* netdev only, we can let it continue until the user
* decides to disconnect.
*/
l_queue_foreach_remove(dev->peer_list,
p2p_peer_remove_disconnected,
dev->conn_peer);
}
}
static void p2p_mlme_notify(struct l_genl_msg *msg, void *user_data)
{
struct p2p_device *dev = user_data;
uint64_t wdev_id;
uint64_t cookie;
if (nl80211_parse_attrs(msg, NL80211_ATTR_WDEV, &wdev_id,
NL80211_ATTR_COOKIE, &cookie,
NL80211_ATTR_UNSPEC) < 0 ||
wdev_id != dev->wdev_id)
return;
switch (l_genl_msg_get_command(msg)) {
case NL80211_CMD_REMAIN_ON_CHANNEL:
if (!dev->have_roc_cookie || cookie != dev->roc_cookie)
break;
if (!dev->scan_timeout)
break;
/*
* The Listen phase is actually starting here, update the
* timeout so we know more or less when it ends.
*/
l_debug("ROC started");
l_timeout_modify_ms(dev->scan_timeout, dev->listen_duration);
break;
case NL80211_CMD_CANCEL_REMAIN_ON_CHANNEL:
/* TODO */
break;
}
}
#define P2P_SUPPORTED_METHODS ( \
WSC_CONFIGURATION_METHOD_LABEL | \
WSC_CONFIGURATION_METHOD_KEYPAD | \
WSC_CONFIGURATION_METHOD_VIRTUAL_PUSH_BUTTON | \
WSC_CONFIGURATION_METHOD_PHYSICAL_PUSH_BUTTON | \
WSC_CONFIGURATION_METHOD_P2P | \
WSC_CONFIGURATION_METHOD_VIRTUAL_DISPLAY_PIN | \
WSC_CONFIGURATION_METHOD_PHYSICAL_DISPLAY_PIN)
struct p2p_device *p2p_device_update_from_genl(struct l_genl_msg *msg,
bool create)
{
const uint8_t *ifaddr;
uint32_t iftype;
uint64_t wdev_id;
uint32_t wiphy_id;
struct wiphy *wiphy;
struct p2p_device *dev;
char hostname[HOST_NAME_MAX + 1];
char *str;
unsigned int uint_val;
if (nl80211_parse_attrs(msg, NL80211_ATTR_WDEV, &wdev_id,
NL80211_ATTR_WIPHY, &wiphy_id,
NL80211_ATTR_IFTYPE, &iftype,
NL80211_ATTR_MAC, &ifaddr,
NL80211_ATTR_UNSPEC) < 0 ||
L_WARN_ON(!(wiphy = wiphy_find(wiphy_id))) ||
L_WARN_ON(iftype != NL80211_IFTYPE_P2P_DEVICE)) {
l_warn("Unable to parse interface information");
return NULL;
}
if (create) {
if (p2p_device_find(wdev_id)) {
l_debug("Duplicate p2p device %" PRIx64, wdev_id);
return NULL;
}
} else {
dev = p2p_device_find(wdev_id);
if (!dev)
return NULL;
memcpy(dev->addr, ifaddr, ETH_ALEN);
return NULL;
}
dev = l_new(struct p2p_device, 1);
dev->wdev_id = wdev_id;
memcpy(dev->addr, ifaddr, ETH_ALEN);
dev->nl80211 = l_genl_family_new(iwd_get_genl(), NL80211_GENL_NAME);
dev->wiphy = wiphy;
gethostname(hostname, sizeof(hostname));
dev->connections_left = 1;
/*
* Section 3.1.4.2: "The Tie breaker bit in a first GO Negotiation
* Request frame (for instance after power up) shall be set to 0 or 1
* randomly, such that both values occur equally on average."
*/
dev->next_tie_breaker = l_getrandom_uint32();
/* TODO: allow masking capability bits through a setting? */
dev->capability.device_caps = P2P_DEVICE_CAP_CONCURRENT_OP;
dev->capability.group_caps = 0;
memcpy(dev->device_info.device_addr, dev->addr, 6);
dev->device_info.wsc_config_methods =
WSC_CONFIGURATION_METHOD_P2P |
WSC_CONFIGURATION_METHOD_PUSH_BUTTON;
dev->device_info.primary_device_type.category = 1; /* Computer */
memcpy(dev->device_info.primary_device_type.oui, microsoft_oui, 3);
dev->device_info.primary_device_type.oui_type = 0x04;
dev->device_info.primary_device_type.subcategory = 1; /* PC */
l_strlcpy(dev->device_info.device_name, hostname,
sizeof(dev->device_info.device_name));
if (l_settings_get_uint(iwd_get_config(), "P2P",
"ConfigurationMethods", &uint_val)) {
if (!(uint_val & P2P_SUPPORTED_METHODS))
l_error("[P2P].ConfigurationMethods must contain "
"at least one supported method");
else if (uint_val & ~0xffff)
l_error("[P2P].ConfigurationMethods should be a "
"16-bit integer");
else
dev->device_info.wsc_config_methods =
uint_val & P2P_SUPPORTED_METHODS;
}
str = l_settings_get_string(iwd_get_config(), "P2P", "DeviceType");
/*
* Standard WSC subcategories are unique and more specific than
* categories so there's no point for the user to specify the
* category if they choose to use the string format.
*
* As an example our default value (Computer - PC) can be
* encoded as either of:
*
* DeviceType=pc
* DeviceType=0x00010050f2040001
*/
if (str && !wsc_device_type_from_subcategory_str(
&dev->device_info.primary_device_type,
str)) {
unsigned long long u;
char *endp;
u = strtoull(str, &endp, 0);
/*
* Accept any custom category, OUI and subcategory values but
* require non-zero category as a sanity check.
*/
if (*endp != '\0' || (u & 0xffff000000000000ll) == 0)
l_error("[P2P].DeviceType must be a subcategory string "
"or a 64-bit integer encoding the full Primary"
" Device Type attribute: "
"<Category>|<OUI>|<OUI Type>|<Subcategory>");
else {
dev->device_info.primary_device_type.category = u >> 48;
dev->device_info.primary_device_type.oui[0] = u >> 40;
dev->device_info.primary_device_type.oui[1] = u >> 32;
dev->device_info.primary_device_type.oui[2] = u >> 24;
dev->device_info.primary_device_type.oui_type = u >> 16;
dev->device_info.primary_device_type.subcategory = u;
}
}
l_queue_push_tail(p2p_device_list, dev);
l_debug("Created P2P device %" PRIx64, dev->wdev_id);
scan_wdev_add(dev->wdev_id);
if (!l_genl_family_register(dev->nl80211, NL80211_MULTICAST_GROUP_MLME,
p2p_mlme_notify, dev, NULL))
l_error("Registering for MLME notifications failed");
if (!l_dbus_object_add_interface(dbus_get_bus(),
p2p_device_get_path(dev),
IWD_P2P_INTERFACE, dev))
l_info("Unable to add the %s interface to %s",
IWD_P2P_INTERFACE, p2p_device_get_path(dev));
return dev;
}
static void p2p_device_free(void *user_data)
{
struct p2p_device *dev = user_data;
if (dev->pending_message) {
struct l_dbus_message *reply =
dbus_error_aborted(dev->pending_message);
dev->pending_complete(dbus_get_bus(),
dev->pending_message, reply);
dev->pending_message = NULL;
dev->pending_complete = NULL;
}
p2p_device_discovery_stop(dev);
p2p_connection_reset(dev);
l_dbus_unregister_object(dbus_get_bus(), p2p_device_get_path(dev));
l_queue_destroy(dev->peer_list, p2p_peer_put);
l_queue_destroy(dev->discovery_users, p2p_discovery_user_free);
l_genl_family_free(dev->nl80211); /* Cancels dev->start_stop_cmd_id */
scan_wdev_remove(dev->wdev_id);
l_free(dev);
}
bool p2p_device_destroy(struct p2p_device *dev)
{
if (!l_queue_remove(p2p_device_list, dev))
return false;
p2p_device_free(dev);
return true;
}
static bool p2p_device_get_enabled(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_device *dev = user_data;
bool enabled = dev->enabled;
l_dbus_message_builder_append_basic(builder, 'b', &enabled);
return true;
}
static struct l_dbus_message *p2p_device_set_enabled(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_iter *new_value,
l_dbus_property_complete_cb_t complete,
void *user_data)
{
struct p2p_device *dev = user_data;
bool new_enabled;
if (!l_dbus_message_iter_get_variant(new_value, "b", &new_enabled))
return dbus_error_invalid_args(message);
if (dev->start_stop_cmd_id || dev->pending_message)
return dbus_error_busy(message);
if (dev->enabled == new_enabled) {
complete(dbus, message, NULL);
return NULL;
}
p2p_device_start_stop(dev, complete, message);
return NULL;
}
static bool p2p_device_get_name(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_device *dev = user_data;
l_dbus_message_builder_append_basic(builder, 's',
dev->device_info.device_name);
return true;
}
static struct l_dbus_message *p2p_device_set_name(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_iter *new_value,
l_dbus_property_complete_cb_t complete,
void *user_data)
{
struct p2p_device *dev = user_data;
const char *new_name;
bool changed = false;
if (!l_dbus_message_iter_get_variant(new_value, "s", &new_name))
return dbus_error_invalid_args(message);
if (!strcmp(new_name, dev->device_info.device_name))
goto done;
if (strlen(new_name) > sizeof(dev->device_info.device_name) - 1)
return dbus_error_invalid_args(message);
changed = true;
l_strlcpy(dev->device_info.device_name, new_name,
sizeof(dev->device_info.device_name));
done:
complete(dbus, message, NULL);
if (changed)
l_dbus_property_changed(dbus, p2p_device_get_path(dev),
IWD_P2P_INTERFACE, "Name");
return NULL;
}
static bool p2p_device_get_avail_conns(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_device *dev = user_data;
uint16_t avail_conns = dev->connections_left;
l_dbus_message_builder_append_basic(builder, 'q', &avail_conns);
return true;
}
static struct l_dbus_message *p2p_device_get_peers(struct l_dbus *dbus,
struct l_dbus_message *message,
void *user_data)
{
struct p2p_device *dev = user_data;
struct l_dbus_message *reply;
struct l_dbus_message_builder *builder;
const struct l_queue_entry *entry;
if (!l_dbus_message_get_arguments(message, ""))
return dbus_error_invalid_args(message);
reply = l_dbus_message_new_method_return(message);
builder = l_dbus_message_builder_new(reply);
l_dbus_message_builder_enter_array(builder, "(on)");
for (entry = l_queue_get_entries(dev->peer_list); entry;
entry = entry->next) {
const struct p2p_peer *peer = entry->data;
int16_t signal_strength = peer->bss->signal_strength;
l_dbus_message_builder_enter_struct(builder, "on");
l_dbus_message_builder_append_basic(builder, 'o',
p2p_peer_get_path(peer));
l_dbus_message_builder_append_basic(builder, 'n',
&signal_strength);
l_dbus_message_builder_leave_struct(builder);
}
l_dbus_message_builder_leave_array(builder);
l_dbus_message_builder_finalize(builder);
l_dbus_message_builder_destroy(builder);
return reply;
}
static void p2p_device_discovery_disconnect(struct l_dbus *dbus, void *user_data)
{
struct p2p_discovery_user *user = user_data;
struct p2p_device *dev = user->dev;
l_debug("P2P Device Discovery user %s disconnected", user->client);
l_queue_remove(dev->discovery_users, user);
p2p_discovery_user_free(user);
if (l_queue_isempty(dev->discovery_users))
p2p_device_discovery_stop(dev);
}
static void p2p_device_discovery_destroy(void *user_data)
{
struct p2p_discovery_user *user = user_data;
user->disconnect_watch = 0;
}
static struct l_dbus_message *p2p_device_request_discovery(struct l_dbus *dbus,
struct l_dbus_message *message,
void *user_data)
{
struct p2p_device *dev = user_data;
struct p2p_discovery_user *user;
bool first_user = l_queue_isempty(dev->discovery_users);
if (!l_dbus_message_get_arguments(message, ""))
return dbus_error_invalid_args(message);
if (l_queue_find(dev->discovery_users, p2p_discovery_user_match,
l_dbus_message_get_sender(message)))
return dbus_error_already_exists(message);
if (!dev->discovery_users)
dev->discovery_users = l_queue_new();
user = l_new(struct p2p_discovery_user, 1);
user->client = l_strdup(l_dbus_message_get_sender(message));
user->dev = dev;
user->disconnect_watch = l_dbus_add_disconnect_watch(dbus,
user->client,
p2p_device_discovery_disconnect,
user,
p2p_device_discovery_destroy);
l_queue_push_tail(dev->discovery_users, user);
if (first_user && !dev->conn_peer && dev->enabled)
p2p_device_discovery_start(dev);
return l_dbus_message_new_method_return(message);
}
static struct l_dbus_message *p2p_device_release_discovery(struct l_dbus *dbus,
struct l_dbus_message *message,
void *user_data)
{
struct p2p_device *dev = user_data;
struct p2p_discovery_user *user;
if (!l_dbus_message_get_arguments(message, ""))
return dbus_error_invalid_args(message);
user = l_queue_remove_if(dev->discovery_users,
p2p_discovery_user_match,
l_dbus_message_get_sender(message));
if (!user)
return dbus_error_not_found(message);
p2p_discovery_user_free(user);
/*
* If dev->conn_peer is non-NULL, we may be scanning as a way to
* listen for a GO Negotiation Request from the target peer. In
* that case we don't stop the device discovery when the list
* becomes empty.
*/
if (l_queue_isempty(dev->discovery_users) && !dev->conn_peer)
p2p_device_discovery_stop(dev);
return l_dbus_message_new_method_return(message);
}
static void p2p_interface_setup(struct l_dbus_interface *interface)
{
l_dbus_interface_property(interface, "Enabled", 0, "b",
p2p_device_get_enabled,
p2p_device_set_enabled);
l_dbus_interface_property(interface, "Name", 0, "s",
p2p_device_get_name,
p2p_device_set_name);
l_dbus_interface_property(interface, "AvailableConnections", 0, "q",
p2p_device_get_avail_conns, NULL);
l_dbus_interface_method(interface, "GetPeers", 0,
p2p_device_get_peers, "a(on)", "", "peers");
l_dbus_interface_method(interface, "RequestDiscovery", 0,
p2p_device_request_discovery, "", "");
l_dbus_interface_method(interface, "ReleaseDiscovery", 0,
p2p_device_release_discovery, "", "");
}
static bool p2p_peer_get_name(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_peer *peer = user_data;
l_dbus_message_builder_append_basic(builder, 's', peer->name);
return true;
}
static bool p2p_peer_get_device(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_peer *peer = user_data;
l_dbus_message_builder_append_basic(builder, 'o',
p2p_device_get_path(peer->dev));
return true;
}
static bool p2p_peer_get_category(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_peer *peer = user_data;
const char *category;
if (!wsc_device_type_to_dbus_str(&peer->primary_device_type,
&category, NULL) ||
!category)
category = "unknown-device";
l_dbus_message_builder_append_basic(builder, 's', category);
return true;
}
static bool p2p_peer_get_subcategory(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_peer *peer = user_data;
const char *subcategory;
/*
* Should we generate subcategory strings with the numerical
* values for the subcategories we don't know, such as
* "Vendor-specific 00:11:22:33 44" ?
*/
if (!wsc_device_type_to_dbus_str(&peer->primary_device_type,
NULL, &subcategory) ||
!subcategory)
return false;
l_dbus_message_builder_append_basic(builder, 's', subcategory);
return true;
}
static bool p2p_peer_get_connected(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_peer *peer = user_data;
bool connected = p2p_peer_operational(peer) &&
peer->dev->conn_peer == peer;
l_dbus_message_builder_append_basic(builder, 'b', &connected);
return true;
}
static bool p2p_peer_get_connected_if(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_peer *peer = user_data;
const char *ifname = netdev_get_name(peer->dev->conn_netdev);
if (!p2p_peer_operational(peer))
return false;
l_dbus_message_builder_append_basic(builder, 's', ifname);
return true;
}
static bool p2p_peer_get_connected_ip(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_peer *peer = user_data;
if (!p2p_peer_operational(peer) || !peer->dev->conn_peer_ip)
return false;
l_dbus_message_builder_append_basic(builder, 's', peer->dev->conn_peer_ip);
return true;
}
static struct l_dbus_message *p2p_peer_dbus_disconnect(struct l_dbus *dbus,
struct l_dbus_message *message,
void *user_data)
{
struct p2p_peer *peer = user_data;
if (!l_dbus_message_get_arguments(message, ""))
return dbus_error_invalid_args(message);
/*
* Save the message for both WSC.Cancel and Peer.Disconnect the
* same way.
*/
peer->wsc.pending_cancel = l_dbus_message_ref(message);
p2p_peer_disconnect(peer);
return NULL;
}
static void p2p_peer_interface_setup(struct l_dbus_interface *interface)
{
l_dbus_interface_property(interface, "Name", 0, "s",
p2p_peer_get_name, NULL);
l_dbus_interface_property(interface, "Device", 0, "o",
p2p_peer_get_device, NULL);
l_dbus_interface_property(interface, "DeviceCategory", 0, "s",
p2p_peer_get_category, NULL);
l_dbus_interface_property(interface, "DeviceSubcategory", 0, "s",
p2p_peer_get_subcategory, NULL);
l_dbus_interface_property(interface, "Connected", 0, "b",
p2p_peer_get_connected, NULL);
l_dbus_interface_property(interface, "ConnectedInterface", 0, "s",
p2p_peer_get_connected_if, NULL);
l_dbus_interface_property(interface, "ConnectedIP", 0, "s",
p2p_peer_get_connected_ip, NULL);
l_dbus_interface_method(interface, "Disconnect", 0,
p2p_peer_dbus_disconnect, "", "");
}
static bool p2p_peer_get_wfd_source(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_peer *peer = user_data;
l_dbus_message_builder_append_basic(builder, 'b', &peer->wfd->source);
return true;
}
static bool p2p_peer_get_wfd_sink(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_peer *peer = user_data;
l_dbus_message_builder_append_basic(builder, 'b', &peer->wfd->sink);
return true;
}
static bool p2p_peer_get_wfd_port(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_peer *peer = user_data;
if (!peer->wfd->source)
return false;
l_dbus_message_builder_append_basic(builder, 'q', &peer->wfd->port);
return true;
}
static bool p2p_peer_get_wfd_has_audio(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_peer *peer = user_data;
if (!peer->wfd->sink)
return false;
l_dbus_message_builder_append_basic(builder, 'b', &peer->wfd->audio);
return true;
}
static bool p2p_peer_get_wfd_has_uibc(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_peer *peer = user_data;
l_dbus_message_builder_append_basic(builder, 'b', &peer->wfd->uibc);
return true;
}
static bool p2p_peer_get_wfd_has_cp(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct p2p_peer *peer = user_data;
l_dbus_message_builder_append_basic(builder, 'b', &peer->wfd->cp);
return true;
}
static void p2p_wfd_interface_setup(struct l_dbus_interface *interface)
{
l_dbus_interface_property(interface, "Source", 0, "b",
p2p_peer_get_wfd_source, NULL);
l_dbus_interface_property(interface, "Sink", 0, "b",
p2p_peer_get_wfd_sink, NULL);
l_dbus_interface_property(interface, "Port", 0, "q",
p2p_peer_get_wfd_port, NULL);
l_dbus_interface_property(interface, "HasAudio", 0, "b",
p2p_peer_get_wfd_has_audio, NULL);
l_dbus_interface_property(interface, "HasUIBC", 0, "b",
p2p_peer_get_wfd_has_uibc, NULL);
l_dbus_interface_property(interface, "HasContentProtection", 0, "b",
p2p_peer_get_wfd_has_cp, NULL);
}
static void p2p_own_wfd_free(void)
{
const struct l_queue_entry *entry;
l_free(p2p_own_wfd);
p2p_own_wfd = NULL;
for (entry = l_queue_get_entries(p2p_device_list); entry;
entry = entry->next) {
struct p2p_device *dev = entry->data;
if (dev->conn_own_wfd)
p2p_connect_failed(dev);
}
}
static void p2p_wfd_disconnect_watch_cb(struct l_dbus *dbus, void *user_data)
{
l_debug("P2P WFD service disconnected");
if (L_WARN_ON(unlikely(!p2p_own_wfd)))
return;
p2p_own_wfd_free();
}
static void p2p_wfd_disconnect_watch_destroy(void *user_data)
{
p2p_wfd_disconnect_watch = 0;
}
static struct l_dbus_message *p2p_wfd_register(struct l_dbus *dbus,
struct l_dbus_message *message,
void *user_data)
{
const char *prop_name;
struct l_dbus_message_iter prop_iter;
struct l_dbus_message_iter prop_variant;
struct p2p_wfd_properties props = {};
bool have_source = false;
bool have_sink = false;
bool have_port = false;
bool have_has_audio = false;
bool have_has_uibc = false;
bool have_has_cp = false;
if (!l_dbus_message_get_arguments(message, "a{sv}", &prop_iter))
return dbus_error_invalid_args(message);
while (l_dbus_message_iter_next_entry(&prop_iter, &prop_name,
&prop_variant)) {
if (!strcmp(prop_name, "Source")) {
if (have_source)
return dbus_error_invalid_args(message);
if (!l_dbus_message_iter_get_variant(&prop_variant, "b",
&props.source))
return dbus_error_invalid_args(message);
have_source = true;
} else if (!strcmp(prop_name, "Sink")) {
if (have_sink)
return dbus_error_invalid_args(message);
if (!l_dbus_message_iter_get_variant(&prop_variant, "b",
&props.sink))
return dbus_error_invalid_args(message);
have_sink = true;
} else if (!strcmp(prop_name, "Port")) {
if (have_port)
return dbus_error_invalid_args(message);
if (!l_dbus_message_iter_get_variant(&prop_variant, "q",
&props.port))
return dbus_error_invalid_args(message);
have_port = true;
} else if (!strcmp(prop_name, "HasAudio")) {
if (have_has_audio)
return dbus_error_invalid_args(message);
if (!l_dbus_message_iter_get_variant(&prop_variant, "b",
&props.audio))
return dbus_error_invalid_args(message);
have_has_audio = true;
} else if (!strcmp(prop_name, "HasUIBC")) {
if (have_has_uibc)
return dbus_error_invalid_args(message);
if (!l_dbus_message_iter_get_variant(&prop_variant, "b",
&props.uibc))
return dbus_error_invalid_args(message);
have_has_uibc = true;
} else if (!strcmp(prop_name, "HasContentProtection")) {
if (have_has_cp)
return dbus_error_invalid_args(message);
if (!l_dbus_message_iter_get_variant(&prop_variant, "b",
&props.cp))
return dbus_error_invalid_args(message);
have_has_cp = true;
} else
return dbus_error_invalid_args(message);
}
if ((!have_source || !props.source) && (!have_sink || !props.sink))
return dbus_error_invalid_args(message);
if (!have_source)
props.source = !props.sink;
else if (!have_sink)
props.sink = !props.source;
if (have_port && (!props.source || props.port == 0))
return dbus_error_invalid_args(message);
if (props.source && !have_port)
props.port = 7236;
if (have_has_audio && !props.sink)
return dbus_error_invalid_args(message);
else if (!have_has_audio && props.sink)
props.audio = true;
/*
* Should this be calculated based on Wi-Fi connection capacity?
* Wi-Fi Display Technical Specification v2.1.0 only mentions this
* in the context of the video format selection on the source (D.1.1):
* "A WFD Source should determine averaged encoded video data rate
* not to exceed the value indicated in the WFD Device Maximum
* throughput field at WFD Device Information subelement transmitted
* by the targeted WFD Sink [...]"
*/
props.throughput = 10;
if (p2p_own_wfd)
return dbus_error_already_exists(message);
/* Available for WFD Session by default */
props.available = true;
p2p_wfd_disconnect_watch = l_dbus_add_disconnect_watch(dbus,
l_dbus_message_get_sender(message),
p2p_wfd_disconnect_watch_cb, NULL,
p2p_wfd_disconnect_watch_destroy);
p2p_own_wfd = l_memdup(&props, sizeof(props));
return l_dbus_message_new_method_return(message);
}
static struct l_dbus_message *p2p_wfd_unregister(struct l_dbus *dbus,
struct l_dbus_message *message,
void *user_data)
{
if (!l_dbus_message_get_arguments(message, ""))
return dbus_error_invalid_args(message);
if (!p2p_own_wfd)
return dbus_error_not_found(message);
/* TODO: possibly check sender */
l_dbus_remove_watch(dbus, p2p_wfd_disconnect_watch);
p2p_own_wfd_free();
return l_dbus_message_new_method_return(message);
}
static void p2p_service_manager_interface_setup(
struct l_dbus_interface *interface)
{
l_dbus_interface_method(interface, "RegisterDisplayService", 0,
p2p_wfd_register, "", "a{sv}", "properties");
l_dbus_interface_method(interface, "UnregisterDisplayService", 0,
p2p_wfd_unregister, "", "");
}
static void p2p_service_manager_destroy_cb(void *user_data)
{
if (p2p_own_wfd) {
l_dbus_remove_watch(dbus_get_bus(), p2p_wfd_disconnect_watch);
p2p_own_wfd_free();
}
}
static int p2p_init(void)
{
struct l_dbus *dbus = dbus_get_bus();
if (!l_dbus_register_interface(dbus, IWD_P2P_INTERFACE,
p2p_interface_setup,
NULL, false))
l_error("Unable to register the %s interface",
IWD_P2P_INTERFACE);
if (!l_dbus_register_interface(dbus, IWD_P2P_PEER_INTERFACE,
p2p_peer_interface_setup,
NULL, false))
l_error("Unable to register the %s interface",
IWD_P2P_PEER_INTERFACE);
p2p_dhcp_settings = l_settings_new();
p2p_device_list = l_queue_new();
if (!l_dbus_register_interface(dbus, IWD_P2P_WFD_INTERFACE,
p2p_wfd_interface_setup,
NULL, false))
l_error("Unable to register the %s interface",
IWD_P2P_WFD_INTERFACE);
if (!l_dbus_register_interface(dbus, IWD_P2P_SERVICE_MANAGER_INTERFACE,
p2p_service_manager_interface_setup,
p2p_service_manager_destroy_cb, false))
l_error("Unable to register the %s interface",
IWD_P2P_SERVICE_MANAGER_INTERFACE);
else if (!l_dbus_object_add_interface(dbus,
IWD_P2P_SERVICE_MANAGER_PATH,
IWD_P2P_SERVICE_MANAGER_INTERFACE,
NULL))
l_error("Unable to register the P2P Service Manager object");
return 0;
}
static void p2p_exit(void)
{
struct l_dbus *dbus = dbus_get_bus();
l_dbus_unregister_interface(dbus, IWD_P2P_INTERFACE);
l_dbus_unregister_interface(dbus, IWD_P2P_PEER_INTERFACE);
l_dbus_unregister_interface(dbus, IWD_P2P_WFD_INTERFACE);
l_dbus_unregister_interface(dbus, IWD_P2P_SERVICE_MANAGER_INTERFACE);
l_queue_destroy(p2p_device_list, p2p_device_free);
p2p_device_list = NULL;
l_settings_free(p2p_dhcp_settings);
p2p_dhcp_settings = NULL;
}
IWD_MODULE(p2p, p2p_init, p2p_exit)
IWD_MODULE_DEPENDS(p2p, wiphy)
IWD_MODULE_DEPENDS(p2p, scan)
IWD_MODULE_DEPENDS(p2p, netconfig)