3
0
mirror of https://git.kernel.org/pub/scm/network/wireless/iwd.git synced 2024-11-05 11:39:24 +01:00
iwd/src/ap.c
2019-10-25 00:43:08 +02:00

1692 lines
45 KiB
C

/*
*
* Wireless daemon for Linux
*
* Copyright (C) 2017-2019 Intel Corporation. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <errno.h>
#include <linux/if_ether.h>
#include <ell/ell.h>
#include "linux/nl80211.h"
#include "src/iwd.h"
#include "src/scan.h"
#include "src/device.h"
#include "src/netdev.h"
#include "src/wiphy.h"
#include "src/crypto.h"
#include "src/ie.h"
#include "src/mpdu.h"
#include "src/util.h"
#include "src/eapol.h"
#include "src/handshake.h"
#include "src/dbus.h"
#include "src/nl80211util.h"
struct ap_state {
struct netdev *netdev;
struct l_genl_family *nl80211;
char *ssid;
uint8_t channel;
unsigned int ciphers;
enum ie_rsn_cipher_suite group_cipher;
uint32_t beacon_interval;
struct l_uintset *rates;
uint8_t pmk[32];
struct l_queue *frame_watch_ids;
uint32_t start_stop_cmd_id;
uint8_t gtk[CRYPTO_MAX_GTK_LEN];
uint8_t gtk_index;
uint16_t last_aid;
struct l_queue *sta_states;
struct l_dbus_message *pending;
bool started : 1;
bool gtk_set : 1;
};
struct sta_state {
uint8_t addr[6];
bool associated;
bool rsna;
uint16_t aid;
struct mmpdu_field_capability capability;
uint16_t listen_interval;
struct l_uintset *rates;
uint32_t assoc_resp_cmd_id;
struct ap_state *ap;
uint8_t *assoc_rsne;
struct eapol_sm *sm;
struct handshake_state *hs;
uint32_t gtk_query_cmd_id;
};
static uint32_t netdev_watch;
static void ap_sta_free(void *data)
{
struct sta_state *sta = data;
struct ap_state *ap = sta->ap;
l_uintset_free(sta->rates);
l_free(sta->assoc_rsne);
if (sta->assoc_resp_cmd_id)
l_genl_family_cancel(ap->nl80211, sta->assoc_resp_cmd_id);
if (sta->gtk_query_cmd_id)
l_genl_family_cancel(ap->nl80211, sta->gtk_query_cmd_id);
if (sta->sm)
eapol_sm_free(sta->sm);
if (sta->hs)
handshake_state_free(sta->hs);
l_free(sta);
}
static void ap_frame_watch_remove(void *data, void *user_data)
{
struct netdev *netdev = user_data;
if (L_PTR_TO_UINT(data))
netdev_frame_watch_remove(netdev, L_PTR_TO_UINT(data));
}
static void ap_reset(struct ap_state *ap)
{
struct netdev *netdev = ap->netdev;
if (!ap->started)
return;
if (ap->pending)
dbus_pending_reply(&ap->pending,
dbus_error_aborted(ap->pending));
l_free(ap->ssid);
memset(ap->pmk, 0, sizeof(ap->pmk));
l_queue_foreach(ap->frame_watch_ids, ap_frame_watch_remove, netdev);
l_queue_destroy(ap->frame_watch_ids, NULL);
if (ap->start_stop_cmd_id)
l_genl_family_cancel(ap->nl80211, ap->start_stop_cmd_id);
l_queue_destroy(ap->sta_states, ap_sta_free);
if (ap->rates)
l_uintset_free(ap->rates);
ap->started = false;
l_dbus_property_changed(dbus_get_bus(), netdev_get_path(ap->netdev),
IWD_AP_INTERFACE, "Started");
}
static void ap_free(void *data)
{
struct ap_state *ap = data;
ap_reset(ap);
l_genl_family_free(ap->nl80211);
l_free(ap);
}
static void ap_del_station(struct sta_state *sta, uint16_t reason,
bool disassociate)
{
struct ap_state *ap = sta->ap;
netdev_del_station(ap->netdev, sta->addr, reason, disassociate);
sta->associated = false;
sta->rsna = false;
if (sta->gtk_query_cmd_id) {
l_genl_family_cancel(ap->nl80211, sta->gtk_query_cmd_id);
sta->gtk_query_cmd_id = 0;
}
if (sta->sm)
eapol_sm_free(sta->sm);
if (sta->hs)
handshake_state_free(sta->hs);
sta->hs = NULL;
sta->sm = NULL;
}
static bool ap_sta_match_addr(const void *a, const void *b)
{
const struct sta_state *sta = a;
return !memcmp(sta->addr, b, 6);
}
static void ap_remove_sta(struct sta_state *sta)
{
if (!l_queue_remove(sta->ap->sta_states, sta)) {
l_error("tried to remove station that doesn't exist");
return;
}
ap_sta_free(sta);
}
static void ap_set_sta_cb(struct l_genl_msg *msg, void *user_data)
{
if (l_genl_msg_get_error(msg) < 0)
l_error("SET_STATION failed: %i", l_genl_msg_get_error(msg));
}
static void ap_del_key_cb(struct l_genl_msg *msg, void *user_data)
{
if (l_genl_msg_get_error(msg) < 0)
l_debug("DEL_KEY failed: %i", l_genl_msg_get_error(msg));
}
static void ap_new_rsna(struct sta_state *sta)
{
l_debug("STA "MAC" authenticated", MAC_STR(sta->addr));
sta->rsna = true;
/*
* TODO: Once new AP interface is implemented this is where a
* new "ConnectedPeer" property will be added.
*/
}
static void ap_drop_rsna(struct sta_state *sta)
{
struct ap_state *ap = sta->ap;
struct l_genl_msg *msg;
uint32_t ifindex = netdev_get_ifindex(sta->ap->netdev);
uint8_t key_id = 0;
sta->rsna = false;
msg = nl80211_build_set_station_unauthorized(ifindex, sta->addr);
l_genl_msg_append_attr(msg, NL80211_ATTR_STA_AID, 2, &sta->aid);
if (!l_genl_family_send(ap->nl80211, msg, ap_set_sta_cb, NULL, NULL)) {
l_genl_msg_unref(msg);
l_error("Issuing SET_STATION failed");
}
msg = l_genl_msg_new_sized(NL80211_CMD_DEL_KEY, 64);
l_genl_msg_append_attr(msg, NL80211_ATTR_IFINDEX, 4, &ifindex);
l_genl_msg_append_attr(msg, NL80211_ATTR_KEY_IDX, 1, &key_id);
l_genl_msg_append_attr(msg, NL80211_ATTR_MAC, 6, sta->addr);
if (!l_genl_family_send(ap->nl80211, msg, ap_del_key_cb, NULL, NULL)) {
l_genl_msg_unref(msg);
l_error("Issuing DEL_KEY failed");
}
if (sta->sm)
eapol_sm_free(sta->sm);
if (sta->hs)
handshake_state_free(sta->hs);
sta->hs = NULL;
sta->sm = NULL;
}
static void ap_set_rsn_info(struct ap_state *ap, struct ie_rsn_info *rsn)
{
memset(rsn, 0, sizeof(*rsn));
rsn->akm_suites = IE_RSN_AKM_SUITE_PSK;
rsn->pairwise_ciphers = ap->ciphers;
rsn->group_cipher = ap->group_cipher;
}
/*
* Build a Beacon frame or a Probe Response frame's header and body until
* the TIM IE. Except for the optional TIM IE which is inserted by the
* kernel when needed, our contents for both frames are the same.
* See Beacon format in 8.3.3.2 and Probe Response format in 8.3.3.10.
*/
static size_t ap_build_beacon_pr_head(struct ap_state *ap,
enum mpdu_management_subtype stype,
const uint8_t *dest, uint8_t *out_buf,
size_t out_len)
{
struct mmpdu_header *mpdu = (void *) out_buf;
unsigned int len;
uint16_t capability = IE_BSS_CAP_ESS | IE_BSS_CAP_PRIVACY;
const uint8_t *bssid = netdev_get_address(ap->netdev);
uint32_t minr, maxr, count, r;
uint8_t *rates;
struct ie_tlv_builder builder;
memset(mpdu, 0, 36); /* Zero out header + non-IE fields */
/* Header */
mpdu->fc.protocol_version = 0;
mpdu->fc.type = MPDU_TYPE_MANAGEMENT;
mpdu->fc.subtype = stype;
memcpy(mpdu->address_1, dest, 6); /* DA */
memcpy(mpdu->address_2, bssid, 6); /* SA */
memcpy(mpdu->address_3, bssid, 6); /* BSSID */
/* Body non-IE fields */
l_put_le16(ap->beacon_interval, out_buf + 32); /* Beacon Interval */
l_put_le16(capability, out_buf + 34); /* Capability Info */
ie_tlv_builder_init(&builder, out_buf + 36, out_len - 36);
/* SSID IE */
ie_tlv_builder_next(&builder, IE_TYPE_SSID);
ie_tlv_builder_set_data(&builder, ap->ssid, strlen(ap->ssid));
/* Supported Rates IE */
ie_tlv_builder_next(&builder, IE_TYPE_SUPPORTED_RATES);
rates = ie_tlv_builder_get_data(&builder);
minr = l_uintset_find_min(ap->rates);
maxr = l_uintset_find_max(ap->rates);
count = 0;
for (r = minr; r <= maxr && count < 8; r++)
if (l_uintset_contains(ap->rates, r)) {
uint8_t flag = 0;
/* Mark only the lowest rate as Basic Rate */
if (count == 0)
flag = 0x80;
*rates++ = r | flag;
}
ie_tlv_builder_set_length(&builder, rates -
ie_tlv_builder_get_data(&builder));
/* DSSS Parameter Set IE for DSSS, HR, ERP and HT PHY rates */
ie_tlv_builder_next(&builder, IE_TYPE_DSSS_PARAMETER_SET);
ie_tlv_builder_set_data(&builder, &ap->channel, 1);
ie_tlv_builder_finalize(&builder, &len);
return 36 + len;
}
/* Beacon / Probe Response frame portion after the TIM IE */
static size_t ap_build_beacon_pr_tail(struct ap_state *ap, uint8_t *out_buf)
{
size_t len;
struct ie_rsn_info rsn;
/* TODO: Country IE between TIM IE and RSNE */
/* RSNE */
ap_set_rsn_info(ap, &rsn);
if (!ie_build_rsne(&rsn, out_buf))
return 0;
len = 2 + out_buf[1];
return len;
}
static uint32_t ap_send_mgmt_frame(struct ap_state *ap,
const struct mmpdu_header *frame,
size_t frame_len, bool wait_ack,
l_genl_msg_func_t callback,
void *user_data)
{
struct l_genl_msg *msg;
uint32_t ifindex = netdev_get_ifindex(ap->netdev);
uint32_t id;
uint32_t ch_freq = scan_channel_to_freq(ap->channel, SCAN_BAND_2_4_GHZ);
msg = l_genl_msg_new_sized(NL80211_CMD_FRAME, 128 + frame_len);
l_genl_msg_append_attr(msg, NL80211_ATTR_IFINDEX, 4, &ifindex);
l_genl_msg_append_attr(msg, NL80211_ATTR_WIPHY_FREQ, 4, &ch_freq);
l_genl_msg_append_attr(msg, NL80211_ATTR_FRAME, frame_len, frame);
if (!wait_ack)
l_genl_msg_append_attr(msg, NL80211_ATTR_DONT_WAIT_FOR_ACK,
0, NULL);
id = l_genl_family_send(ap->nl80211, msg, callback, user_data, NULL);
if (!id)
l_genl_msg_unref(msg);
return id;
}
static void ap_handshake_event(struct handshake_state *hs,
enum handshake_event event, void *event_data, void *user_data)
{
struct sta_state *sta = user_data;
switch (event) {
case HANDSHAKE_EVENT_COMPLETE:
ap_new_rsna(sta);
break;
case HANDSHAKE_EVENT_FAILED:
netdev_handshake_failed(hs, l_get_u16(event_data));
/* fall through */
case HANDSHAKE_EVENT_SETTING_KEYS_FAILED:
sta->sm = NULL;
ap_remove_sta(sta);
default:
break;
}
}
static void ap_start_rsna(struct sta_state *sta, const uint8_t *gtk_rsc)
{
struct ap_state *ap = sta->ap;
struct netdev *netdev = sta->ap->netdev;
const uint8_t *own_addr = netdev_get_address(netdev);
struct scan_bss bss;
struct ie_rsn_info rsn;
uint8_t bss_rsne[24];
memset(&bss, 0, sizeof(bss));
ap_set_rsn_info(ap, &rsn);
/*
* TODO: This assumes the length that ap_set_rsn_info() requires. If
* ap_set_rsn_info() changes then this will need to be updated.
*/
ie_build_rsne(&rsn, bss_rsne);
/* this handshake setup assumes PSK network */
sta->hs = netdev_handshake_state_new(netdev);
handshake_state_set_event_func(sta->hs, ap_handshake_event, sta);
handshake_state_set_ssid(sta->hs, (void *)ap->ssid, strlen(ap->ssid));
handshake_state_set_authenticator(sta->hs, true);
handshake_state_set_authenticator_ie(sta->hs, bss_rsne);
handshake_state_set_supplicant_ie(sta->hs, sta->assoc_rsne);
handshake_state_set_pmk(sta->hs, ap->pmk, 32);
handshake_state_set_authenticator_address(sta->hs, own_addr);
handshake_state_set_supplicant_address(sta->hs, sta->addr);
if (gtk_rsc)
handshake_state_set_gtk(sta->hs, ap->gtk, ap->gtk_index,
gtk_rsc);
sta->sm = eapol_sm_new(sta->hs);
if (!sta->sm) {
handshake_state_free(sta->hs);
sta->hs = NULL;
l_error("could not create sm object");
goto error;
}
eapol_sm_set_listen_interval(sta->sm, sta->listen_interval);
eapol_register(sta->sm);
return;
error:
ap_del_station(sta, MMPDU_REASON_CODE_UNSPECIFIED, true);
}
static void ap_gtk_query_cb(struct l_genl_msg *msg, void *user_data)
{
struct sta_state *sta = user_data;
const void *gtk_rsc;
sta->gtk_query_cmd_id = 0;
gtk_rsc = nl80211_parse_get_key_seq(msg);
if (!gtk_rsc)
goto error;
ap_start_rsna(sta, gtk_rsc);
return;
error:
ap_del_station(sta, MMPDU_REASON_CODE_UNSPECIFIED, true);
}
static struct l_genl_msg *ap_build_cmd_del_key(struct ap_state *ap)
{
uint32_t ifindex = netdev_get_ifindex(ap->netdev);
struct l_genl_msg *msg;
msg = l_genl_msg_new_sized(NL80211_CMD_DEL_KEY, 128);
l_genl_msg_append_attr(msg, NL80211_ATTR_IFINDEX, 4, &ifindex);
l_genl_msg_enter_nested(msg, NL80211_ATTR_KEY);
l_genl_msg_append_attr(msg, NL80211_KEY_IDX, 1, &ap->gtk_index);
l_genl_msg_leave_nested(msg);
return msg;
}
static struct l_genl_msg *ap_build_cmd_new_station(struct sta_state *sta)
{
struct l_genl_msg *msg;
uint32_t ifindex = netdev_get_ifindex(sta->ap->netdev);
/*
* This should hopefully work both with and without
* NL80211_FEATURE_FULL_AP_CLIENT_STATE.
*/
struct nl80211_sta_flag_update flags = {
.mask = (1 << NL80211_STA_FLAG_AUTHENTICATED) |
(1 << NL80211_STA_FLAG_ASSOCIATED) |
(1 << NL80211_STA_FLAG_AUTHORIZED) |
(1 << NL80211_STA_FLAG_MFP),
.set = (1 << NL80211_STA_FLAG_AUTHENTICATED) |
(1 << NL80211_STA_FLAG_ASSOCIATED),
};
msg = l_genl_msg_new_sized(NL80211_CMD_NEW_STATION, 300);
l_genl_msg_append_attr(msg, NL80211_ATTR_IFINDEX, 4, &ifindex);
l_genl_msg_append_attr(msg, NL80211_ATTR_MAC, 6, sta->addr);
l_genl_msg_append_attr(msg, NL80211_ATTR_STA_FLAGS2, 8, &flags);
return msg;
}
static void ap_gtk_op_cb(struct l_genl_msg *msg, void *user_data)
{
if (l_genl_msg_get_error(msg) < 0) {
uint8_t cmd = l_genl_msg_get_command(msg);
const char *cmd_name =
cmd == NL80211_CMD_NEW_KEY ? "NEW_KEY" :
cmd == NL80211_CMD_SET_KEY ? "SET_KEY" :
"DEL_KEY";
l_error("%s failed for the GTK: %i",
cmd_name, l_genl_msg_get_error(msg));
}
}
static void ap_associate_sta_cb(struct l_genl_msg *msg, void *user_data)
{
struct sta_state *sta = user_data;
struct ap_state *ap = sta->ap;
if (l_genl_msg_get_error(msg) < 0) {
l_error("NEW_STATION/SET_STATION failed: %i",
l_genl_msg_get_error(msg));
return;
}
/*
* Set up the group key. If this is our first STA then we have
* to add the new GTK to the kernel. In theory we should be
* able to supply our own RSC (e.g. generated randomly) and use it
* immediately for our 4-Way Handshake without querying the kernel.
* However NL80211_CMD_NEW_KEY only lets us set the receive RSC --
* the Rx PN for CCMP and the Rx IV for TKIP -- and the
* transmit RSC always starts as all zeros. There's effectively
* no way to set the Tx RSC or query the Rx RSC through nl80211.
* So we query the Tx RSC in both scenarios just in case some
* driver/hardware uses a different initial Tx RSC.
*
* Optimally we would get called back by the EAPoL state machine
* only when building the step 3 of 4 message to query the RSC as
* late as possible but that would complicate EAPoL.
*/
if (ap->group_cipher != IE_RSN_CIPHER_SUITE_NO_GROUP_TRAFFIC &&
!ap->gtk_set) {
enum crypto_cipher group_cipher =
ie_rsn_cipher_suite_to_cipher(ap->group_cipher);
int gtk_len = crypto_cipher_key_len(group_cipher);
/*
* Generate our GTK. Not following the example derivation
* method in 802.11-2016 section 12.7.1.4 because a simple
* l_getrandom is just as good.
*/
l_getrandom(ap->gtk, gtk_len);
ap->gtk_index = 1;
msg = nl80211_build_new_key_group(
netdev_get_ifindex(ap->netdev),
group_cipher, ap->gtk_index,
ap->gtk, gtk_len, NULL,
0, NULL);
if (!l_genl_family_send(ap->nl80211, msg, ap_gtk_op_cb, NULL,
NULL)) {
l_genl_msg_unref(msg);
l_error("Issuing NEW_KEY failed");
goto error;
}
msg = nl80211_build_set_key(netdev_get_ifindex(ap->netdev),
ap->gtk_index);
if (!l_genl_family_send(ap->nl80211, msg, ap_gtk_op_cb, NULL,
NULL)) {
l_genl_msg_unref(msg);
l_error("Issuing SET_KEY failed");
goto error;
}
/*
* Set the flag now because any new associating STA will
* just use NL80211_CMD_GET_KEY from now.
*/
ap->gtk_set = true;
}
if (ap->group_cipher == IE_RSN_CIPHER_SUITE_NO_GROUP_TRAFFIC)
ap_start_rsna(sta, NULL);
else {
msg = nl80211_build_get_key(netdev_get_ifindex(ap->netdev),
ap->gtk_index);
sta->gtk_query_cmd_id = l_genl_family_send(ap->nl80211, msg,
ap_gtk_query_cb,
sta, NULL);
if (!sta->gtk_query_cmd_id) {
l_genl_msg_unref(msg);
l_error("Issuing GET_KEY failed");
goto error;
}
}
return;
error:
ap_del_station(sta, MMPDU_REASON_CODE_UNSPECIFIED, true);
}
static void ap_associate_sta(struct ap_state *ap, struct sta_state *sta)
{
struct l_genl_msg *msg;
uint32_t ifindex = netdev_get_ifindex(ap->netdev);
uint8_t rates[256];
uint32_t r, minr, maxr, count = 0;
uint16_t capability = l_get_le16(&sta->capability);
if (sta->associated)
msg = nl80211_build_set_station_associated(ifindex, sta->addr);
else
msg = ap_build_cmd_new_station(sta);
sta->associated = true;
sta->rsna = false;
minr = l_uintset_find_min(sta->rates);
maxr = l_uintset_find_max(sta->rates);
for (r = minr; r <= maxr; r++)
if (l_uintset_contains(sta->rates, r))
rates[count++] = r;
l_genl_msg_append_attr(msg, NL80211_ATTR_STA_AID, 2, &sta->aid);
l_genl_msg_append_attr(msg, NL80211_ATTR_STA_SUPPORTED_RATES,
count, &rates);
l_genl_msg_append_attr(msg, NL80211_ATTR_STA_LISTEN_INTERVAL, 2,
&sta->listen_interval);
l_genl_msg_append_attr(msg, NL80211_ATTR_STA_CAPABILITY, 2,
&capability);
if (!l_genl_family_send(ap->nl80211, msg, ap_associate_sta_cb,
sta, NULL)) {
l_genl_msg_unref(msg);
if (l_genl_msg_get_command(msg) == NL80211_CMD_NEW_STATION)
l_error("Issuing NEW_STATION failed");
else
l_error("Issuing SET_STATION failed");
}
}
static bool ap_common_rates(struct l_uintset *ap_rates,
struct l_uintset *sta_rates)
{
uint32_t minr = l_uintset_find_min(ap_rates);
/* Our lowest rate is a Basic Rate so must be supported */
if (l_uintset_contains(sta_rates, minr))
return true;
return false;
}
static void ap_success_assoc_resp_cb(struct l_genl_msg *msg, void *user_data)
{
struct sta_state *sta = user_data;
struct ap_state *ap = sta->ap;
sta->assoc_resp_cmd_id = 0;
if (l_genl_msg_get_error(msg) < 0) {
l_error("AP (Re)Association Response not sent or not ACKed: %i",
l_genl_msg_get_error(msg));
/* If we were in State 3 or 4 go to back to State 2 */
if (sta->associated)
ap_del_station(sta, MMPDU_REASON_CODE_UNSPECIFIED,
true);
return;
}
/* If we were in State 2, 3 or 4 also go to State 3 */
ap_associate_sta(ap, sta);
l_info("AP (Re)Association Response ACK received");
}
static void ap_fail_assoc_resp_cb(struct l_genl_msg *msg, void *user_data)
{
if (l_genl_msg_get_error(msg) < 0)
l_error("AP (Re)Association Response with an error status not "
"sent or not ACKed: %i", l_genl_msg_get_error(msg));
else
l_info("AP (Re)Association Response with an error status "
"delivered OK");
}
static uint32_t ap_assoc_resp(struct ap_state *ap, struct sta_state *sta,
const uint8_t *dest, uint16_t aid,
enum mmpdu_reason_code status_code,
bool reassoc, l_genl_msg_func_t callback)
{
const uint8_t *addr = netdev_get_address(ap->netdev);
uint8_t mpdu_buf[128];
struct mmpdu_header *mpdu = (void *) mpdu_buf;
struct mmpdu_association_response *resp;
size_t ies_len = 0;
uint16_t capability = IE_BSS_CAP_ESS | IE_BSS_CAP_PRIVACY;
uint32_t r, minr, maxr, count;
memset(mpdu, 0, sizeof(*mpdu));
/* Header */
mpdu->fc.protocol_version = 0;
mpdu->fc.type = MPDU_TYPE_MANAGEMENT;
mpdu->fc.subtype = reassoc ?
MPDU_MANAGEMENT_SUBTYPE_REASSOCIATION_RESPONSE :
MPDU_MANAGEMENT_SUBTYPE_ASSOCIATION_RESPONSE;
memcpy(mpdu->address_1, dest, 6); /* DA */
memcpy(mpdu->address_2, addr, 6); /* SA */
memcpy(mpdu->address_3, addr, 6); /* BSSID */
/* Association Response body */
resp = (void *) mmpdu_body(mpdu);
l_put_le16(capability, &resp->capability);
resp->status_code = L_CPU_TO_LE16(status_code);
resp->aid = L_CPU_TO_LE16(aid | 0xc000);
/* Supported Rates IE */
resp->ies[ies_len++] = IE_TYPE_SUPPORTED_RATES;
minr = l_uintset_find_min(ap->rates);
maxr = l_uintset_find_max(ap->rates);
count = 0;
for (r = minr; r <= maxr && count < 8; r++)
if (l_uintset_contains(ap->rates, r)) {
uint8_t flag = 0;
/* Mark only the lowest rate as Basic Rate */
if (count == 0)
flag = 0x80;
resp->ies[ies_len + 1 + count++] = r | flag;
}
resp->ies[ies_len++] = count;
ies_len += count;
return ap_send_mgmt_frame(ap, mpdu, resp->ies + ies_len - mpdu_buf,
true, callback, sta);
}
static int ap_parse_supported_rates(struct ie_tlv_iter *iter,
struct l_uintset **set)
{
const uint8_t *rates;
unsigned int len;
unsigned int i;
len = ie_tlv_iter_get_length(iter);
if (ie_tlv_iter_get_tag(iter) == IE_TYPE_SUPPORTED_RATES && len == 0)
return -EINVAL;
rates = ie_tlv_iter_get_data(iter);
if (!*set)
*set = l_uintset_new(108);
for (i = 0; i < len; i++) {
if (rates[i] == 0xff)
continue;
l_uintset_put(*set, rates[i] & 0x7f);
}
return 0;
}
/*
* This handles both the Association and Reassociation Request frames.
* Association Request is documented in 802.11-2016 9.3.3.6 (frame format),
* 802.11-2016 11.3.5.3 (MLME/SME) and Reassociation in 802.11-2016
* 9.3.3.8 (frame format), 802.11-2016 11.3.5.3 (MLME/SME).
*
* The difference between Association and Reassociation procedures is
* documented in 11.3.5.1 "General" but seems inconsistent with specific
* instructions in 11.3.5.3 vs. 11.3.5.5 and 11.3.5.2 vs. 11.3.5.4.
* According to 11.3.5.1:
* 1. Reassociation requires the STA to be already associated in the ESS,
* Association doesn't.
* 2. Unsuccessful Reassociation should not cause a state transition of
* the authentication state between the two STAs.
*
* The first requirement is not present in 11.3.5.5 which is virtually
* identical with 11.3.5.3, but we do implement it. Number 2 is also not
* reflected in 11.3.5.5 where the state transitions are the same as in
* 11.3.5.3 and 11.3.5.4 where the state transitions are the same as in
* 11.3.5.2 including f) "If a Reassociation Response frame is received
* with a status code other than SUCCESS [...] 1. [...] the state for
* the AP [...] shall be set to State 2 [...]"
*
* For the record here are the apparent differences between 802.11-2016
* 11.3.5.2 and 11.3.5.4 ignoring the s/Associate/Reassociate/ changes
* and the special case of Reassociation during a Fast Transition.
* o Points c) and d) are switched around.
* o On success, the STA is disassociated from all other APs in 11.3.5.2,
* and from the previous AP in 11.3.5.4 c). (Shouldn't make a
* difference as there seems to be no way for the STA to become
* associated with more than one AP)
* o After Association a 4-Way Handshake is always performed, after
* Reassociation it is only performed if STA was in State 3 according
* to 11.3.5.4 g). This is not reflected in 11.3.5.5 though.
* Additionally 11.3.5.4 and 11.3.5.5 require the STA and AP
* respectively to delete current PTKSA/GTKSA/IGTKSA at the beginning
* of the procedure independent of the STA state so without a 4-Way
* Handshake the two stations end up with no encryption keys.
*
* The main difference between 11.3.5.3 and 11.3.5.5 is presence of p).
*/
static void ap_assoc_reassoc(struct sta_state *sta, bool reassoc,
const struct mmpdu_field_capability *capability,
uint16_t listen_interval,
struct ie_tlv_iter *ies)
{
struct ap_state *ap = sta->ap;
const char *ssid = NULL;
const uint8_t *rsn = NULL;
size_t ssid_len = 0;
struct l_uintset *rates = NULL;
struct ie_rsn_info rsn_info;
int err;
if (sta->assoc_resp_cmd_id)
return;
if (reassoc && !sta->associated) {
err = MMPDU_REASON_CODE_CLASS3_FRAME_FROM_NONASSOC_STA;
goto unsupported;
}
while (ie_tlv_iter_next(ies))
switch (ie_tlv_iter_get_tag(ies)) {
case IE_TYPE_SSID:
ssid = (const char *) ie_tlv_iter_get_data(ies);
ssid_len = ie_tlv_iter_get_length(ies);
break;
case IE_TYPE_SUPPORTED_RATES:
case IE_TYPE_EXTENDED_SUPPORTED_RATES:
if (ap_parse_supported_rates(ies, &rates) < 0) {
err = MMPDU_REASON_CODE_INVALID_IE;
goto bad_frame;
}
break;
case IE_TYPE_RSN:
if (ie_parse_rsne(ies, &rsn_info) < 0) {
err = MMPDU_REASON_CODE_INVALID_IE;
goto bad_frame;
}
rsn = (const uint8_t *) ie_tlv_iter_get_data(ies) - 2;
break;
}
if (!rates || !ssid || !rsn || ssid_len != strlen(ap->ssid) ||
memcmp(ssid, ap->ssid, ssid_len)) {
err = MMPDU_REASON_CODE_INVALID_IE;
goto bad_frame;
}
if (!ap_common_rates(ap->rates, rates)) {
err = MMPDU_REASON_CODE_UNSPECIFIED;
goto unsupported;
}
if (rsn_info.mfpr && rsn_info.spp_a_msdu_required) {
err = MMPDU_REASON_CODE_UNSPECIFIED;
goto unsupported;
}
if (!(rsn_info.pairwise_ciphers & ap->ciphers)) {
err = MMPDU_REASON_CODE_INVALID_PAIRWISE_CIPHER;
goto unsupported;
}
if (rsn_info.akm_suites != IE_RSN_AKM_SUITE_PSK) {
err = MMPDU_REASON_CODE_INVALID_AKMP;
goto unsupported;
}
if (!sta->associated) {
/*
* Everything fine so far, assign an AID, send response.
* According to 802.11-2016 11.3.5.3 l) we will only go to
* State 3 (set sta->associated) once we receive the station's
* ACK or gave up on resends.
*/
sta->aid = ++ap->last_aid;
}
sta->capability = *capability;
sta->listen_interval = listen_interval;
if (sta->rates)
l_uintset_free(sta->rates);
sta->rates = rates;
if (sta->assoc_rsne)
l_free(sta->assoc_rsne);
sta->assoc_rsne = l_memdup(rsn, rsn[1] + 2);
/* 802.11-2016 11.3.5.3 j) */
if (sta->rsna)
ap_drop_rsna(sta);
sta->assoc_resp_cmd_id = ap_assoc_resp(ap, sta, sta->addr, sta->aid, 0,
reassoc,
ap_success_assoc_resp_cb);
if (!sta->assoc_resp_cmd_id)
l_error("Sending success (Re)Association Response failed");
return;
unsupported:
bad_frame:
/*
* TODO: MFP
*
* 802.11-2016 11.3.5.3 m)
* "If the ResultCode in the MLME-ASSOCIATE.response primitive is
* not SUCCESS and management frame protection is in use the state
* for the STA shall be left unchanged. If the ResultCode is not
* SUCCESS and management frame protection is not in use the state
* for the STA shall be set to State 3 if it was State 4."
*
* For now, we need to drop the RSNA.
*/
if (sta->associated && sta->rsna)
ap_drop_rsna(sta);
if (rates)
l_uintset_free(rates);
if (!ap_assoc_resp(ap, NULL, sta->addr, 0, err, reassoc,
ap_fail_assoc_resp_cb))
l_error("Sending error (Re)Association Response failed");
}
/* 802.11-2016 9.3.3.6 */
static void ap_assoc_req_cb(struct netdev *netdev,
const struct mmpdu_header *hdr,
const void *body, size_t body_len,
void *user_data)
{
struct ap_state *ap = user_data;
struct sta_state *sta;
const uint8_t *from = hdr->address_2;
const struct mmpdu_association_request *req = body;
const uint8_t *bssid = netdev_get_address(ap->netdev);
struct ie_tlv_iter iter;
l_info("AP Association Request from %s", util_address_to_string(from));
if (memcmp(hdr->address_1, bssid, 6) ||
memcmp(hdr->address_3, bssid, 6))
return;
sta = l_queue_find(ap->sta_states, ap_sta_match_addr, from);
if (!sta) {
if (!ap_assoc_resp(ap, NULL, from, 0,
MMPDU_REASON_CODE_STA_REQ_ASSOC_WITHOUT_AUTH,
false, ap_fail_assoc_resp_cb))
l_error("Sending error Association Response failed");
return;
}
ie_tlv_iter_init(&iter, req->ies, body_len - sizeof(*req));
ap_assoc_reassoc(sta, false, &req->capability,
L_LE16_TO_CPU(req->listen_interval), &iter);
}
/* 802.11-2016 9.3.3.8 */
static void ap_reassoc_req_cb(struct netdev *netdev,
const struct mmpdu_header *hdr,
const void *body, size_t body_len,
void *user_data)
{
struct ap_state *ap = user_data;
struct sta_state *sta;
const uint8_t *from = hdr->address_2;
const struct mmpdu_reassociation_request *req = body;
const uint8_t *bssid = netdev_get_address(ap->netdev);
struct ie_tlv_iter iter;
int err;
l_info("AP Reassociation Request from %s",
util_address_to_string(from));
if (memcmp(hdr->address_1, bssid, 6) ||
memcmp(hdr->address_3, bssid, 6))
return;
sta = l_queue_find(ap->sta_states, ap_sta_match_addr, from);
if (!sta) {
err = MMPDU_REASON_CODE_STA_REQ_ASSOC_WITHOUT_AUTH;
goto bad_frame;
}
if (memcmp(req->current_ap_address, bssid, 6)) {
err = MMPDU_REASON_CODE_UNSPECIFIED;
goto bad_frame;
}
ie_tlv_iter_init(&iter, req->ies, body_len - sizeof(*req));
ap_assoc_reassoc(sta, true, &req->capability,
L_LE16_TO_CPU(req->listen_interval), &iter);
return;
bad_frame:
if (!ap_assoc_resp(ap, NULL, from, 0, err, true, ap_fail_assoc_resp_cb))
l_error("Sending error Reassociation Response failed");
}
static void ap_probe_resp_cb(struct l_genl_msg *msg, void *user_data)
{
if (l_genl_msg_get_error(msg) < 0)
l_error("AP Probe Response not sent: %i",
l_genl_msg_get_error(msg));
else
l_info("AP Probe Response sent OK");
}
/*
* Parse Probe Request according to 802.11-2016 9.3.3.10 and act according
* to 802.11-2016 11.1.4.3
*/
static void ap_probe_req_cb(struct netdev *netdev,
const struct mmpdu_header *hdr,
const void *body, size_t body_len,
void *user_data)
{
struct ap_state *ap = user_data;
const struct mmpdu_probe_request *req = body;
const char *ssid = NULL;
const uint8_t *ssid_list = NULL;
size_t ssid_len = 0, ssid_list_len = 0, len;
uint8_t dsss_channel = 0;
struct ie_tlv_iter iter;
const uint8_t *bssid = netdev_get_address(ap->netdev);
bool match = false;
uint8_t resp[512];
l_info("AP Probe Request from %s",
util_address_to_string(hdr->address_2));
ie_tlv_iter_init(&iter, req->ies, body_len - sizeof(*req));
while (ie_tlv_iter_next(&iter))
switch (ie_tlv_iter_get_tag(&iter)) {
case IE_TYPE_SSID:
ssid = (const char *) ie_tlv_iter_get_data(&iter);
ssid_len = ie_tlv_iter_get_length(&iter);
break;
case IE_TYPE_SSID_LIST:
ssid_list = ie_tlv_iter_get_data(&iter);
ssid_list_len = ie_tlv_iter_get_length(&iter);
break;
case IE_TYPE_DSSS_PARAMETER_SET:
if (ie_tlv_iter_get_length(&iter) != 1)
return;
dsss_channel = ie_tlv_iter_get_data(&iter)[0];
break;
}
/*
* Check if we should reply to this Probe Request according to
* 802.11-2016 section 11.1.4.3.2.
*/
if (memcmp(hdr->address_1, bssid, 6) &&
!util_is_broadcast_address(hdr->address_1))
match = false;
if (memcmp(hdr->address_3, bssid, 6) &&
!util_is_broadcast_address(hdr->address_3))
match = false;
if (!ssid || ssid_len == 0) /* Wildcard SSID */
match = true;
else if (ssid && ssid_len == strlen(ap->ssid) && /* Specific SSID */
!memcmp(ssid, ap->ssid, ssid_len))
match = true;
else if (ssid_list) { /* SSID List */
ie_tlv_iter_init(&iter, ssid_list, ssid_list_len);
while (ie_tlv_iter_next(&iter)) {
if (ie_tlv_iter_get_tag(&iter) != IE_TYPE_SSID)
return;
ssid = (const char *) ie_tlv_iter_get_data(&iter);
ssid_len = ie_tlv_iter_get_length(&iter);
if (ssid_len == strlen(ap->ssid) &&
!memcmp(ssid, ap->ssid, ssid_len)) {
match = true;
break;
}
}
}
if (dsss_channel != 0 && dsss_channel != ap->channel)
match = false;
if (!match)
return;
len = ap_build_beacon_pr_head(ap,
MPDU_MANAGEMENT_SUBTYPE_PROBE_RESPONSE,
hdr->address_2, resp, sizeof(resp));
len += ap_build_beacon_pr_tail(ap, resp + len);
ap_send_mgmt_frame(ap, (struct mmpdu_header *) resp, len, false,
ap_probe_resp_cb, NULL);
}
/* 802.11-2016 9.3.3.5 (frame format), 802.11-2016 11.3.5.9 (MLME/SME) */
static void ap_disassoc_cb(struct netdev *netdev,
const struct mmpdu_header *hdr,
const void *body, size_t body_len,
void *user_data)
{
struct ap_state *ap = user_data;
struct sta_state *sta;
const struct mmpdu_disassociation *disassoc = body;
const uint8_t *bssid = netdev_get_address(ap->netdev);
l_info("AP Disassociation from %s, reason %i",
util_address_to_string(hdr->address_2),
(int) L_LE16_TO_CPU(disassoc->reason_code));
if (memcmp(hdr->address_1, bssid, 6) ||
memcmp(hdr->address_3, bssid, 6))
return;
sta = l_queue_find(ap->sta_states, ap_sta_match_addr, hdr->address_2);
if (sta && sta->assoc_resp_cmd_id) {
l_genl_family_cancel(ap->nl80211, sta->assoc_resp_cmd_id);
sta->assoc_resp_cmd_id = 0;
}
if (!sta || !sta->associated)
return;
ap_del_station(sta, L_LE16_TO_CPU(disassoc->reason_code), true);
}
static void ap_auth_reply_cb(struct l_genl_msg *msg, void *user_data)
{
if (l_genl_msg_get_error(msg) < 0)
l_error("AP Authentication frame 2 not sent or not ACKed: %i",
l_genl_msg_get_error(msg));
else
l_info("AP Authentication frame 2 ACKed by STA");
}
static void ap_auth_reply(struct ap_state *ap, const uint8_t *dest,
enum mmpdu_reason_code status_code)
{
const uint8_t *addr = netdev_get_address(ap->netdev);
uint8_t mpdu_buf[64];
struct mmpdu_header *mpdu = (struct mmpdu_header *) mpdu_buf;
struct mmpdu_authentication *auth;
memset(mpdu, 0, sizeof(*mpdu));
/* Header */
mpdu->fc.protocol_version = 0;
mpdu->fc.type = MPDU_TYPE_MANAGEMENT;
mpdu->fc.subtype = MPDU_MANAGEMENT_SUBTYPE_AUTHENTICATION;
memcpy(mpdu->address_1, dest, 6); /* DA */
memcpy(mpdu->address_2, addr, 6); /* SA */
memcpy(mpdu->address_3, addr, 6); /* BSSID */
/* Authentication body */
auth = (void *) mmpdu_body(mpdu);
auth->algorithm = L_CPU_TO_LE16(MMPDU_AUTH_ALGO_OPEN_SYSTEM);
auth->transaction_sequence = L_CPU_TO_LE16(2);
auth->status = L_CPU_TO_LE16(status_code);
ap_send_mgmt_frame(ap, mpdu, (uint8_t *) auth + 6 - mpdu_buf, true,
ap_auth_reply_cb, NULL);
}
/*
* 802.11-2016 9.3.3.12 (frame format), 802.11-2016 11.3.4.3 and
* 802.11-2016 12.3.3.2 (MLME/SME)
*/
static void ap_auth_cb(struct netdev *netdev, const struct mmpdu_header *hdr,
const void *body, size_t body_len, void *user_data)
{
struct ap_state *ap = user_data;
const struct mmpdu_authentication *auth = body;
const uint8_t *from = hdr->address_2;
const uint8_t *bssid = netdev_get_address(ap->netdev);
struct sta_state *sta;
l_info("AP Authentication from %s", util_address_to_string(from));
if (memcmp(hdr->address_1, bssid, 6) ||
memcmp(hdr->address_3, bssid, 6))
return;
/* Only Open System authentication implemented here */
if (L_LE16_TO_CPU(auth->algorithm) !=
MMPDU_AUTH_ALGO_OPEN_SYSTEM) {
ap_auth_reply(ap, from, MMPDU_REASON_CODE_UNSPECIFIED);
return;
}
if (L_LE16_TO_CPU(auth->transaction_sequence) != 1) {
ap_auth_reply(ap, from, MMPDU_REASON_CODE_UNSPECIFIED);
return;
}
sta = l_queue_find(ap->sta_states, ap_sta_match_addr, from);
/*
* Figure 11-13 in 802.11-2016 11.3.2 shows a transition from
* States 3 / 4 to State 2 on "Successful 802.11 Authentication"
* however 11.3.4.2 and 11.3.4.3 clearly say the connection goes to
* State 2 only if it was in State 1:
*
* "c) [...] the state for the indicated STA shall be set to State 2
* if it was State 1; the state shall remain unchanged if it was other
* than State 1."
*/
if (sta)
goto done;
/*
* Per 12.3.3.2.3 with Open System the state change is immediate,
* no waiting for the response to be ACKed as with the association
* frames.
*/
sta = l_new(struct sta_state, 1);
memcpy(sta->addr, from, 6);
sta->ap = ap;
if (!ap->sta_states)
ap->sta_states = l_queue_new();
l_queue_push_tail(ap->sta_states, sta);
/*
* Nothing to do here netlink-wise as we can't receive any data
* frames until after association anyway. We do need to add a
* timeout for the authentication and possibly the kernel could
* handle that if we registered the STA with NEW_STATION now (TODO)
*/
done:
ap_auth_reply(ap, from, 0);
}
/* 802.11-2016 9.3.3.13 (frame format), 802.11-2016 11.3.4.5 (MLME/SME) */
static void ap_deauth_cb(struct netdev *netdev, const struct mmpdu_header *hdr,
const void *body, size_t body_len,
void *user_data)
{
struct ap_state *ap = user_data;
struct sta_state *sta;
const struct mmpdu_deauthentication *deauth = body;
const uint8_t *bssid = netdev_get_address(ap->netdev);
l_info("AP Deauthentication from %s, reason %i",
util_address_to_string(hdr->address_2),
(int) L_LE16_TO_CPU(deauth->reason_code));
if (memcmp(hdr->address_1, bssid, 6) ||
memcmp(hdr->address_3, bssid, 6))
return;
sta = l_queue_remove_if(ap->sta_states, ap_sta_match_addr,
hdr->address_2);
if (!sta)
return;
ap_del_station(sta, L_LE16_TO_CPU(deauth->reason_code), false);
ap_sta_free(sta);
}
static void ap_start_cb(struct l_genl_msg *msg, void *user_data)
{
struct ap_state *ap = user_data;
ap->start_stop_cmd_id = 0;
if (!ap->pending)
return;
if (l_genl_msg_get_error(msg) < 0) {
l_error("START_AP failed: %i", l_genl_msg_get_error(msg));
dbus_pending_reply(&ap->pending,
dbus_error_invalid_args(ap->pending));
ap_reset(ap);
return;
}
dbus_pending_reply(&ap->pending,
l_dbus_message_new_method_return(ap->pending));
ap->started = true;
l_dbus_property_changed(dbus_get_bus(), netdev_get_path(ap->netdev),
IWD_AP_INTERFACE, "Started");
}
static struct l_genl_msg *ap_build_cmd_start_ap(struct ap_state *ap)
{
struct l_genl_msg *cmd;
uint8_t head[256], tail[256];
size_t head_len, tail_len;
uint32_t dtim_period = 3;
uint32_t ifindex = netdev_get_ifindex(ap->netdev);
struct wiphy *wiphy = netdev_get_wiphy(ap->netdev);
uint32_t hidden_ssid = NL80211_HIDDEN_SSID_NOT_IN_USE;
uint32_t nl_ciphers = ie_rsn_cipher_suite_to_cipher(ap->ciphers);
uint32_t nl_akm = CRYPTO_AKM_PSK;
uint32_t wpa_version = NL80211_WPA_VERSION_2;
uint32_t auth_type = NL80211_AUTHTYPE_OPEN_SYSTEM;
uint32_t ch_freq = scan_channel_to_freq(ap->channel, SCAN_BAND_2_4_GHZ);
uint32_t ch_width = NL80211_CHAN_WIDTH_20;
static const uint8_t bcast_addr[6] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
head_len = ap_build_beacon_pr_head(ap, MPDU_MANAGEMENT_SUBTYPE_BEACON,
bcast_addr, head, sizeof(head));
tail_len = ap_build_beacon_pr_tail(ap, tail);
if (!head_len || !tail_len)
return NULL;
cmd = l_genl_msg_new_sized(NL80211_CMD_START_AP, 256 + head_len +
tail_len + strlen(ap->ssid));
/* SET_BEACON attrs */
l_genl_msg_append_attr(cmd, NL80211_ATTR_BEACON_HEAD, head_len, head);
l_genl_msg_append_attr(cmd, NL80211_ATTR_BEACON_TAIL, tail_len, tail);
l_genl_msg_append_attr(cmd, NL80211_ATTR_IE, 0, "");
l_genl_msg_append_attr(cmd, NL80211_ATTR_IE_PROBE_RESP, 0, "");
l_genl_msg_append_attr(cmd, NL80211_ATTR_IE_ASSOC_RESP, 0, "");
/* START_AP attrs */
l_genl_msg_append_attr(cmd, NL80211_ATTR_BEACON_INTERVAL, 4,
&ap->beacon_interval);
l_genl_msg_append_attr(cmd, NL80211_ATTR_DTIM_PERIOD, 4, &dtim_period);
l_genl_msg_append_attr(cmd, NL80211_ATTR_IFINDEX, 4, &ifindex);
l_genl_msg_append_attr(cmd, NL80211_ATTR_SSID, strlen(ap->ssid),
ap->ssid);
l_genl_msg_append_attr(cmd, NL80211_ATTR_HIDDEN_SSID, 4,
&hidden_ssid);
l_genl_msg_append_attr(cmd, NL80211_ATTR_CIPHER_SUITES_PAIRWISE, 4,
&nl_ciphers);
l_genl_msg_append_attr(cmd, NL80211_ATTR_WPA_VERSIONS, 4, &wpa_version);
l_genl_msg_append_attr(cmd, NL80211_ATTR_AKM_SUITES, 4, &nl_akm);
l_genl_msg_append_attr(cmd, NL80211_ATTR_AUTH_TYPE, 4, &auth_type);
l_genl_msg_append_attr(cmd, NL80211_ATTR_WIPHY_FREQ, 4, &ch_freq);
l_genl_msg_append_attr(cmd, NL80211_ATTR_CHANNEL_WIDTH, 4, &ch_width);
if (wiphy_has_ext_feature(wiphy,
NL80211_EXT_FEATURE_CONTROL_PORT_OVER_NL80211)) {
l_genl_msg_append_attr(cmd, NL80211_ATTR_SOCKET_OWNER, 0, NULL);
l_genl_msg_append_attr(cmd,
NL80211_ATTR_CONTROL_PORT_OVER_NL80211,
0, NULL);
}
return cmd;
}
static int ap_start(struct ap_state *ap, const char *ssid, const char *psk,
struct l_dbus_message *message)
{
struct netdev *netdev = ap->netdev;
struct wiphy *wiphy = netdev_get_wiphy(netdev);
struct l_genl_msg *cmd;
const struct l_queue_entry *entry;
uint32_t id;
ap->ssid = l_strdup(ssid);
/* TODO: Start a Get Survey to decide the channel */
ap->channel = 6;
/* TODO: Add all ciphers supported by wiphy */
ap->ciphers = wiphy_select_cipher(wiphy, 0xffff);
ap->group_cipher = wiphy_select_cipher(wiphy, 0xffff);
ap->beacon_interval = 100;
/* TODO: Use actual supported rates */
ap->rates = l_uintset_new(200);
l_uintset_put(ap->rates, 2); /* 1 Mbps*/
l_uintset_put(ap->rates, 11); /* 5.5 Mbps*/
l_uintset_put(ap->rates, 22); /* 11 Mbps*/
if (crypto_psk_from_passphrase(psk, (uint8_t *) ssid, strlen(ssid),
ap->pmk) < 0)
goto error;
ap->frame_watch_ids = l_queue_new();
id = netdev_frame_watch_add(netdev, 0x0000 |
(MPDU_MANAGEMENT_SUBTYPE_ASSOCIATION_REQUEST << 4),
NULL, 0, ap_assoc_req_cb, ap);
l_queue_push_tail(ap->frame_watch_ids, L_UINT_TO_PTR(id));
id = netdev_frame_watch_add(netdev, 0x0000 |
(MPDU_MANAGEMENT_SUBTYPE_REASSOCIATION_REQUEST << 4),
NULL, 0, ap_reassoc_req_cb, ap);
l_queue_push_tail(ap->frame_watch_ids, L_UINT_TO_PTR(id));
id = netdev_frame_watch_add(netdev, 0x0000 |
(MPDU_MANAGEMENT_SUBTYPE_PROBE_REQUEST << 4),
NULL, 0, ap_probe_req_cb, ap);
l_queue_push_tail(ap->frame_watch_ids, L_UINT_TO_PTR(id));
id = netdev_frame_watch_add(netdev, 0x0000 |
(MPDU_MANAGEMENT_SUBTYPE_DISASSOCIATION << 4),
NULL, 0, ap_disassoc_cb, ap);
l_queue_push_tail(ap->frame_watch_ids, L_UINT_TO_PTR(id));
id = netdev_frame_watch_add(netdev, 0x0000 |
(MPDU_MANAGEMENT_SUBTYPE_AUTHENTICATION << 4),
NULL, 0, ap_auth_cb, ap);
l_queue_push_tail(ap->frame_watch_ids, L_UINT_TO_PTR(id));
id = netdev_frame_watch_add(netdev, 0x0000 |
(MPDU_MANAGEMENT_SUBTYPE_DEAUTHENTICATION << 4),
NULL, 0, ap_deauth_cb, ap);
l_queue_push_tail(ap->frame_watch_ids, L_UINT_TO_PTR(id));
for (entry = l_queue_get_entries(ap->frame_watch_ids); entry;
entry = entry->next)
if (!L_PTR_TO_UINT(entry->data))
goto error;
cmd = ap_build_cmd_start_ap(ap);
if (!cmd)
goto error;
ap->start_stop_cmd_id = l_genl_family_send(ap->nl80211, cmd,
ap_start_cb, ap, NULL);
if (!ap->start_stop_cmd_id) {
l_genl_msg_unref(cmd);
goto error;
}
ap->pending = l_dbus_message_ref(message);
return 0;
error:
ap_reset(ap);
return -EIO;
}
static void ap_stop_cb(struct l_genl_msg *msg, void *user_data)
{
struct ap_state *ap = user_data;
ap->start_stop_cmd_id = 0;
if (!ap->pending)
goto end;
if (l_genl_msg_get_error(msg) < 0) {
l_error("STOP_AP failed: %i", l_genl_msg_get_error(msg));
dbus_pending_reply(&ap->pending,
dbus_error_failed(ap->pending));
goto end;
}
dbus_pending_reply(&ap->pending,
l_dbus_message_new_method_return(ap->pending));
end:
ap_reset(ap);
}
static struct l_genl_msg *ap_build_cmd_stop_ap(struct ap_state *ap)
{
struct l_genl_msg *cmd;
uint32_t ifindex = netdev_get_ifindex(ap->netdev);
cmd = l_genl_msg_new_sized(NL80211_CMD_STOP_AP, 16);
l_genl_msg_append_attr(cmd, NL80211_ATTR_IFINDEX, 4, &ifindex);
return cmd;
}
static int ap_stop(struct ap_state *ap, struct l_dbus_message *message)
{
struct l_genl_msg *cmd;
cmd = ap_build_cmd_stop_ap(ap);
if (!cmd)
return -ENOMEM;
if (ap->start_stop_cmd_id)
l_genl_family_cancel(ap->nl80211, ap->start_stop_cmd_id);
ap->start_stop_cmd_id = l_genl_family_send(ap->nl80211, cmd, ap_stop_cb,
ap, NULL);
if (!ap->start_stop_cmd_id) {
l_genl_msg_unref(cmd);
return -EIO;
}
if (ap->gtk_set) {
struct l_genl_msg *msg;
ap->gtk_set = false;
msg = ap_build_cmd_del_key(ap);
if (!l_genl_family_send(ap->nl80211, msg, ap_gtk_op_cb, NULL,
NULL)) {
l_genl_msg_unref(msg);
l_error("Issuing DEL_KEY failed");
}
}
ap->pending = l_dbus_message_ref(message);
return 0;
}
static struct l_dbus_message *ap_dbus_start(struct l_dbus *dbus,
struct l_dbus_message *message, void *user_data)
{
struct ap_state *ap = user_data;
const char *ssid, *wpa2_psk;
if (ap->pending)
return dbus_error_busy(message);
if (ap->started)
return dbus_error_already_exists(message);
if (!l_dbus_message_get_arguments(message, "ss", &ssid, &wpa2_psk))
return dbus_error_invalid_args(message);
if (ap_start(ap, ssid, wpa2_psk, message) < 0)
return dbus_error_invalid_args(message);
return NULL;
}
static struct l_dbus_message *ap_dbus_stop(struct l_dbus *dbus,
struct l_dbus_message *message, void *user_data)
{
struct ap_state *ap = user_data;
if (ap->pending)
return dbus_error_busy(message);
/* already stopped, no-op */
if (!ap->started)
return l_dbus_message_new_method_return(message);
if (ap_stop(ap, message) < 0)
return dbus_error_failed(message);
return NULL;
}
static bool ap_dbus_property_get_started(struct l_dbus *dbus,
struct l_dbus_message *message,
struct l_dbus_message_builder *builder,
void *user_data)
{
struct ap_state *ap = user_data;
bool started = ap->started;
l_dbus_message_builder_append_basic(builder, 'b', &started);
return true;
}
static void ap_setup_interface(struct l_dbus_interface *interface)
{
l_dbus_interface_method(interface, "Start", 0, ap_dbus_start, "",
"ss", "ssid", "wpa2_psk");
l_dbus_interface_method(interface, "Stop", 0, ap_dbus_stop, "", "");
l_dbus_interface_property(interface, "Started", 0, "b",
ap_dbus_property_get_started, NULL);
}
static void ap_destroy_interface(void *user_data)
{
struct ap_state *ap = user_data;
ap_free(ap);
}
static void ap_add_interface(struct netdev *netdev)
{
struct ap_state *ap;
/*
* TODO: Check wiphy supported channels and NL80211_ATTR_TX_FRAME_TYPES
*/
/* just allocate/set device, Start method will complete setup */
ap = l_new(struct ap_state, 1);
ap->netdev = netdev;
ap->nl80211 = l_genl_family_new(iwd_get_genl(), NL80211_GENL_NAME);
/* setup ap dbus interface */
l_dbus_object_add_interface(dbus_get_bus(),
netdev_get_path(netdev), IWD_AP_INTERFACE, ap);
}
static void ap_remove_interface(struct netdev *netdev)
{
l_dbus_object_remove_interface(dbus_get_bus(),
netdev_get_path(netdev), IWD_AP_INTERFACE);
}
static void ap_netdev_watch(struct netdev *netdev,
enum netdev_watch_event event, void *userdata)
{
switch (event) {
case NETDEV_WATCH_EVENT_UP:
case NETDEV_WATCH_EVENT_NEW:
if (netdev_get_iftype(netdev) == NETDEV_IFTYPE_AP &&
netdev_get_is_up(netdev))
ap_add_interface(netdev);
break;
case NETDEV_WATCH_EVENT_DOWN:
case NETDEV_WATCH_EVENT_DEL:
ap_remove_interface(netdev);
break;
default:
break;
}
}
static int ap_init(void)
{
netdev_watch = netdev_watch_add(ap_netdev_watch, NULL, NULL);
l_dbus_register_interface(dbus_get_bus(), IWD_AP_INTERFACE,
ap_setup_interface, ap_destroy_interface, false);
return 0;
}
static void ap_exit(void)
{
netdev_watch_remove(netdev_watch);
l_dbus_unregister_interface(dbus_get_bus(), IWD_AP_INTERFACE);
}
IWD_MODULE(ap, ap_init, ap_exit)