3
0
mirror of https://git.kernel.org/pub/scm/network/wireless/iwd.git synced 2024-11-17 09:29:22 +01:00
iwd/src/crypto.c
2015-02-18 21:11:37 -06:00

297 lines
7.3 KiB
C

/*
*
* Wireless daemon for Linux
*
* Copyright (C) 2013-2014 Intel Corporation. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdbool.h>
#include <string.h>
#include <errno.h>
#include <linux/if_ether.h>
#include <ell/ell.h>
#include "sha1.h"
#include "crypto.h"
static bool hmac_common(enum l_checksum_type type,
const void *key, size_t key_len,
const void *data, size_t data_len, void *output, size_t size)
{
struct l_checksum *hmac;
hmac = l_checksum_new_hmac(type, key, key_len);
if (!hmac)
return false;
l_checksum_update(hmac, data, data_len);
l_checksum_get_digest(hmac, output, size);
l_checksum_free(hmac);
return true;
}
bool hmac_md5(const void *key, size_t key_len,
const void *data, size_t data_len, void *output, size_t size)
{
return hmac_common(L_CHECKSUM_MD5, key, key_len, data, data_len,
output, size);
}
bool hmac_sha256(const void *key, size_t key_len,
const void *data, size_t data_len, void *output, size_t size)
{
return hmac_common(L_CHECKSUM_SHA256, key, key_len, data, data_len,
output, size);
}
bool cmac_aes(const void *key, size_t key_len,
const void *data, size_t data_len, void *output, size_t size)
{
struct l_checksum *cmac_aes;
cmac_aes = l_checksum_new_cmac_aes(key, key_len);
if (!cmac_aes)
return false;
l_checksum_update(cmac_aes, data, data_len);
l_checksum_get_digest(cmac_aes, output, size);
l_checksum_free(cmac_aes);
return true;
}
/*
* Implements AES Key-Unwrap from RFC 3394
*
* The key is specified using @kek. @in contains the encrypted data and @len
* contains its length. @out will contain the decrypted data. The result
* will be (len - 8) bytes.
*
* Returns: true on success, false if an IV mismatch has occurred.
*
* NOTE: Buffers @in and @out can overlap
*/
bool aes_unwrap(const uint8_t *kek, const uint8_t *in, size_t len,
uint8_t *out)
{
uint8_t a[8], b[16];
uint8_t *r;
size_t n = (len - 8) >> 3;
int i, j;
struct l_cipher *cipher;
cipher = l_cipher_new(L_CIPHER_AES, kek, 16);
if (!cipher)
return false;
/* Set up */
memcpy(a, in, 8);
memmove(out, in + 8, n * 8);
/* Unwrap */
for (j = 5; j >= 0; j--) {
r = out + (n - 1) * 8;
for (i = n; i >= 1; i--) {
memcpy(b, a, 8);
memcpy(b + 8, r, 8);
b[7] ^= n * j + i;
l_cipher_decrypt(cipher, b, b, 16);
memcpy(a, b, 8);
memcpy(r, b + 8, 8);
r -= 8;
}
}
l_cipher_free(cipher);
/* Check IV */
for (i = 0; i < 8; i++)
if (a[i] != 0xA6)
return false;
return true;
}
bool arc4_skip(const uint8_t *key, size_t key_len, size_t skip,
const uint8_t *in, size_t len, uint8_t *out)
{
char skip_buf[1024];
struct l_cipher *cipher;
cipher = l_cipher_new(L_CIPHER_ARC4, key, key_len);
if (!cipher)
return false;
while (skip > 0) {
size_t to_skip =
skip > sizeof(skip_buf) ? sizeof(skip_buf) : skip;
l_cipher_decrypt(cipher, skip_buf, skip_buf, to_skip);
skip -= to_skip;
}
l_cipher_decrypt(cipher, in, out, len);
l_cipher_free(cipher);
return true;
}
/* 802.11, Section 11.6.2, Table 11-4 */
int crypto_cipher_key_len(enum crypto_cipher cipher)
{
switch (cipher) {
case CRYPTO_CIPHER_WEP40:
return 5;
case CRYPTO_CIPHER_WEP104:
return 13;
case CRYPTO_CIPHER_TKIP:
return 32;
case CRYPTO_CIPHER_CCMP:
return 16;
case CRYPTO_CIPHER_BIP:
return 16;
};
return 0;
}
int crypto_cipher_tk_bits(enum crypto_cipher cipher)
{
return crypto_cipher_key_len(cipher) * 8;
}
int crypto_psk_from_passphrase(const char *passphrase,
const unsigned char *ssid, size_t ssid_len,
unsigned char *out_psk)
{
size_t passphrase_len;
size_t i;
bool result;
unsigned char psk[32];
if (!passphrase)
return -EINVAL;
if (!ssid)
return -EINVAL;
/*
* IEEE 802.11, Annex M, Section M.4.1:
* "A pass-phrase is a sequence of between 8 and 63 ASCII-encoded
* characters. The limit of 63 comes from the desire to distinguish
* between a pass-phrase and a PSK displayed as 64 hexadecimal
* characters."
*/
passphrase_len = strlen(passphrase);
if (passphrase_len < 8 || passphrase_len > 63)
return -ERANGE;
if (ssid_len == 0 || ssid_len > 32)
return -ERANGE;
/* IEEE 802.11, Annex M, Section M.4.1:
* "Each character in the pass-phrase must have an encoding in the
* range of 32 to 126 (decimal), inclusive."
*
* This corresponds to printable characters only
*/
for (i = 0; i < passphrase_len; i++) {
if (l_ascii_isprint(passphrase[i]))
continue;
return -EINVAL;
}
result = pbkdf2_sha1(passphrase, passphrase_len, ssid, ssid_len,
4096, psk, sizeof(psk));
if (!result)
return -ENOKEY;
if (out_psk)
memcpy(out_psk, psk, sizeof(psk));
return 0;
}
/*
* 802.11, Section 11.6.6.7:
* PTK = PRF-X(PMK, "Pairwise key expansion", Min(AA, SA) || Max(AA, SA) ||
* Min(ANonce, SNonce) || Max(ANonce, SNonce))
*
* 802.11, Section 11.6.1.3:
* The PTK shall be derived from the PMK by
* PTK ← PRF-X(PMK, “Pairwise key expansion”, Min(AA,SPA) || Max(AA,SPA) ||
* Min(ANonce,SNonce) || Max(ANonce,SNonce))
* where X = 256 + TK_bits. The value of TK_bits is cipher-suite dependent and
* is defined in Table 11-4. The Min and Max operations for IEEE 802 addresses
* are with the address converted to a positive integer treating the first
* transmitted octet as the most significant octet of the integer. The Min and
* Max operations for nonces are with the nonces treated as positive integers
* converted as specified in 8.2.2.
*/
bool crypto_derive_ptk(const uint8_t *pmk, size_t pmk_len, const char *label,
const uint8_t *addr1, const uint8_t *addr2,
const uint8_t *nonce1, const uint8_t *nonce2,
uint8_t *out_ptk, size_t ptk_len)
{
/* Nonce length is 32 */
uint8_t data[ETH_ALEN * 2 + 64];
size_t pos = 0;
/* Address 1 is less than Address 2 */
if (memcmp(addr1, addr2, ETH_ALEN) < 0) {
memcpy(data, addr1, ETH_ALEN);
memcpy(data + ETH_ALEN, addr2, ETH_ALEN);
} else {
memcpy(data, addr2, ETH_ALEN);
memcpy(data + ETH_ALEN, addr1, ETH_ALEN);
}
pos += ETH_ALEN * 2;
/* Nonce1 is less than Nonce2 */
if (memcmp(nonce1, nonce2, 32) < 0) {
memcpy(data + pos, nonce1, 32);
memcpy(data + pos + 32, nonce2, 32);
} else {
memcpy(data + pos, nonce2, 32);
memcpy(data + pos + 32, nonce1, 32);
}
pos += 64;
return prf_sha1(pmk, pmk_len, label, strlen(label),
data, sizeof(data), out_ptk, ptk_len);
}
bool crypto_derive_pairwise_ptk(const uint8_t *pmk,
const uint8_t *addr1, const uint8_t *addr2,
const uint8_t *nonce1, const uint8_t *nonce2,
struct crypto_ptk *out_ptk, size_t ptk_len)
{
return crypto_derive_ptk(pmk, 32, "Pairwise key expansion",
addr1, addr2, nonce1, nonce2,
(uint8_t *) out_ptk, ptk_len);
}