3
0
mirror of https://git.kernel.org/pub/scm/network/wireless/iwd.git synced 2024-12-28 20:32:32 +01:00
iwd/src/wiphy.c

1125 lines
26 KiB
C

/*
*
* Wireless daemon for Linux
*
* Copyright (C) 2013-2018 Intel Corporation. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <linux/if_ether.h>
#include <fnmatch.h>
#include <ell/ell.h>
#include "linux/nl80211.h"
#include "src/iwd.h"
#include "src/ie.h"
#include "src/crypto.h"
#include "src/scan.h"
#include "src/netdev.h"
#include "src/dbus.h"
#include "src/rfkill.h"
#include "src/wiphy.h"
#include "src/storage.h"
#include "src/util.h"
#include "src/common.h"
#include "src/watchlist.h"
static struct l_genl_family *nl80211 = NULL;
static struct l_hwdb *hwdb;
static char **whitelist_filter;
static char **blacklist_filter;
struct wiphy {
uint32_t id;
char name[20];
uint32_t feature_flags;
uint8_t ext_features[(NUM_NL80211_EXT_FEATURES + 7) / 8];
uint8_t max_num_ssids_per_scan;
uint16_t supported_iftypes;
uint16_t supported_ciphers;
struct scan_freq_set *supported_freqs;
char *model_str;
char *vendor_str;
struct watchlist state_watches;
bool support_scheduled_scan:1;
bool support_rekey_offload:1;
bool support_adhoc_rsn:1;
bool soft_rfkill : 1;
bool hard_rfkill : 1;
};
static struct l_queue *wiphy_list = NULL;
enum ie_rsn_cipher_suite wiphy_select_cipher(struct wiphy *wiphy, uint16_t mask)
{
if (mask == IE_RSN_CIPHER_SUITE_NO_GROUP_TRAFFIC)
return IE_RSN_CIPHER_SUITE_NO_GROUP_TRAFFIC;
mask &= wiphy->supported_ciphers;
/* CCMP is our first choice, TKIP second */
if (mask & IE_RSN_CIPHER_SUITE_CCMP)
return IE_RSN_CIPHER_SUITE_CCMP;
if (mask & IE_RSN_CIPHER_SUITE_TKIP)
return IE_RSN_CIPHER_SUITE_TKIP;
if (mask & IE_RSN_CIPHER_SUITE_BIP)
return IE_RSN_CIPHER_SUITE_BIP;
return 0;
}
enum ie_rsn_akm_suite wiphy_select_akm(struct wiphy *wiphy,
struct scan_bss *bss)
{
struct ie_rsn_info info;
enum security security;
memset(&info, 0, sizeof(info));
scan_bss_get_rsn_info(bss, &info);
security = security_determine(bss->capability, &info);
/*
* If FT is available, use FT authentication to keep the door open
* for fast transitions. Otherwise use SHA256 version if present.
*/
if (security == SECURITY_8021X) {
if ((info.akm_suites & IE_RSN_AKM_SUITE_FT_OVER_8021X) &&
bss->rsne && bss->mde_present)
return IE_RSN_AKM_SUITE_FT_OVER_8021X;
if (info.akm_suites & IE_RSN_AKM_SUITE_8021X_SHA256)
return IE_RSN_AKM_SUITE_8021X_SHA256;
if (info.akm_suites & IE_RSN_AKM_SUITE_8021X)
return IE_RSN_AKM_SUITE_8021X;
} else if (security == SECURITY_PSK) {
/*
* Prefer connecting to SAE/WPA3 network, but only if SAE is
* supported. This allows us to connect to a hybrid WPA2/WPA3
* AP even if SAE/WPA3 is not supported.
*/
if (info.akm_suites & IE_RSN_AKM_SUITE_FT_OVER_SAE_SHA256 &&
wiphy_has_feature(wiphy, NL80211_FEATURE_SAE))
return IE_RSN_AKM_SUITE_FT_OVER_SAE_SHA256;
if (info.akm_suites & IE_RSN_AKM_SUITE_SAE_SHA256 &&
wiphy_has_feature(wiphy, NL80211_FEATURE_SAE))
return IE_RSN_AKM_SUITE_SAE_SHA256;
if ((info.akm_suites & IE_RSN_AKM_SUITE_FT_USING_PSK) &&
bss->rsne && bss->mde_present)
return IE_RSN_AKM_SUITE_FT_USING_PSK;
if (info.akm_suites & IE_RSN_AKM_SUITE_PSK_SHA256)
return IE_RSN_AKM_SUITE_PSK_SHA256;
if (info.akm_suites & IE_RSN_AKM_SUITE_PSK)
return IE_RSN_AKM_SUITE_PSK;
} else if (security == SECURITY_NONE) {
if (info.akm_suites & IE_RSN_AKM_SUITE_OWE)
return IE_RSN_AKM_SUITE_OWE;
}
return 0;
}
static struct wiphy *wiphy_new(uint32_t id)
{
struct wiphy *wiphy = l_new(struct wiphy, 1);
wiphy->id = id;
wiphy->supported_freqs = scan_freq_set_new();
watchlist_init(&wiphy->state_watches, NULL);
return wiphy;
}
static void wiphy_free(void *data)
{
struct wiphy *wiphy = data;
l_debug("Freeing wiphy %s[%u]", wiphy->name, wiphy->id);
scan_freq_set_free(wiphy->supported_freqs);
watchlist_destroy(&wiphy->state_watches);
l_free(wiphy->model_str);
l_free(wiphy->vendor_str);
l_free(wiphy);
}
static bool wiphy_match(const void *a, const void *b)
{
const struct wiphy *wiphy = a;
uint32_t id = L_PTR_TO_UINT(b);
return (wiphy->id == id);
}
struct wiphy *wiphy_find(int wiphy_id)
{
return l_queue_find(wiphy_list, wiphy_match, L_UINT_TO_PTR(wiphy_id));
}
static bool wiphy_is_managed(const char *phy)
{
char *pattern;
unsigned int i;
if (!whitelist_filter)
goto check_blacklist;
for (i = 0; (pattern = whitelist_filter[i]); i++) {
if (fnmatch(pattern, phy, 0) != 0)
continue;
goto check_blacklist;
}
l_debug("whitelist filtered phy: %s", phy);
return false;
check_blacklist:
if (!blacklist_filter)
return true;
for (i = 0; (pattern = blacklist_filter[i]); i++) {
if (fnmatch(pattern, phy, 0) == 0) {
l_debug("blacklist filtered ifname: %s", phy);
return false;
}
}
return true;
}
const char *wiphy_get_path(struct wiphy *wiphy)
{
static char path[15];
snprintf(path, sizeof(path), "/%d", wiphy->id);
return path;
}
uint32_t wiphy_get_supported_bands(struct wiphy *wiphy)
{
if (!wiphy->supported_freqs)
return 0;
return scan_freq_set_get_bands(wiphy->supported_freqs);
}
bool wiphy_can_connect(struct wiphy *wiphy, struct scan_bss *bss)
{
struct ie_rsn_info rsn_info;
int r;
memset(&rsn_info, 0, sizeof(rsn_info));
r = scan_bss_get_rsn_info(bss, &rsn_info);
if (r == 0) {
if (!wiphy_select_cipher(wiphy, rsn_info.pairwise_ciphers))
return false;
if (!wiphy_select_cipher(wiphy, rsn_info.group_cipher))
return false;
if (rsn_info.mfpr && !wiphy_select_cipher(wiphy,
rsn_info.group_management_cipher))
return false;
/*
* if the AP ONLY supports SAE/WPA3, then we can only connect
* if the wiphy feature is supported. Otherwise the AP may list
* SAE as one of the AKM's but also support PSK (hybrid). In
* this case we still want to allow a connection even if SAE
* is not supported.
*/
if (IE_AKM_IS_SAE(rsn_info.akm_suites) &&
!wiphy_has_feature(wiphy, NL80211_FEATURE_SAE))
return false;
} else if (r != -ENOENT)
return false;
return true;
}
bool wiphy_has_feature(struct wiphy *wiphy, uint32_t feature)
{
return wiphy->feature_flags & feature;
}
bool wiphy_can_randomize_mac_addr(struct wiphy *wiphy)
{
return wiphy_has_feature(wiphy, NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR);
}
bool wiphy_has_ext_feature(struct wiphy *wiphy, uint32_t feature)
{
return feature < sizeof(wiphy->ext_features) * 8 &&
util_is_bit_set(wiphy->ext_features[feature >> 3], feature & 7);
}
uint8_t wiphy_get_max_num_ssids_per_scan(struct wiphy *wiphy)
{
return wiphy->max_num_ssids_per_scan;
}
bool wiphy_supports_adhoc_rsn(struct wiphy *wiphy)
{
return wiphy->support_adhoc_rsn;
}
static char **wiphy_get_supported_iftypes(struct wiphy *wiphy)
{
char **ret = l_new(char *,
__builtin_popcount(wiphy->supported_iftypes) + 1);
unsigned int i;
unsigned int j;
for (j = 0, i = 0; i < sizeof(wiphy->supported_iftypes) * 8; i++) {
if (!(wiphy->supported_iftypes & (1 << i)))
continue;
ret[j++] = l_strdup(dbus_iftype_to_string(i + 1));
}
return ret;
}
bool wiphy_supports_iftype(struct wiphy *wiphy, uint32_t iftype)
{
if (iftype > sizeof(wiphy->supported_iftypes) * 8)
return false;
return wiphy->supported_iftypes & (1 << (iftype - 1));
}
uint32_t wiphy_state_watch_add(struct wiphy *wiphy,
wiphy_state_watch_func_t func,
void *user_data, wiphy_destroy_func_t destroy)
{
return watchlist_add(&wiphy->state_watches, func, user_data, destroy);
}
bool wiphy_state_watch_remove(struct wiphy *wiphy, uint32_t id)
{
return watchlist_remove(&wiphy->state_watches, id);
}
static void wiphy_print_basic_info(struct wiphy *wiphy)
{
uint32_t bands;
char buf[1024];
l_info("Wiphy: %d, Name: %s", wiphy->id, wiphy->name);
bands = scan_freq_set_get_bands(wiphy->supported_freqs);
if (bands) {
int len = 0;
len += sprintf(buf + len, "\tBands:");
if (bands & SCAN_BAND_2_4_GHZ)
len += sprintf(buf + len, " 2.4 GHz");
if (bands & SCAN_BAND_5_GHZ)
len += sprintf(buf + len, " 5 GHz");
l_info("%s", buf);
}
if (wiphy->supported_ciphers) {
int len = 0;
len += sprintf(buf + len, "\tCiphers:");
if (wiphy->supported_ciphers & IE_RSN_CIPHER_SUITE_CCMP)
len += sprintf(buf + len, " CCMP");
if (wiphy->supported_ciphers & IE_RSN_CIPHER_SUITE_TKIP)
len += sprintf(buf + len, " TKIP");
if (wiphy->supported_ciphers & IE_RSN_CIPHER_SUITE_BIP)
len += sprintf(buf + len, " BIP");
l_info("%s", buf);
}
if (wiphy->supported_iftypes) {
char **iftypes = wiphy_get_supported_iftypes(wiphy);
char *joined = l_strjoinv(iftypes, ' ');
l_info("\tSupported iftypes: %s", joined);
l_free(joined);
l_strfreev(iftypes);
}
}
static void parse_supported_commands(struct wiphy *wiphy,
struct l_genl_attr *attr)
{
uint16_t type, len;
const void *data;
while (l_genl_attr_next(attr, &type, &len, &data)) {
uint32_t cmd = *(uint32_t *)data;
switch (cmd) {
case NL80211_CMD_START_SCHED_SCAN:
wiphy->support_scheduled_scan = true;
break;
case NL80211_CMD_SET_REKEY_OFFLOAD:
wiphy->support_rekey_offload = true;
}
}
}
static void parse_supported_ciphers(struct wiphy *wiphy, const void *data,
uint16_t len)
{
while (len >= 4) {
uint32_t cipher = *(uint32_t *)data;
switch (cipher) {
case CRYPTO_CIPHER_CCMP:
wiphy->supported_ciphers |= IE_RSN_CIPHER_SUITE_CCMP;
break;
case CRYPTO_CIPHER_TKIP:
wiphy->supported_ciphers |= IE_RSN_CIPHER_SUITE_TKIP;
break;
case CRYPTO_CIPHER_WEP40:
wiphy->supported_ciphers |= IE_RSN_CIPHER_SUITE_WEP40;
break;
case CRYPTO_CIPHER_WEP104:
wiphy->supported_ciphers |= IE_RSN_CIPHER_SUITE_WEP104;
break;
case CRYPTO_CIPHER_BIP:
wiphy->supported_ciphers |= IE_RSN_CIPHER_SUITE_BIP;
break;
default: /* TODO: Support other ciphers */
break;
}
len -= 4;
data += 4;
}
}
static void parse_supported_frequencies(struct wiphy *wiphy,
struct l_genl_attr *freqs)
{
uint16_t type, len;
const void *data;
struct l_genl_attr attr;
l_debug("");
while (l_genl_attr_next(freqs, NULL, NULL, NULL)) {
if (!l_genl_attr_recurse(freqs, &attr))
continue;
while (l_genl_attr_next(&attr, &type, &len, &data)) {
uint32_t u32;
switch (type) {
case NL80211_FREQUENCY_ATTR_FREQ:
u32 = *((uint32_t *) data);
scan_freq_set_add(wiphy->supported_freqs, u32);
break;
}
}
}
}
static void parse_supported_bands(struct wiphy *wiphy,
struct l_genl_attr *bands)
{
uint16_t type, len;
const void *data;
struct l_genl_attr attr;
l_debug("");
while (l_genl_attr_next(bands, NULL, NULL, NULL)) {
if (!l_genl_attr_recurse(bands, &attr))
continue;
while (l_genl_attr_next(&attr, &type, &len, &data)) {
struct l_genl_attr freqs;
switch (type) {
case NL80211_BAND_ATTR_FREQS:
if (!l_genl_attr_recurse(&attr, &freqs))
continue;
parse_supported_frequencies(wiphy, &freqs);
break;
}
}
}
}
static void parse_supported_iftypes(struct wiphy *wiphy,
struct l_genl_attr *attr)
{
uint16_t type, len;
const void *data;
while (l_genl_attr_next(attr, &type, &len, &data)) {
/*
* NL80211_IFTYPE_UNSPECIFIED can be ignored, so we start
* at the first bit
*/
if (type > sizeof(wiphy->supported_iftypes) * 8) {
l_warn("unsupported iftype: %u", type);
continue;
}
wiphy->supported_iftypes |= 1 << (type - 1);
}
}
static void wiphy_parse_attributes(struct wiphy *wiphy,
struct l_genl_attr *attr)
{
struct l_genl_attr nested;
uint16_t type, len;
const void *data;
while (l_genl_attr_next(attr, &type, &len, &data)) {
switch (type) {
case NL80211_ATTR_FEATURE_FLAGS:
if (len != sizeof(uint32_t))
l_warn("Invalid feature flags attribute");
else
wiphy->feature_flags = *((uint32_t *) data);
break;
case NL80211_ATTR_EXT_FEATURES:
if (len > sizeof(wiphy->ext_features))
len = sizeof(wiphy->ext_features);
memcpy(wiphy->ext_features, data, len);
break;
case NL80211_ATTR_SUPPORTED_COMMANDS:
if (l_genl_attr_recurse(attr, &nested))
parse_supported_commands(wiphy, &nested);
break;
case NL80211_ATTR_CIPHER_SUITES:
parse_supported_ciphers(wiphy, data, len);
break;
case NL80211_ATTR_WIPHY_BANDS:
if (l_genl_attr_recurse(attr, &nested))
parse_supported_bands(wiphy, &nested);
break;
case NL80211_ATTR_MAX_NUM_SCAN_SSIDS:
if (len != sizeof(uint8_t))
l_warn("Invalid MAX_NUM_SCAN_SSIDS attribute");
else
wiphy->max_num_ssids_per_scan =
*((uint8_t *) data);
break;
case NL80211_ATTR_SUPPORT_IBSS_RSN:
wiphy->support_adhoc_rsn = true;
break;
case NL80211_ATTR_SUPPORTED_IFTYPES:
if (l_genl_attr_recurse(attr, &nested))
parse_supported_iftypes(wiphy, &nested);
break;
}
}
}
static bool wiphy_parse_id_and_name(struct l_genl_attr *attr, uint32_t *out_id,
const char **out_name,
uint32_t *out_name_len)
{
uint16_t type, len;
const void *data;
uint32_t id;
const char *name;
uint32_t name_len;
/*
* The wiphy attribute, name and generation are always the first
* three attributes (in that order) in every NEW_WIPHY & DEL_WIPHY
* message. If not, then error out with a warning and ignore the
* whole message.
*/
if (!l_genl_attr_next(attr, &type, &len, &data))
return false;
if (type != NL80211_ATTR_WIPHY)
return false;
if (len != sizeof(uint32_t))
return false;
id = *((uint32_t *) data);
if (!l_genl_attr_next(attr, &type, &len, &data))
return false;
if (type != NL80211_ATTR_WIPHY_NAME)
return false;
if (len > sizeof(((struct wiphy *) 0)->name))
return false;
name = data;
name_len = len;
if (!l_genl_attr_next(attr, &type, &len, &data))
return false;
if (type != NL80211_ATTR_GENERATION)
return false;
if (len != sizeof(uint32_t))
return false;
/*
* TODO: Handle GENERATION. In theory if we detect a changed generation
* number during a dump, it means that our dump needs to be re-started
*/
if (out_id)
*out_id = id;
if (out_name)
*out_name = name;
if (out_name_len)
*out_name_len = name_len;
return true;
}
static void wiphy_dump_callback(struct l_genl_msg *msg, void *user_data)
{
struct wiphy *wiphy;
struct l_genl_attr attr;
uint32_t id;
const char *name;
uint32_t name_len;
l_debug("");
if (!l_genl_attr_init(&attr, msg))
return;
/*
* In most cases multiple of these message will be sent
* since the information included can not fit into a single
* message.
*/
if (!wiphy_parse_id_and_name(&attr, &id, &name, &name_len))
return;
wiphy = l_queue_find(wiphy_list, wiphy_match, L_UINT_TO_PTR(id));
if (!wiphy) {
if (!wiphy_is_managed(name))
return;
wiphy = wiphy_new(id);
l_queue_push_head(wiphy_list, wiphy);
}
memcpy(wiphy->name, name, name_len);
wiphy_parse_attributes(wiphy, &attr);
}
static void wiphy_register(struct wiphy *wiphy)
{
struct l_dbus *dbus = dbus_get_bus();
wiphy->soft_rfkill = rfkill_get_soft_state(wiphy->id);
wiphy->hard_rfkill = rfkill_get_hard_state(wiphy->id);
if (hwdb) {
char modalias[128];
ssize_t len;
struct l_hwdb_entry *entries = NULL, *kv;
len = read_file(modalias, sizeof(modalias) - 1,
"/sys/class/ieee80211/%s/device/modalias",
wiphy->name);
if (len > 0) {
modalias[len] = '\0';
entries = l_hwdb_lookup(hwdb, "%s", modalias);
}
for (kv = entries; kv; kv = kv->next) {
if (!strcmp(kv->key, "ID_MODEL_FROM_DATABASE")) {
if (wiphy->model_str)
continue;
wiphy->model_str = l_strdup(kv->value);
}
if (!strcmp(kv->key, "ID_VENDOR_FROM_DATABASE")) {
if (wiphy->vendor_str)
continue;
wiphy->vendor_str = l_strdup(kv->value);
}
}
l_hwdb_lookup_free(entries);
}
if (!l_dbus_object_add_interface(dbus, wiphy_get_path(wiphy),
IWD_WIPHY_INTERFACE, wiphy))
l_info("Unable to add the %s interface to %s",
IWD_WIPHY_INTERFACE, wiphy_get_path(wiphy));
if (!l_dbus_object_add_interface(dbus, wiphy_get_path(wiphy),
L_DBUS_INTERFACE_PROPERTIES, NULL))
l_info("Unable to add the %s interface to %s",
L_DBUS_INTERFACE_PROPERTIES,
wiphy_get_path(wiphy));
}
static void wiphy_dump_done(void *user)
{
const struct l_queue_entry *wiphy_entry;
for (wiphy_entry = l_queue_get_entries(wiphy_list); wiphy_entry;
wiphy_entry = wiphy_entry->next) {
struct wiphy *wiphy = wiphy_entry->data;
wiphy_register(wiphy);
wiphy_print_basic_info(wiphy);
}
}
static void wiphy_new_wiphy_event(struct l_genl_msg *msg)
{
struct wiphy *wiphy;
struct l_genl_attr attr;
uint32_t id;
const char *name;
uint32_t name_len;
l_debug("");
if (!l_genl_attr_init(&attr, msg))
return;
if (!wiphy_parse_id_and_name(&attr, &id, &name, &name_len))
return;
wiphy = l_queue_find(wiphy_list, wiphy_match, L_UINT_TO_PTR(id));
if (wiphy) {
/*
* WIPHY_NAME is a NLA_NUL_STRING, so the kernel
* enforces the data to be null terminated
*/
if (strcmp(wiphy->name, name)) {
struct l_dbus *dbus = dbus_get_bus();
memcpy(wiphy->name, name, name_len);
l_dbus_property_changed(dbus, wiphy_get_path(wiphy),
IWD_WIPHY_INTERFACE, "Name");
}
return;
}
if (!wiphy_is_managed(name))
return;
wiphy = wiphy_new(id);
memcpy(wiphy->name, name, name_len);
l_queue_push_head(wiphy_list, wiphy);
wiphy_parse_attributes(wiphy, &attr);
wiphy_print_basic_info(wiphy);
wiphy_register(wiphy);
}
static void wiphy_del_wiphy_event(struct l_genl_msg *msg)
{
struct wiphy *wiphy;
struct l_genl_attr attr;
uint32_t id;
l_debug("");
if (!l_genl_attr_init(&attr, msg))
return;
if (!wiphy_parse_id_and_name(&attr, &id, NULL, NULL))
return;
wiphy = l_queue_remove_if(wiphy_list, wiphy_match, L_UINT_TO_PTR(id));
if (!wiphy)
return;
l_dbus_unregister_object(dbus_get_bus(), wiphy_get_path(wiphy));
wiphy_free(wiphy);
}
static void wiphy_config_notify(struct l_genl_msg *msg, void *user_data)
{
uint8_t cmd;
cmd = l_genl_msg_get_command(msg);
l_debug("Notification of command %u", cmd);
switch (cmd) {
case NL80211_CMD_NEW_WIPHY:
wiphy_new_wiphy_event(msg);
break;
case NL80211_CMD_DEL_WIPHY:
wiphy_del_wiphy_event(msg);
break;
}
}
static void wiphy_regulatory_notify(struct l_genl_msg *msg, void *user_data)
{
struct l_genl_attr attr;
uint16_t type, len;
const void *data;
uint8_t cmd;
cmd = l_genl_msg_get_command(msg);
l_debug("Regulatory notification %u", cmd);
if (!l_genl_attr_init(&attr, msg))
return;
while (l_genl_attr_next(&attr, &type, &len, &data)) {
}
}
static void regulatory_info_callback(struct l_genl_msg *msg, void *user_data)
{
struct l_genl_attr attr;
uint16_t type, len;
const void *data;
if (!l_genl_attr_init(&attr, msg))
return;
while (l_genl_attr_next(&attr, &type, &len, &data)) {
switch (type) {
case NL80211_ATTR_REG_ALPHA2:
if (len != 3) {
l_warn("Invalid regulatory alpha2 attribute");
return;
}
l_debug("Regulatory alpha2 is %s", (char *) data);
break;
}
}
}
static void protocol_features_callback(struct l_genl_msg *msg, void *user_data)
{
struct l_genl_attr attr;
uint16_t type, len;
const void *data;
uint32_t features = 0;
if (!l_genl_attr_init(&attr, msg))
return;
while (l_genl_attr_next(&attr, &type, &len, &data)) {
switch (type) {
case NL80211_ATTR_PROTOCOL_FEATURES:
if (len != sizeof(uint32_t)) {
l_warn("Invalid protocol features attribute");
return;
}
features = *((uint32_t *) data);
break;
}
}
if (features & NL80211_PROTOCOL_FEATURE_SPLIT_WIPHY_DUMP)
l_debug("Found split wiphy dump support");
}
static void wiphy_rfkill_cb(unsigned int wiphy_id, bool soft, bool hard,
void *user_data)
{
struct wiphy *wiphy = wiphy_find(wiphy_id);
struct l_dbus *dbus = dbus_get_bus();
bool old_powered, new_powered;
enum wiphy_state_watch_event event;
if (!wiphy)
return;
old_powered = !wiphy->soft_rfkill && !wiphy->hard_rfkill;
wiphy->soft_rfkill = soft;
wiphy->hard_rfkill = hard;
new_powered = !wiphy->soft_rfkill && !wiphy->hard_rfkill;
if (old_powered == new_powered)
return;
event = new_powered ? WIPHY_STATE_WATCH_EVENT_POWERED :
WIPHY_STATE_WATCH_EVENT_RFKILLED;
WATCHLIST_NOTIFY(&wiphy->state_watches, wiphy_state_watch_func_t,
wiphy, event);
l_dbus_property_changed(dbus, wiphy_get_path(wiphy),
IWD_WIPHY_INTERFACE, "Powered");
}
static bool wiphy_property_get_powered(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct wiphy *wiphy = user_data;
bool value = !wiphy->soft_rfkill && !wiphy->hard_rfkill;
l_dbus_message_builder_append_basic(builder, 'b', &value);
return true;
}
static struct l_dbus_message *wiphy_property_set_powered(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_iter *new_value,
l_dbus_property_complete_cb_t complete,
void *user_data)
{
struct wiphy *wiphy = user_data;
bool old_powered, new_powered;
if (!l_dbus_message_iter_get_variant(new_value, "b", &new_powered))
return dbus_error_invalid_args(message);
old_powered = !wiphy->soft_rfkill && !wiphy->hard_rfkill;
if (old_powered == new_powered)
goto done;
if (wiphy->hard_rfkill)
return dbus_error_not_available(message);
if (!rfkill_set_soft_state(wiphy->id, !new_powered))
return dbus_error_failed(message);
done:
complete(dbus, message, NULL);
return NULL;
}
static bool wiphy_property_get_model(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct wiphy *wiphy = user_data;
if (!wiphy->model_str)
return false;
l_dbus_message_builder_append_basic(builder, 's', wiphy->model_str);
return true;
}
static bool wiphy_property_get_vendor(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct wiphy *wiphy = user_data;
if (!wiphy->vendor_str)
return false;
l_dbus_message_builder_append_basic(builder, 's', wiphy->vendor_str);
return true;
}
static bool wiphy_property_get_name(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct wiphy *wiphy = user_data;
char buf[20];
if (l_utf8_validate(wiphy->name, strlen(wiphy->name), NULL)) {
l_dbus_message_builder_append_basic(builder, 's', wiphy->name);
return true;
}
/*
* In the highly unlikely scenario that the wiphy name is not utf8,
* we simply use the canonical name phy<index>. The kernel guarantees
* that this name cannot be taken by any other wiphy, so this should
* be safe enough.
*/
sprintf(buf, "phy%d", wiphy->id);
l_dbus_message_builder_append_basic(builder, 's', buf);
return true;
}
static bool wiphy_property_get_supported_modes(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct wiphy *wiphy = user_data;
unsigned int j = 0;
char **iftypes = wiphy_get_supported_iftypes(wiphy);
l_dbus_message_builder_enter_array(builder, "s");
while (iftypes[j])
l_dbus_message_builder_append_basic(builder, 's', iftypes[j++]);
l_dbus_message_builder_leave_array(builder);
l_strfreev(iftypes);
return true;
}
static void setup_wiphy_interface(struct l_dbus_interface *interface)
{
l_dbus_interface_property(interface, "Powered", 0, "b",
wiphy_property_get_powered,
wiphy_property_set_powered);
l_dbus_interface_property(interface, "Model", 0, "s",
wiphy_property_get_model, NULL);
l_dbus_interface_property(interface, "Vendor", 0, "s",
wiphy_property_get_vendor, NULL);
l_dbus_interface_property(interface, "Name", 0, "s",
wiphy_property_get_name, NULL);
l_dbus_interface_property(interface, "SupportedModes", 0, "as",
wiphy_property_get_supported_modes,
NULL);
}
bool wiphy_init(struct l_genl_family *in, const char *whitelist,
const char *blacklist)
{
struct l_genl_msg *msg;
/*
* This is an extra sanity check so that no memory is leaked
* in case the generic netlink handling gets confused.
*/
if (wiphy_list) {
l_warn("Destroying existing list of wiphy devices");
l_queue_destroy(wiphy_list, NULL);
}
nl80211 = in;
if (!l_genl_family_register(nl80211, "config", wiphy_config_notify,
NULL, NULL))
l_error("Registering for config notification failed");
if (!l_genl_family_register(nl80211, "regulatory",
wiphy_regulatory_notify, NULL, NULL))
l_error("Registering for regulatory notification failed");
wiphy_list = l_queue_new();
msg = l_genl_msg_new(NL80211_CMD_GET_PROTOCOL_FEATURES);
if (!l_genl_family_send(nl80211, msg, protocol_features_callback,
NULL, NULL))
l_error("Getting protocol features failed");
msg = l_genl_msg_new(NL80211_CMD_GET_REG);
if (!l_genl_family_send(nl80211, msg, regulatory_info_callback,
NULL, NULL))
l_error("Getting regulatory info failed");
msg = l_genl_msg_new(NL80211_CMD_GET_WIPHY);
if (!l_genl_family_dump(nl80211, msg, wiphy_dump_callback,
NULL, wiphy_dump_done))
l_error("Getting all wiphy devices failed");
rfkill_watch_add(wiphy_rfkill_cb, NULL);
if (!l_dbus_register_interface(dbus_get_bus(),
IWD_WIPHY_INTERFACE,
setup_wiphy_interface,
NULL, false))
l_error("Unable to register the %s interface",
IWD_WIPHY_INTERFACE);
hwdb = l_hwdb_new_default();
if (whitelist)
whitelist_filter = l_strsplit(whitelist, ',');
if (blacklist)
blacklist_filter = l_strsplit(blacklist, ',');
return true;
}
bool wiphy_exit(void)
{
l_strfreev(whitelist_filter);
l_strfreev(blacklist_filter);
l_queue_destroy(wiphy_list, wiphy_free);
wiphy_list = NULL;
nl80211 = NULL;
l_dbus_unregister_interface(dbus_get_bus(), IWD_WIPHY_INTERFACE);
l_hwdb_unref(hwdb);
return true;
}