mirror of
https://git.kernel.org/pub/scm/network/wireless/iwd.git
synced 2024-11-17 09:29:22 +01:00
297 lines
7.3 KiB
C
297 lines
7.3 KiB
C
/*
|
|
*
|
|
* Wireless daemon for Linux
|
|
*
|
|
* Copyright (C) 2013-2014 Intel Corporation. All rights reserved.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <linux/if_ether.h>
|
|
|
|
#include <ell/ell.h>
|
|
|
|
#include "sha1.h"
|
|
#include "crypto.h"
|
|
|
|
static bool hmac_common(enum l_checksum_type type,
|
|
const void *key, size_t key_len,
|
|
const void *data, size_t data_len, void *output, size_t size)
|
|
{
|
|
struct l_checksum *hmac;
|
|
|
|
hmac = l_checksum_new_hmac(type, key, key_len);
|
|
if (!hmac)
|
|
return false;
|
|
|
|
l_checksum_update(hmac, data, data_len);
|
|
l_checksum_get_digest(hmac, output, size);
|
|
l_checksum_free(hmac);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool hmac_md5(const void *key, size_t key_len,
|
|
const void *data, size_t data_len, void *output, size_t size)
|
|
{
|
|
return hmac_common(L_CHECKSUM_MD5, key, key_len, data, data_len,
|
|
output, size);
|
|
}
|
|
|
|
bool hmac_sha256(const void *key, size_t key_len,
|
|
const void *data, size_t data_len, void *output, size_t size)
|
|
{
|
|
return hmac_common(L_CHECKSUM_SHA256, key, key_len, data, data_len,
|
|
output, size);
|
|
}
|
|
|
|
bool cmac_aes(const void *key, size_t key_len,
|
|
const void *data, size_t data_len, void *output, size_t size)
|
|
{
|
|
struct l_checksum *cmac_aes;
|
|
|
|
cmac_aes = l_checksum_new_cmac_aes(key, key_len);
|
|
if (!cmac_aes)
|
|
return false;
|
|
|
|
l_checksum_update(cmac_aes, data, data_len);
|
|
l_checksum_get_digest(cmac_aes, output, size);
|
|
l_checksum_free(cmac_aes);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Implements AES Key-Unwrap from RFC 3394
|
|
*
|
|
* The key is specified using @kek. @in contains the encrypted data and @len
|
|
* contains its length. @out will contain the decrypted data. The result
|
|
* will be (len - 8) bytes.
|
|
*
|
|
* Returns: true on success, false if an IV mismatch has occurred.
|
|
*
|
|
* NOTE: Buffers @in and @out can overlap
|
|
*/
|
|
bool aes_unwrap(const uint8_t *kek, const uint8_t *in, size_t len,
|
|
uint8_t *out)
|
|
{
|
|
uint8_t a[8], b[16];
|
|
uint8_t *r;
|
|
size_t n = (len - 8) >> 3;
|
|
int i, j;
|
|
struct l_cipher *cipher;
|
|
|
|
cipher = l_cipher_new(L_CIPHER_AES, kek, 16);
|
|
if (!cipher)
|
|
return false;
|
|
|
|
/* Set up */
|
|
memcpy(a, in, 8);
|
|
memmove(out, in + 8, n * 8);
|
|
|
|
/* Unwrap */
|
|
for (j = 5; j >= 0; j--) {
|
|
r = out + (n - 1) * 8;
|
|
|
|
for (i = n; i >= 1; i--) {
|
|
memcpy(b, a, 8);
|
|
memcpy(b + 8, r, 8);
|
|
b[7] ^= n * j + i;
|
|
l_cipher_decrypt(cipher, b, b, 16);
|
|
memcpy(a, b, 8);
|
|
memcpy(r, b + 8, 8);
|
|
r -= 8;
|
|
}
|
|
}
|
|
|
|
l_cipher_free(cipher);
|
|
|
|
/* Check IV */
|
|
for (i = 0; i < 8; i++)
|
|
if (a[i] != 0xA6)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool arc4_skip(const uint8_t *key, size_t key_len, size_t skip,
|
|
const uint8_t *in, size_t len, uint8_t *out)
|
|
{
|
|
char skip_buf[1024];
|
|
struct l_cipher *cipher;
|
|
|
|
cipher = l_cipher_new(L_CIPHER_ARC4, key, key_len);
|
|
if (!cipher)
|
|
return false;
|
|
|
|
while (skip > 0) {
|
|
size_t to_skip =
|
|
skip > sizeof(skip_buf) ? sizeof(skip_buf) : skip;
|
|
|
|
l_cipher_decrypt(cipher, skip_buf, skip_buf, to_skip);
|
|
skip -= to_skip;
|
|
}
|
|
|
|
l_cipher_decrypt(cipher, in, out, len);
|
|
l_cipher_free(cipher);
|
|
|
|
return true;
|
|
}
|
|
/* 802.11, Section 11.6.2, Table 11-4 */
|
|
int crypto_cipher_key_len(enum crypto_cipher cipher)
|
|
{
|
|
switch (cipher) {
|
|
case CRYPTO_CIPHER_WEP40:
|
|
return 5;
|
|
case CRYPTO_CIPHER_WEP104:
|
|
return 13;
|
|
case CRYPTO_CIPHER_TKIP:
|
|
return 32;
|
|
case CRYPTO_CIPHER_CCMP:
|
|
return 16;
|
|
case CRYPTO_CIPHER_BIP:
|
|
return 16;
|
|
};
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypto_cipher_tk_bits(enum crypto_cipher cipher)
|
|
{
|
|
return crypto_cipher_key_len(cipher) * 8;
|
|
}
|
|
|
|
int crypto_psk_from_passphrase(const char *passphrase,
|
|
const unsigned char *ssid, size_t ssid_len,
|
|
unsigned char *out_psk)
|
|
{
|
|
size_t passphrase_len;
|
|
size_t i;
|
|
bool result;
|
|
unsigned char psk[32];
|
|
|
|
if (!passphrase)
|
|
return -EINVAL;
|
|
|
|
if (!ssid)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* IEEE 802.11, Annex M, Section M.4.1:
|
|
* "A pass-phrase is a sequence of between 8 and 63 ASCII-encoded
|
|
* characters. The limit of 63 comes from the desire to distinguish
|
|
* between a pass-phrase and a PSK displayed as 64 hexadecimal
|
|
* characters."
|
|
*/
|
|
passphrase_len = strlen(passphrase);
|
|
if (passphrase_len < 8 || passphrase_len > 63)
|
|
return -ERANGE;
|
|
|
|
if (ssid_len == 0 || ssid_len > 32)
|
|
return -ERANGE;
|
|
|
|
/* IEEE 802.11, Annex M, Section M.4.1:
|
|
* "Each character in the pass-phrase must have an encoding in the
|
|
* range of 32 to 126 (decimal), inclusive."
|
|
*
|
|
* This corresponds to printable characters only
|
|
*/
|
|
for (i = 0; i < passphrase_len; i++) {
|
|
if (l_ascii_isprint(passphrase[i]))
|
|
continue;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
result = pbkdf2_sha1(passphrase, passphrase_len, ssid, ssid_len,
|
|
4096, psk, sizeof(psk));
|
|
if (!result)
|
|
return -ENOKEY;
|
|
|
|
if (out_psk)
|
|
memcpy(out_psk, psk, sizeof(psk));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 802.11, Section 11.6.6.7:
|
|
* PTK = PRF-X(PMK, "Pairwise key expansion", Min(AA, SA) || Max(AA, SA) ||
|
|
* Min(ANonce, SNonce) || Max(ANonce, SNonce))
|
|
*
|
|
* 802.11, Section 11.6.1.3:
|
|
* The PTK shall be derived from the PMK by
|
|
* PTK ← PRF-X(PMK, “Pairwise key expansion”, Min(AA,SPA) || Max(AA,SPA) ||
|
|
* Min(ANonce,SNonce) || Max(ANonce,SNonce))
|
|
* where X = 256 + TK_bits. The value of TK_bits is cipher-suite dependent and
|
|
* is defined in Table 11-4. The Min and Max operations for IEEE 802 addresses
|
|
* are with the address converted to a positive integer treating the first
|
|
* transmitted octet as the most significant octet of the integer. The Min and
|
|
* Max operations for nonces are with the nonces treated as positive integers
|
|
* converted as specified in 8.2.2.
|
|
*/
|
|
bool crypto_derive_ptk(const uint8_t *pmk, size_t pmk_len, const char *label,
|
|
const uint8_t *addr1, const uint8_t *addr2,
|
|
const uint8_t *nonce1, const uint8_t *nonce2,
|
|
uint8_t *out_ptk, size_t ptk_len)
|
|
{
|
|
/* Nonce length is 32 */
|
|
uint8_t data[ETH_ALEN * 2 + 64];
|
|
size_t pos = 0;
|
|
|
|
/* Address 1 is less than Address 2 */
|
|
if (memcmp(addr1, addr2, ETH_ALEN) < 0) {
|
|
memcpy(data, addr1, ETH_ALEN);
|
|
memcpy(data + ETH_ALEN, addr2, ETH_ALEN);
|
|
} else {
|
|
memcpy(data, addr2, ETH_ALEN);
|
|
memcpy(data + ETH_ALEN, addr1, ETH_ALEN);
|
|
}
|
|
|
|
pos += ETH_ALEN * 2;
|
|
|
|
/* Nonce1 is less than Nonce2 */
|
|
if (memcmp(nonce1, nonce2, 32) < 0) {
|
|
memcpy(data + pos, nonce1, 32);
|
|
memcpy(data + pos + 32, nonce2, 32);
|
|
} else {
|
|
memcpy(data + pos, nonce2, 32);
|
|
memcpy(data + pos + 32, nonce1, 32);
|
|
}
|
|
|
|
pos += 64;
|
|
|
|
return prf_sha1(pmk, pmk_len, label, strlen(label),
|
|
data, sizeof(data), out_ptk, ptk_len);
|
|
}
|
|
|
|
bool crypto_derive_pairwise_ptk(const uint8_t *pmk,
|
|
const uint8_t *addr1, const uint8_t *addr2,
|
|
const uint8_t *nonce1, const uint8_t *nonce2,
|
|
struct crypto_ptk *out_ptk, size_t ptk_len)
|
|
{
|
|
return crypto_derive_ptk(pmk, 32, "Pairwise key expansion",
|
|
addr1, addr2, nonce1, nonce2,
|
|
(uint8_t *) out_ptk, ptk_len);
|
|
}
|