3
0
mirror of https://git.kernel.org/pub/scm/network/wireless/iwd.git synced 2024-11-05 19:49:23 +01:00
iwd/src/crypto.c
2017-06-06 13:32:14 -05:00

658 lines
17 KiB
C

/*
*
* Wireless daemon for Linux
*
* Copyright (C) 2013-2014 Intel Corporation. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdbool.h>
#include <string.h>
#include <errno.h>
#include <linux/if_ether.h>
#include <ell/ell.h>
#include "crypto.h"
/* RFC 3526, Section 2 */
const unsigned char crypto_dh5_prime[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc9, 0x0f, 0xda, 0xa2,
0x21, 0x68, 0xc2, 0x34, 0xc4, 0xc6, 0x62, 0x8b, 0x80, 0xdc, 0x1c, 0xd1,
0x29, 0x02, 0x4e, 0x08, 0x8a, 0x67, 0xcc, 0x74, 0x02, 0x0b, 0xbe, 0xa6,
0x3b, 0x13, 0x9b, 0x22, 0x51, 0x4a, 0x08, 0x79, 0x8e, 0x34, 0x04, 0xdd,
0xef, 0x95, 0x19, 0xb3, 0xcd, 0x3a, 0x43, 0x1b, 0x30, 0x2b, 0x0a, 0x6d,
0xf2, 0x5f, 0x14, 0x37, 0x4f, 0xe1, 0x35, 0x6d, 0x6d, 0x51, 0xc2, 0x45,
0xe4, 0x85, 0xb5, 0x76, 0x62, 0x5e, 0x7e, 0xc6, 0xf4, 0x4c, 0x42, 0xe9,
0xa6, 0x37, 0xed, 0x6b, 0x0b, 0xff, 0x5c, 0xb6, 0xf4, 0x06, 0xb7, 0xed,
0xee, 0x38, 0x6b, 0xfb, 0x5a, 0x89, 0x9f, 0xa5, 0xae, 0x9f, 0x24, 0x11,
0x7c, 0x4b, 0x1f, 0xe6, 0x49, 0x28, 0x66, 0x51, 0xec, 0xe4, 0x5b, 0x3d,
0xc2, 0x00, 0x7c, 0xb8, 0xa1, 0x63, 0xbf, 0x05, 0x98, 0xda, 0x48, 0x36,
0x1c, 0x55, 0xd3, 0x9a, 0x69, 0x16, 0x3f, 0xa8, 0xfd, 0x24, 0xcf, 0x5f,
0x83, 0x65, 0x5d, 0x23, 0xdc, 0xa3, 0xad, 0x96, 0x1c, 0x62, 0xf3, 0x56,
0x20, 0x85, 0x52, 0xbb, 0x9e, 0xd5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6d,
0x67, 0x0c, 0x35, 0x4e, 0x4a, 0xbc, 0x98, 0x04, 0xf1, 0x74, 0x6c, 0x08,
0xca, 0x23, 0x73, 0x27, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
};
size_t crypto_dh5_prime_size = sizeof(crypto_dh5_prime);
const unsigned char crypto_dh5_generator[] = { 0x2 };
size_t crypto_dh5_generator_size = sizeof(crypto_dh5_generator);
static bool hmac_common(enum l_checksum_type type,
const void *key, size_t key_len,
const void *data, size_t data_len, void *output, size_t size)
{
struct l_checksum *hmac;
hmac = l_checksum_new_hmac(type, key, key_len);
if (!hmac)
return false;
l_checksum_update(hmac, data, data_len);
l_checksum_get_digest(hmac, output, size);
l_checksum_free(hmac);
return true;
}
bool hmac_md5(const void *key, size_t key_len,
const void *data, size_t data_len, void *output, size_t size)
{
return hmac_common(L_CHECKSUM_MD5, key, key_len, data, data_len,
output, size);
}
bool hmac_sha1(const void *key, size_t key_len,
const void *data, size_t data_len, void *output, size_t size)
{
return hmac_common(L_CHECKSUM_SHA1, key, key_len, data, data_len,
output, size);
}
bool hmac_sha256(const void *key, size_t key_len,
const void *data, size_t data_len, void *output, size_t size)
{
return hmac_common(L_CHECKSUM_SHA256, key, key_len, data, data_len,
output, size);
}
bool cmac_aes(const void *key, size_t key_len,
const void *data, size_t data_len, void *output, size_t size)
{
struct l_checksum *cmac_aes;
cmac_aes = l_checksum_new_cmac_aes(key, key_len);
if (!cmac_aes)
return false;
l_checksum_update(cmac_aes, data, data_len);
l_checksum_get_digest(cmac_aes, output, size);
l_checksum_free(cmac_aes);
return true;
}
/*
* Implements AES Key-Unwrap from RFC 3394
*
* The key is specified using @kek. @in contains the encrypted data and @len
* contains its length. @out will contain the decrypted data. The result
* will be (len - 8) bytes.
*
* Returns: true on success, false if an IV mismatch has occurred.
*
* NOTE: Buffers @in and @out can overlap
*/
bool aes_unwrap(const uint8_t *kek, const uint8_t *in, size_t len,
uint8_t *out)
{
uint8_t a[8], b[16];
uint8_t *r;
size_t n = (len - 8) >> 3;
int i, j;
struct l_cipher *cipher;
cipher = l_cipher_new(L_CIPHER_AES, kek, 16);
if (!cipher)
return false;
/* Set up */
memcpy(a, in, 8);
memmove(out, in + 8, n * 8);
/* Unwrap */
for (j = 5; j >= 0; j--) {
r = out + (n - 1) * 8;
for (i = n; i >= 1; i--) {
memcpy(b, a, 8);
memcpy(b + 8, r, 8);
b[7] ^= n * j + i;
l_cipher_decrypt(cipher, b, b, 16);
memcpy(a, b, 8);
memcpy(r, b + 8, 8);
r -= 8;
}
}
l_cipher_free(cipher);
/* Check IV */
for (i = 0; i < 8; i++)
if (a[i] != 0xA6)
return false;
return true;
}
bool arc4_skip(const uint8_t *key, size_t key_len, size_t skip,
const uint8_t *in, size_t len, uint8_t *out)
{
char skip_buf[1024];
struct l_cipher *cipher;
struct iovec in_vec[2];
struct iovec out_vec[2];
bool r;
cipher = l_cipher_new(L_CIPHER_ARC4, key, key_len);
if (!cipher)
return false;
while (skip > sizeof(skip_buf)) {
size_t to_skip =
skip > sizeof(skip_buf) ? sizeof(skip_buf) : skip;
l_cipher_decrypt(cipher, skip_buf, skip_buf, to_skip);
skip -= to_skip;
}
in_vec[0].iov_base = skip_buf;
in_vec[0].iov_len = skip;
in_vec[1].iov_base = (void *) in;
in_vec[1].iov_len = len;
out_vec[0].iov_base = skip_buf;
out_vec[0].iov_len = skip;
out_vec[1].iov_base = out;
out_vec[1].iov_len = len;
r = l_cipher_decryptv(cipher, in_vec, 2, out_vec, 2);
l_cipher_free(cipher);
return r;
}
/* 802.11, Section 11.6.2, Table 11-4 */
int crypto_cipher_key_len(enum crypto_cipher cipher)
{
switch (cipher) {
case CRYPTO_CIPHER_WEP40:
return 5;
case CRYPTO_CIPHER_WEP104:
return 13;
case CRYPTO_CIPHER_TKIP:
return 32;
case CRYPTO_CIPHER_CCMP:
return 16;
case CRYPTO_CIPHER_BIP:
return 16;
};
return 0;
}
int crypto_cipher_tk_bits(enum crypto_cipher cipher)
{
return crypto_cipher_key_len(cipher) * 8;
}
#define SHA1_MAC_LEN 20
static void F(struct l_checksum *checksum,
const char *salt, size_t salt_len,
unsigned int iterations, unsigned int count,
unsigned char *digest)
{
unsigned char tmp[SHA1_MAC_LEN];
unsigned char buf[36];
unsigned int i, j;
memcpy(buf, salt, salt_len);
buf[salt_len + 0] = (count >> 24) & 0xff;
buf[salt_len + 1] = (count >> 16) & 0xff;
buf[salt_len + 2] = (count >> 8) & 0xff;
buf[salt_len + 3] = count & 0xff;
l_checksum_update(checksum, buf, salt_len + 4);
l_checksum_get_digest(checksum, tmp, SHA1_MAC_LEN);
memcpy(digest, tmp, SHA1_MAC_LEN);
for (i = 1; i < iterations; i++) {
l_checksum_update(checksum, tmp, SHA1_MAC_LEN);
l_checksum_get_digest(checksum, tmp, SHA1_MAC_LEN);
for (j = 0; j < SHA1_MAC_LEN; j++)
digest[j] ^= tmp[j];
}
}
bool pbkdf2_sha1(const void *password, size_t password_len,
const void *salt, size_t salt_len,
unsigned int iterations, void *output, size_t size)
{
struct l_checksum *checksum;
unsigned char *ptr = output;
unsigned char digest[SHA1_MAC_LEN];
unsigned int i;
checksum = l_checksum_new_hmac(L_CHECKSUM_SHA1, password, password_len);
if (!checksum)
return false;
for (i = 1; size > 0; i++) {
size_t len;
F(checksum, salt, salt_len, iterations, i, digest);
len = size > SHA1_MAC_LEN ? SHA1_MAC_LEN : size;
memcpy(ptr, digest, len);
ptr += len;
size -= len;
}
l_checksum_free(checksum);
return true;
}
int crypto_psk_from_passphrase(const char *passphrase,
const unsigned char *ssid, size_t ssid_len,
unsigned char *out_psk)
{
size_t passphrase_len;
size_t i;
bool result;
unsigned char psk[32];
if (!passphrase)
return -EINVAL;
if (!ssid)
return -EINVAL;
/*
* IEEE 802.11, Annex M, Section M.4.1:
* "A pass-phrase is a sequence of between 8 and 63 ASCII-encoded
* characters. The limit of 63 comes from the desire to distinguish
* between a pass-phrase and a PSK displayed as 64 hexadecimal
* characters."
*/
passphrase_len = strlen(passphrase);
if (passphrase_len < 8 || passphrase_len > 63)
return -ERANGE;
if (ssid_len == 0 || ssid_len > 32)
return -ERANGE;
/* IEEE 802.11, Annex M, Section M.4.1:
* "Each character in the pass-phrase must have an encoding in the
* range of 32 to 126 (decimal), inclusive."
*
* This corresponds to printable characters only
*/
for (i = 0; i < passphrase_len; i++) {
if (l_ascii_isprint(passphrase[i]))
continue;
return -EINVAL;
}
result = pbkdf2_sha1(passphrase, passphrase_len, ssid, ssid_len,
4096, psk, sizeof(psk));
if (!result)
return -ENOKEY;
if (out_psk)
memcpy(out_psk, psk, sizeof(psk));
return 0;
}
bool prf_sha1(const void *key, size_t key_len,
const void *prefix, size_t prefix_len,
const void *data, size_t data_len, void *output, size_t size)
{
struct l_checksum *hmac;
unsigned int i, offset = 0;
unsigned char empty = '\0';
unsigned char counter;
struct iovec iov[4] = {
[0] = { .iov_base = (void *) prefix, .iov_len = prefix_len },
[1] = { .iov_base = &empty, .iov_len = 1 },
[2] = { .iov_base = (void *) data, .iov_len = data_len },
[3] = { .iov_base = &counter, .iov_len = 1 },
};
hmac = l_checksum_new_hmac(L_CHECKSUM_SHA1, key, key_len);
if (!hmac)
return false;
/* PRF processes in 160-bit chunks (20 bytes) */
for (i = 0, counter = 0; i < (size + 19) / 20; i++, counter++) {
size_t len;
if (size - offset > 20)
len = 20;
else
len = size - offset;
l_checksum_updatev(hmac, iov, 4);
l_checksum_get_digest(hmac, output + offset, len);
offset += len;
}
l_checksum_free(hmac);
return true;
}
/* Defined in 802.11-2012, Section 11.6.1.7.2 Key derivation function (KDF) */
bool kdf_sha256(const void *key, size_t key_len,
const void *prefix, size_t prefix_len,
const void *data, size_t data_len, void *output, size_t size)
{
struct l_checksum *hmac;
unsigned int i, offset = 0;
unsigned int counter;
uint8_t counter_le[2];
uint8_t length_le[2];
struct iovec iov[4] = {
[0] = { .iov_base = counter_le, .iov_len = 2 },
[1] = { .iov_base = (void *) prefix, .iov_len = prefix_len },
[2] = { .iov_base = (void *) data, .iov_len = data_len },
[3] = { .iov_base = length_le, .iov_len = 2 },
};
hmac = l_checksum_new_hmac(L_CHECKSUM_SHA256, key, key_len);
if (!hmac)
return false;
/* Length is denominated in bits, not bytes */
l_put_le16(size * 8, length_le);
/* KDF processes in 256-bit chunks (32 bytes) */
for (i = 0, counter = 1; i < (size + 31) / 32; i++, counter++) {
size_t len;
if (size - offset > 32)
len = 32;
else
len = size - offset;
l_put_le16(counter, counter_le);
l_checksum_updatev(hmac, iov, 4);
l_checksum_get_digest(hmac, output + offset, len);
offset += len;
}
l_checksum_free(hmac);
return true;
}
/*
* 802.11, Section 11.6.6.7:
* PTK = PRF-X(PMK, "Pairwise key expansion", Min(AA, SA) || Max(AA, SA) ||
* Min(ANonce, SNonce) || Max(ANonce, SNonce))
*
* 802.11, Section 11.6.1.3:
* The PTK shall be derived from the PMK by
* PTK ← PRF-X(PMK, “Pairwise key expansion”, Min(AA,SPA) || Max(AA,SPA) ||
* Min(ANonce,SNonce) || Max(ANonce,SNonce))
* where X = 256 + TK_bits. The value of TK_bits is cipher-suite dependent and
* is defined in Table 11-4. The Min and Max operations for IEEE 802 addresses
* are with the address converted to a positive integer treating the first
* transmitted octet as the most significant octet of the integer. The Min and
* Max operations for nonces are with the nonces treated as positive integers
* converted as specified in 8.2.2.
*/
static bool crypto_derive_ptk(const uint8_t *pmk, size_t pmk_len,
const char *label,
const uint8_t *addr1, const uint8_t *addr2,
const uint8_t *nonce1, const uint8_t *nonce2,
uint8_t *out_ptk, size_t ptk_len,
bool use_sha256)
{
/* Nonce length is 32 */
uint8_t data[ETH_ALEN * 2 + 64];
size_t pos = 0;
/* Address 1 is less than Address 2 */
if (memcmp(addr1, addr2, ETH_ALEN) < 0) {
memcpy(data, addr1, ETH_ALEN);
memcpy(data + ETH_ALEN, addr2, ETH_ALEN);
} else {
memcpy(data, addr2, ETH_ALEN);
memcpy(data + ETH_ALEN, addr1, ETH_ALEN);
}
pos += ETH_ALEN * 2;
/* Nonce1 is less than Nonce2 */
if (memcmp(nonce1, nonce2, 32) < 0) {
memcpy(data + pos, nonce1, 32);
memcpy(data + pos + 32, nonce2, 32);
} else {
memcpy(data + pos, nonce2, 32);
memcpy(data + pos + 32, nonce1, 32);
}
pos += 64;
if (use_sha256)
return kdf_sha256(pmk, pmk_len, label, strlen(label),
data, sizeof(data), out_ptk, ptk_len);
else
return prf_sha1(pmk, pmk_len, label, strlen(label),
data, sizeof(data), out_ptk, ptk_len);
}
bool crypto_derive_pairwise_ptk(const uint8_t *pmk,
const uint8_t *addr1, const uint8_t *addr2,
const uint8_t *nonce1, const uint8_t *nonce2,
struct crypto_ptk *out_ptk, size_t ptk_len,
bool use_sha256)
{
return crypto_derive_ptk(pmk, 32, "Pairwise key expansion",
addr1, addr2, nonce1, nonce2,
(uint8_t *) out_ptk, ptk_len,
use_sha256);
}
/* Defined in 802.11-2012, Section 11.6.1.7.3 PMK-R0 */
bool crypto_derive_pmk_r0(const uint8_t *xxkey,
const uint8_t *ssid, size_t ssid_len,
uint16_t mdid,
const uint8_t *r0khid, size_t r0kh_len,
const uint8_t *s0khid, uint8_t *out_pmk_r0,
uint8_t *out_pmk_r0_name)
{
uint8_t context[512];
size_t pos = 0;
uint8_t output[48];
struct l_checksum *sha256;
bool r = false;
struct iovec iov[2] = {
[0] = { .iov_base = "FT-R0N", .iov_len = 6 },
[1] = { .iov_base = output + 32, .iov_len = 16 },
};
context[pos++] = ssid_len;
memcpy(context + pos, ssid, ssid_len);
pos += ssid_len;
l_put_le16(mdid, context + pos);
pos += 2;
context[pos++] = r0kh_len;
memcpy(context + pos, r0khid, r0kh_len);
pos += r0kh_len;
memcpy(context + pos, s0khid, ETH_ALEN);
pos += ETH_ALEN;
if (!kdf_sha256(xxkey, 32, "FT-R0", 5, context, pos, output, 48))
goto exit;
sha256 = l_checksum_new(L_CHECKSUM_SHA256);
if (!sha256)
goto exit;
l_checksum_updatev(sha256, iov, 2);
l_checksum_get_digest(sha256, out_pmk_r0_name, 16);
l_checksum_free(sha256);
memcpy(out_pmk_r0, output, 32);
r = true;
exit:
memset(context, 0, pos);
memset(output, 0, 48);
return r;
}
/* Defined in 802.11-2012, Section 11.6.1.7.4 PMK-R1 */
bool crypto_derive_pmk_r1(const uint8_t *pmk_r0,
const uint8_t *r1khid, const uint8_t *s1khid,
const uint8_t *pmk_r0_name,
uint8_t *out_pmk_r1,
uint8_t *out_pmk_r1_name)
{
uint8_t context[2 * ETH_ALEN];
struct l_checksum *sha256;
bool r = false;
struct iovec iov[3] = {
[0] = { .iov_base = "FT-R1N", .iov_len = 6 },
[1] = { .iov_base = (uint8_t *) pmk_r0_name, .iov_len = 16 },
[2] = { .iov_base = context, .iov_len = sizeof(context) },
};
memcpy(context, r1khid, ETH_ALEN);
memcpy(context + ETH_ALEN, s1khid, ETH_ALEN);
if (!kdf_sha256(pmk_r0, 32, "FT-R1", 5, context, sizeof(context),
out_pmk_r1, 32))
goto exit;
sha256 = l_checksum_new(L_CHECKSUM_SHA256);
if (!sha256) {
memset(out_pmk_r1, 0, 32);
goto exit;
}
l_checksum_updatev(sha256, iov, 3);
l_checksum_get_digest(sha256, out_pmk_r1_name, 16);
l_checksum_free(sha256);
r = true;
exit:
memset(context, 0, sizeof(context));
return r;
}
/* Defined in 802.11-2012, Section 11.6.1.7.5 PTK */
bool crypto_derive_ft_ptk(const uint8_t *pmk_r1, const uint8_t *pmk_r1_name,
const uint8_t *addr1, const uint8_t *addr2,
const uint8_t *nonce1, const uint8_t *nonce2,
struct crypto_ptk *out_ptk, size_t ptk_len,
uint8_t *out_ptk_name)
{
uint8_t context[ETH_ALEN * 2 + 64];
struct l_checksum *sha256;
bool r = false;
struct iovec iov[3] = {
[0] = { .iov_base = (uint8_t *) pmk_r1_name, .iov_len = 16 },
[1] = { .iov_base = "FT-PTKN", .iov_len = 7 },
[2] = { .iov_base = context, .iov_len = sizeof(context) },
};
memcpy(context, nonce1, 32);
memcpy(context + 32, nonce2, 32);
memcpy(context + 64, addr1, ETH_ALEN);
memcpy(context + 64 + ETH_ALEN, addr2, ETH_ALEN);
if (!kdf_sha256(pmk_r1, 32, "FT-PTK", 6, context, sizeof(context),
out_ptk, ptk_len))
goto exit;
sha256 = l_checksum_new(L_CHECKSUM_SHA256);
if (!sha256) {
memset(out_ptk, 0, ptk_len);
goto exit;
}
l_checksum_updatev(sha256, iov, 3);
l_checksum_get_digest(sha256, out_ptk_name, 16);
l_checksum_free(sha256);
r = true;
exit:
memset(context, 0, sizeof(context));
return r;
}
/* Defined in 802.11-2012, Section 11.6.1.3 Pairwise Key Hierarchy */
bool crypto_derive_pmkid(const uint8_t *pmk,
const uint8_t *addr1, const uint8_t *addr2,
uint8_t *out_pmkid, bool use_sha256)
{
uint8_t data[20];
memcpy(data + 0, "PMK Name", 8);
memcpy(data + 8, addr2, 6);
memcpy(data + 14, addr1, 6);
if (use_sha256)
return hmac_sha256(pmk, 32, data, 20, out_pmkid, 16);
else
return hmac_sha1(pmk, 32, data, 20, out_pmkid, 16);
}