iwd/src/util.c

506 lines
10 KiB
C

/*
*
* Wireless daemon for Linux
*
* Copyright (C) 2014-2019 Intel Corporation. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <string.h>
#include <stdio.h>
#include <sys/uio.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <ell/ell.h>
#include "ell/useful.h"
#include "src/util.h"
#include "src/band.h"
const char *util_ssid_to_utf8(size_t len, const uint8_t *ssid)
{
static char buf[3 * 32 + 1];
size_t i = 0, pos = 0;
const uint8_t *start = ssid, *end;
memset(buf, 0, sizeof(buf));
if (len > 32)
goto no_ssid;
while (i < len && !ssid[i])
i++;
if (i == len)
goto no_ssid;
i = len;
while (i && (!l_utf8_validate((const char *)start, i,
(const char **)&end))) {
const char replacement[] = { 0xEF, 0xBF, 0xBD };
int bytes = end - start;
memcpy(&buf[pos], start, bytes);
pos += bytes;
memcpy(&buf[pos], replacement, sizeof(replacement));
pos += sizeof(replacement);
start = end + 1;
i -= (bytes + 1);
}
if (i) {
memcpy(&buf[pos], start, i);
pos += i;
}
no_ssid:
buf[pos] = '\0';
return buf;
}
bool util_ssid_is_utf8(size_t len, const uint8_t *ssid)
{
if (len > 32)
return false;
return l_utf8_validate((const char *)ssid, len, NULL);
}
/*
* Checks whether this is a hidden SSID. Two conditions are checked:
* 1. If the SSID is length 0
* 2. If the SSID length > 0 and all bytes are 0
*
* The length is not sanitized so the caller must have sanitized the arguments
* beforehand.
*/
bool util_ssid_is_hidden(size_t len, const uint8_t *ssid)
{
if (!len)
return true;
return l_memeqzero(ssid, len);
}
const char *util_address_to_string(const uint8_t *addr)
{
static char str[18];
sprintf(str, "%02x:%02x:%02x:%02x:%02x:%02x",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
return str;
}
bool util_string_to_address(const char *str, uint8_t *out_addr)
{
unsigned int i;
uint8_t addr[6];
if (!str)
return false;
if (strlen(str) != 17)
return false;
for (i = 0; i < 15; i += 3) {
if (!l_ascii_isxdigit(str[i]))
return false;
if (!l_ascii_isxdigit(str[i + 1]))
return false;
if (str[i + 2] != ':')
return false;
}
if (!l_ascii_isxdigit(str[i]))
return false;
if (!l_ascii_isxdigit(str[i + 1]))
return false;
if (sscanf(str, "%2hhx:%2hhx:%2hhx:%2hhx:%2hhx:%2hhx",
&addr[0], &addr[1], &addr[2],
&addr[3], &addr[4], &addr[5]) != 6)
return false;
memcpy(out_addr, addr, sizeof(addr));
return true;
}
bool util_is_group_address(const uint8_t *addr)
{
/* 802.11-2016 section 9.2.2 */
return test_bit(addr, 0);
}
bool util_is_broadcast_address(const uint8_t *addr)
{
/* 802.11-2016 section 9.2.4.3 */
static const uint8_t bcast_addr[6] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
return !memcmp(addr, bcast_addr, 6);
}
bool util_is_valid_sta_address(const uint8_t *addr)
{
return !util_is_broadcast_address(addr) && !util_is_group_address(addr);
}
/* This function assumes that identity is not bigger than 253 bytes */
const char *util_get_domain(const char *identity)
{
static char domain[256];
const char *c;
memset(domain, 0, sizeof(domain));
for (c = identity; *c; c++) {
switch (*c) {
case '\\':
memcpy(domain, identity, c - identity);
return domain;
case '@':
l_strlcpy(domain, c + 1, sizeof(domain));
return domain;
default:
continue;
}
}
return identity;
}
/* This function assumes that identity is not bigger than 253 bytes */
const char *util_get_username(const char *identity)
{
static char username[256];
const char *c;
memset(username, 0, sizeof(username));
for (c = identity; *c; c++) {
switch (*c) {
case '\\':
l_strlcpy(username, c + 1, sizeof(username));
return username;
case '@':
memcpy(username, identity, c - identity);
return username;
default:
continue;
}
}
return identity;
}
static bool is_prefix_valid(uint32_t ip, unsigned int prefix)
{
int i;
for (i = 31 - prefix; i >= 0; i--) {
if (ip & (1 << i))
return false;
}
return true;
}
/*
* Parse a prefix notation IP string (e.g. A.B.C.D/E) into an IP range and
* netmask. All returned IP addresses/mask will be in host order. The start/end
* IP will only include the usable IP range where the last octet is not zero or
* 255.
*/
bool util_ip_prefix_tohl(const char *ip, uint8_t *prefix_out,
uint32_t *start_out, uint32_t *end_out,
uint32_t *mask_out)
{
struct in_addr ia;
int i;
unsigned int prefix = 0;
char no_prefix[INET_ADDRSTRLEN];
char *endp;
uint32_t start_ip;
uint32_t end_ip;
uint32_t netmask = 0xffffffff;
/*
* Only iterate over the max length of an IP in case of invalid long
* inputs.
*/
for (i = 0; i < INET_ADDRSTRLEN && ip[i] != '\0'; i++) {
/* Found '/', check the next byte exists and parse prefix */
if (ip[i] == '/' && ip[i + 1] != '\0') {
prefix = strtoul(ip + i + 1, &endp, 10);
if (*endp != '\0')
return false;
break;
}
}
if (prefix < 1 || prefix > 31)
return false;
/* 'i' will be at most INET_ADDRSTRLEN - 1 */
l_strlcpy(no_prefix, ip, i + 1);
/* Check if IP preceeding prefix is valid */
if (inet_pton(AF_INET, no_prefix, &ia) != 1 || ia.s_addr == 0)
return false;
start_ip = ntohl(ia.s_addr);
if (!is_prefix_valid(start_ip, prefix))
return false;
/* Usable range is start + 1 .. end - 1 */
start_ip += 1;
/* Calculate end IP and netmask */
end_ip = start_ip;
for (i = 31 - prefix; i >= 0; i--) {
end_ip |= (1 << i);
netmask &= ~(1 << i);
}
end_ip -= 1;
if (prefix_out)
*prefix_out = prefix;
if (start_out)
*start_out = start_ip;
if (end_out)
*end_out = end_ip;
if (mask_out)
*mask_out = netmask;
return true;
}
struct scan_freq_set {
uint16_t channels_2ghz;
struct l_uintset *channels_5ghz;
};
struct scan_freq_set *scan_freq_set_new(void)
{
struct scan_freq_set *ret = l_new(struct scan_freq_set, 1);
/* 802.11-2012, 8.4.2.10 hints that 200 is the largest channel number */
ret->channels_5ghz = l_uintset_new_from_range(1, 200);
return ret;
}
void scan_freq_set_free(struct scan_freq_set *freqs)
{
l_uintset_free(freqs->channels_5ghz);
l_free(freqs);
}
bool scan_freq_set_add(struct scan_freq_set *freqs, uint32_t freq)
{
enum band_freq band;
uint8_t channel;
channel = band_freq_to_channel(freq, &band);
if (!channel)
return false;
switch (band) {
case BAND_FREQ_2_4_GHZ:
freqs->channels_2ghz |= 1 << (channel - 1);
return true;
case BAND_FREQ_5_GHZ:
return l_uintset_put(freqs->channels_5ghz, channel);
}
return false;
}
bool scan_freq_set_contains(const struct scan_freq_set *freqs, uint32_t freq)
{
enum band_freq band;
uint8_t channel;
channel = band_freq_to_channel(freq, &band);
if (!channel)
return false;
switch (band) {
case BAND_FREQ_2_4_GHZ:
return freqs->channels_2ghz & (1 << (channel - 1));
case BAND_FREQ_5_GHZ:
return l_uintset_contains(freqs->channels_5ghz, channel);
}
return false;
}
uint32_t scan_freq_set_get_bands(struct scan_freq_set *freqs)
{
uint32_t bands = 0;
uint32_t max;
if (freqs->channels_2ghz)
bands |= BAND_FREQ_2_4_GHZ;
max = l_uintset_get_max(freqs->channels_5ghz);
if (l_uintset_find_min(freqs->channels_5ghz) <= max)
bands |= BAND_FREQ_5_GHZ;
return bands;
}
static void scan_channels_5ghz_add(uint32_t channel, void *user_data)
{
struct l_uintset *to = user_data;
l_uintset_put(to, channel);
}
void scan_freq_set_merge(struct scan_freq_set *to,
const struct scan_freq_set *from)
{
to->channels_2ghz |= from->channels_2ghz;
l_uintset_foreach(from->channels_5ghz, scan_channels_5ghz_add,
to->channels_5ghz);
}
bool scan_freq_set_isempty(const struct scan_freq_set *set)
{
if (set->channels_2ghz == 0 && l_uintset_isempty(set->channels_5ghz))
return true;
return false;
}
struct channels_5ghz_foreach_data {
scan_freq_set_func_t func;
void *user_data;
};
static void scan_channels_5ghz_frequency(uint32_t channel, void *user_data)
{
const struct channels_5ghz_foreach_data *channels_5ghz_data = user_data;
uint32_t freq;
freq = band_channel_to_freq(channel, BAND_FREQ_5_GHZ);
channels_5ghz_data->func(freq, channels_5ghz_data->user_data);
}
void scan_freq_set_foreach(const struct scan_freq_set *freqs,
scan_freq_set_func_t func, void *user_data)
{
struct channels_5ghz_foreach_data data = { };
uint8_t channel;
uint32_t freq;
if (unlikely(!freqs || !func))
return;
data.func = func;
data.user_data = user_data;
l_uintset_foreach(freqs->channels_5ghz, scan_channels_5ghz_frequency,
&data);
if (!freqs->channels_2ghz)
return;
for (channel = 1; channel <= 14; channel++) {
if (freqs->channels_2ghz & (1 << (channel - 1))) {
freq = band_channel_to_freq(channel, BAND_FREQ_2_4_GHZ);
func(freq, user_data);
}
}
}
void scan_freq_set_constrain(struct scan_freq_set *set,
const struct scan_freq_set *constraint)
{
struct l_uintset *intersection;
intersection = l_uintset_intersect(constraint->channels_5ghz,
set->channels_5ghz);
if (!intersection)
/* This shouldn't ever be the case. */
return;
l_uintset_free(set->channels_5ghz);
set->channels_5ghz = intersection;
set->channels_2ghz &= constraint->channels_2ghz;
}
static void add_foreach(uint32_t freq, void *user_data)
{
uint32_t **list = user_data;
**list = freq;
*list = *list + 1;
}
uint32_t *scan_freq_set_to_fixed_array(const struct scan_freq_set *set,
size_t *len_out)
{
uint8_t count = 0;
uint32_t *freqs;
count = __builtin_popcount(set->channels_2ghz) +
l_uintset_size(set->channels_5ghz);
if (!count)
return NULL;
freqs = l_new(uint32_t, count);
scan_freq_set_foreach(set, add_foreach, &freqs);
/* Move pointer back to start of list */
freqs -= count;
*len_out = count;
return freqs;
}