mirror of
https://git.kernel.org/pub/scm/network/wireless/iwd.git
synced 2024-11-02 18:19:23 +01:00
c73575585b
Don't use del wd to dereference the IWD instance at the end of the function where it has been defined in the first place as at this point wd is about to have its reference count decreased anyway (the variable's scope is ending) so it's pointless (but didn't hurt). Relying on the __del__ destructor to kill the IWD process in those tests it has been started in the constructor is a bit of a hack in the first place, because the destructor is called on garbage collection and even through CPython does this on the refcount reaching 0, this is not documented and there's no guideline on when it should happen or if it should happen at all. So it could be argued that we should keep the del wd statemenets to be able to easily replace all of them with a call to a new method. But most of them are not placed so that they're guaranteed to happen on test success or failure. It would probably be easier to do this and other housekeeping in a base class and make the tests its subclasses. Also some of these tests don't really need to launch iwd themselves, since IWD now tracks changes in the known network files I think IWD only really needs to be killed between tests when main.conf changes.
146 lines
3.9 KiB
Python
146 lines
3.9 KiB
Python
#!/usr/bin/python3
|
|
|
|
import unittest
|
|
import sys
|
|
|
|
sys.path.append('../util')
|
|
import iwd
|
|
from iwd import IWD
|
|
from iwd import PSKAgent
|
|
from iwd import NetworkType
|
|
|
|
from hostapd import HostapdCLI
|
|
from hostapd import hostapd_map
|
|
|
|
from hwsim import Hwsim
|
|
|
|
import time
|
|
|
|
class Test(unittest.TestCase):
|
|
|
|
def test_connection_success(self):
|
|
hwsim = Hwsim()
|
|
|
|
bss_radio = [None, None, None]
|
|
bss_hostapd = [None, None, None]
|
|
|
|
for intf in hostapd_map.values():
|
|
if intf.config and '1' in intf.config:
|
|
bss_idx = 0
|
|
elif intf.config and '2' in intf.config:
|
|
bss_idx = 1
|
|
elif intf.config and '3' in intf.config:
|
|
bss_idx = 2
|
|
else:
|
|
continue
|
|
|
|
for path in hwsim.radios:
|
|
radio = hwsim.radios[path]
|
|
if radio.name == intf.wiphy.name:
|
|
break
|
|
|
|
bss_radio[bss_idx] = radio
|
|
bss_hostapd[bss_idx] = HostapdCLI(intf)
|
|
|
|
rule0 = hwsim.rules.create()
|
|
rule0.source = bss_radio[0].addresses[0]
|
|
rule0.bidirectional = True
|
|
rule0.signal = -8000
|
|
|
|
rule1 = hwsim.rules.create()
|
|
rule1.source = bss_radio[1].addresses[0]
|
|
rule1.bidirectional = True
|
|
rule1.signal = -2500
|
|
|
|
rule2 = hwsim.rules.create()
|
|
rule2.source = bss_radio[2].addresses[0]
|
|
rule2.bidirectional = True
|
|
rule2.signal = -2000
|
|
|
|
wd = IWD(True, '/tmp')
|
|
|
|
psk_agent = PSKAgent("secret123")
|
|
wd.register_psk_agent(psk_agent)
|
|
|
|
dev1, dev2 = wd.list_devices(2)
|
|
|
|
condition = 'not obj.scanning'
|
|
wd.wait_for_object_condition(dev1, condition)
|
|
|
|
dev1.scan()
|
|
|
|
condition = 'not obj.scanning'
|
|
wd.wait_for_object_condition(dev1, condition)
|
|
|
|
ordered_network = dev1.get_ordered_network("TestBlacklist")
|
|
|
|
self.assertEqual(ordered_network.type, NetworkType.psk)
|
|
|
|
condition = 'not obj.connected'
|
|
wd.wait_for_object_condition(ordered_network.network_object, condition)
|
|
|
|
ordered_network.network_object.connect()
|
|
|
|
self.assertIn(dev1.address, bss_hostapd[2].list_sta())
|
|
|
|
# dev1 now connected, this should max out the first AP, causing the next
|
|
# connection to fail to this AP.
|
|
|
|
condition = 'not obj.scanning'
|
|
wd.wait_for_object_condition(dev2, condition)
|
|
|
|
dev2.scan()
|
|
|
|
condition = 'not obj.scanning'
|
|
wd.wait_for_object_condition(dev2, condition)
|
|
|
|
ordered_network = dev2.get_ordered_network("TestBlacklist")
|
|
|
|
self.assertEqual(ordered_network.type, NetworkType.psk)
|
|
|
|
condition = 'not obj.connected'
|
|
wd.wait_for_object_condition(ordered_network.network_object, condition)
|
|
|
|
ordered_network.network_object.connect()
|
|
|
|
# We should have temporarily blacklisted the first BSS, and connected
|
|
# to this one.
|
|
self.assertIn(dev2.address, bss_hostapd[1].list_sta())
|
|
|
|
# Now check that the first BSS is still not blacklisted. We can
|
|
# disconnect dev1, opening up the AP for more connections
|
|
dev1.disconnect()
|
|
dev2.disconnect()
|
|
|
|
condition = 'not obj.scanning'
|
|
wd.wait_for_object_condition(dev2, condition)
|
|
|
|
dev2.scan()
|
|
|
|
condition = 'not obj.scanning'
|
|
wd.wait_for_object_condition(dev2, condition)
|
|
|
|
ordered_network = dev2.get_ordered_network("TestBlacklist")
|
|
|
|
self.assertEqual(ordered_network.type, NetworkType.psk)
|
|
|
|
condition = 'not obj.connected'
|
|
wd.wait_for_object_condition(ordered_network.network_object, condition)
|
|
|
|
ordered_network.network_object.connect()
|
|
|
|
self.assertIn(dev2.address, bss_hostapd[2].list_sta())
|
|
|
|
wd.unregister_psk_agent(psk_agent)
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
IWD.copy_to_storage('main.conf')
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
IWD.clear_storage()
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main(exit=True)
|