/* * * Wireless daemon for Linux * * Copyright (C) 2013-2018 Intel Corporation. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include "eap.h" #include "eap-private.h" #include "eap-tls-common.h" #define TTLS_AVP_HEADER_LEN 8 #define TTLS_AVP_LEN_MASK 0xFFFFFF enum ttls_avp_flag { TTLS_AVP_FLAG_M = 0x40, TTLS_AVP_FLAG_V = 0x80, TTLS_AVP_FLAG_MASK = 0xFF, }; enum radius_attr { RADIUS_ATTR_EAP_MESSAGE = 79, }; struct avp_builder { uint8_t flags; size_t capacity; uint8_t *buf; size_t offset; uint32_t current_len; }; static void avp_builder_grow(struct avp_builder *builder) { builder->buf = l_realloc(builder->buf, builder->capacity * 2); memset(builder->buf + builder->capacity, 0, builder->capacity); builder->capacity *= 2; } static uint8_t *avp_builder_reserve(struct avp_builder *builder, size_t len) { while (builder->offset + TTLS_AVP_HEADER_LEN + builder->current_len + len >= builder->capacity) { avp_builder_grow(builder); } return builder->buf + builder->offset + TTLS_AVP_HEADER_LEN + builder->current_len; } static void avp_builder_finalize_avp(struct avp_builder *builder) { uint8_t *p = builder->buf + builder->offset; if (builder->current_len & 3) { /* * If an AVP is not a multiple of four octets, it must be padded * with zeros to the next four-octet boundary. */ uint8_t pad_len = 4 - (builder->current_len & 3); memset(avp_builder_reserve(builder, pad_len), 0, pad_len); } builder->current_len += TTLS_AVP_HEADER_LEN; builder->offset += (builder->current_len + 3) & ~3; builder->current_len |= builder->flags << 24; l_put_be32(builder->current_len, p + 4); builder->flags = 0; builder->current_len = 0; } static bool avp_builder_start_avp(struct avp_builder *builder, enum radius_attr type, bool mandatory, uint32_t vendor_id) { uint8_t *p; if (builder->current_len) return false; if (builder->offset + TTLS_AVP_HEADER_LEN + (vendor_id ? 4 : 0) >= builder->capacity) avp_builder_grow(builder); p = builder->buf + builder->offset; l_put_be32(type, p); if (mandatory) builder->flags |= TTLS_AVP_FLAG_M; if (vendor_id) { builder->flags |= TTLS_AVP_FLAG_V; l_put_be32(vendor_id, p + TTLS_AVP_HEADER_LEN); builder->current_len += 4; } return true; } static struct avp_builder *avp_builder_new(size_t capacity) { struct avp_builder *builder; if (!capacity) return NULL; builder = l_new(struct avp_builder, 1); builder->buf = l_malloc(capacity); memset(builder->buf, 0, capacity); builder->capacity = capacity; return builder; } static uint8_t *avp_builder_free(struct avp_builder *builder, bool free_data, size_t *out_size) { uint8_t *ret; if (free_data) { l_free(builder->buf); builder->buf = NULL; } ret = builder->buf; if (out_size) *out_size = builder->offset; l_free(builder); return ret; } static bool avp_builder_put_bytes(struct avp_builder *builder, const void *data, size_t len) { memcpy(avp_builder_reserve(builder, len), data, len); builder->current_len += len; return true; } struct avp_iter { enum radius_attr type; uint8_t flags; uint32_t len; uint32_t vendor_id; const uint8_t *data; const uint8_t *buf; size_t buf_len; size_t offset; }; static void avp_iter_init(struct avp_iter *iter, const uint8_t *buf, size_t len) { iter->buf = buf; iter->buf_len = len; iter->offset = 0; } static bool avp_iter_next(struct avp_iter *iter) { const uint8_t *start = iter->buf + iter->offset; const uint8_t *end = iter->buf + iter->buf_len; enum radius_attr type; uint32_t len; uint8_t flags; uint8_t pad_len; /* Make sure we have at least the header fields */ if (iter->offset + TTLS_AVP_HEADER_LEN >= iter->buf_len) return false; type = l_get_be32(start); start += 4; len = l_get_be32(start); start += 4; flags = (len >> 24) & TTLS_AVP_FLAG_MASK; len &= TTLS_AVP_LEN_MASK; len -= TTLS_AVP_HEADER_LEN; if (start + len > end) return false; if (flags & TTLS_AVP_FLAG_V) { if (len < 4) return false; iter->vendor_id = l_get_be32(start); start += 4; len -= 4; } else { iter->vendor_id = 0; } iter->type = type; iter->flags = flags; iter->len = len; iter->data = start; if (len & 3) pad_len = 4 - (len & 3); else pad_len = 0; iter->offset = start + len + pad_len - iter->buf; return true; } struct phase2_method { void *state; bool (*init)(struct eap_state *eap); bool (*handle_avp)(struct eap_state *eap, enum radius_attr type, uint32_t vendor_id, const uint8_t *data, size_t len); bool (*load_settings)(struct eap_state *eap, struct l_settings *settings, const char *prefix); void (*destroy)(void *state); bool (*reset)(struct eap_state *eap); }; struct eap_ttls_state { char *ca_cert; char *client_cert; char *client_key; char *passphrase; struct l_tls *tls; uint8_t *rx_pkt_buf; size_t rx_pkt_received, rx_pkt_len; uint8_t *tx_pkt_buf; size_t tx_pkt_len, tx_pkt_capacity, tx_pkt_offset; struct databuf *avp_buf; bool completed; uint8_t negotiated_version; struct phase2_method *phase2; }; static void __eap_ttls_reset_state(struct eap_ttls_state *ttls) { ttls->completed = false; l_free(ttls->rx_pkt_buf); ttls->rx_pkt_buf = NULL; ttls->rx_pkt_received = 0; ttls->rx_pkt_len = 0; l_free(ttls->tx_pkt_buf); ttls->tx_pkt_buf = NULL; ttls->tx_pkt_capacity = 0; ttls->tx_pkt_len = 0; ttls->tx_pkt_offset = 0; databuf_free(ttls->avp_buf); ttls->avp_buf = NULL; if (ttls->tls) { l_tls_free(ttls->tls); ttls->tls = NULL; } } static bool eap_ttls_reset_state(struct eap_state *eap) { struct eap_ttls_state *ttls = eap_get_data(eap); if (ttls->phase2->reset) ttls->phase2->reset(eap); __eap_ttls_reset_state(ttls); return true; } static void eap_ttls_free(struct eap_state *eap) { struct eap_ttls_state *ttls = eap_get_data(eap); __eap_ttls_reset_state(ttls); if (ttls->phase2->destroy) { ttls->phase2->destroy(ttls->phase2->state); ttls->phase2->state = NULL; } eap_set_data(eap, NULL); l_free(ttls->ca_cert); l_free(ttls->client_cert); l_free(ttls->client_key); if (ttls->passphrase) { memset(ttls->passphrase, 0, strlen(ttls->passphrase)); l_free(ttls->passphrase); } l_free(ttls); } #define EAP_TTLS_RESPONSE_HEADER_LEN 10 #define EAP_TTLS_FLAG_L (1 << 7) #define EAP_TTLS_FLAG_M (1 << 6) #define EAP_TTLS_FLAG_S (1 << 5) #define EAP_TTLS_FLAG_MASK \ (EAP_TTLS_FLAG_L | EAP_TTLS_FLAG_M | EAP_TTLS_FLAG_S) static void eap_ttls_phase2_eap_send_response(const uint8_t *data, size_t len, void *user_data) { struct eap_state *eap = user_data; struct eap_ttls_state *ttls = eap_get_data(eap); struct avp_builder *builder; uint8_t *msg_data; size_t msg_data_len; builder = avp_builder_new(TTLS_AVP_HEADER_LEN + len); avp_builder_start_avp(builder, RADIUS_ATTR_EAP_MESSAGE, true, 0); avp_builder_put_bytes(builder, data, len); avp_builder_finalize_avp(builder); msg_data = avp_builder_free(builder, false, &msg_data_len); l_tls_write(ttls->tls, msg_data, msg_data_len); l_free(msg_data); } static void eap_ttls_phase2_eap_complete(enum eap_result result, void *user_data) { struct eap_state *eap = user_data; struct eap_ttls_state *ttls = eap_get_data(eap); ttls->completed = true; } static bool eap_ttls_phase2_eap_load_settings(struct eap_state *eap, struct l_settings *settings, const char *prefix) { struct eap_ttls_state *ttls = eap_get_data(eap); ttls->phase2->state = eap_new(eap_ttls_phase2_eap_send_response, eap_ttls_phase2_eap_complete, eap); if (!ttls->phase2->state) { l_error("Could not create the TTLS Phase 2 EAP instance"); return false; } if (!eap_load_settings(ttls->phase2->state, settings, prefix)) { eap_free(ttls->phase2->state); return false; } return true; } static bool eap_ttls_phase2_eap_init(struct eap_state *eap) { struct eap_ttls_state *ttls = eap_get_data(eap); uint8_t packet[5] = { EAP_CODE_REQUEST, 0, 0, 5, EAP_TYPE_IDENTITY }; if (!ttls->phase2->state) return false; /* * Consume a fake Request/Identity packet so that the EAP instance * starts with its Response/Identity right away. */ eap_rx_packet(ttls->phase2->state, packet, sizeof(packet)); return true; } static bool eap_ttls_phase2_eap_handle_avp(struct eap_state *eap, enum radius_attr type, uint32_t vendor_id, const uint8_t *data, size_t len) { struct eap_ttls_state *ttls = eap_get_data(eap); if (type != RADIUS_ATTR_EAP_MESSAGE) return false; eap_rx_packet(ttls->phase2->state, data, len); return true; } static void eap_ttls_phase2_eap_destroy(void *state) { if (!state) return; eap_reset(state); eap_free(state); } static bool eap_ttls_phase2_eap_reset(struct eap_state *eap) { struct eap_ttls_state *ttls = eap_get_data(eap); if (!ttls->phase2->state) return false; return eap_reset(ttls->phase2->state); } static struct phase2_method phase2_eap = { .load_settings = eap_ttls_phase2_eap_load_settings, .init = eap_ttls_phase2_eap_init, .handle_avp = eap_ttls_phase2_eap_handle_avp, .destroy = eap_ttls_phase2_eap_destroy, .reset = eap_ttls_phase2_eap_reset, }; static uint8_t *eap_ttls_tx_buf_reserve(struct eap_ttls_state *ttls, size_t size) { int offset = ttls->tx_pkt_offset + ttls->tx_pkt_len; size_t end_offset = offset + size; ttls->tx_pkt_len += size; if (end_offset > ttls->tx_pkt_capacity) { ttls->tx_pkt_capacity = end_offset + 1024; ttls->tx_pkt_buf = l_realloc(ttls->tx_pkt_buf, ttls->tx_pkt_capacity); } return ttls->tx_pkt_buf + offset; } static void eap_ttls_tx_cb(const uint8_t *data, size_t len, void *user_data) { struct eap_state *eap = user_data; struct eap_ttls_state *ttls = eap_get_data(eap); memcpy(eap_ttls_tx_buf_reserve(ttls, len), data, len); } static void eap_ttls_data_cb(const uint8_t *data, size_t data_len, void *user_data) { struct eap_state *eap = user_data; struct eap_ttls_state *ttls = eap_get_data(eap); if (!ttls->avp_buf) ttls->avp_buf = databuf_new(data_len); databuf_append(ttls->avp_buf, data, data_len); } static void eap_ttls_ready_cb(const char *peer_identity, void *user_data) { struct eap_state *eap = user_data; struct eap_ttls_state *ttls = eap_get_data(eap); uint8_t msk_emsk[128]; uint8_t seed[64]; /* TODO: if we have a CA certificate require non-NULL peer_identity */ /* * TTLSv0 seems to assume that the TLS handshake phase authenticates * the server to the client enough that the inner method success or * failure status doesn't matter as long as the server lets us in, * although in various places it says the client may also have a * specific policy. */ eap_method_success(eap); /* MSK, EMSK and challenge derivation */ memcpy(seed + 0, ttls->tls->pending.client_random, 32); memcpy(seed + 32, ttls->tls->pending.server_random, 32); tls_prf_get_bytes(ttls->tls, L_CHECKSUM_SHA256, 32, ttls->tls->pending.master_secret, sizeof(ttls->tls->pending.master_secret), "ttls keying material", seed, 64, msk_emsk, 128); memset(seed, 0, 64); eap_set_key_material(eap, msk_emsk + 0, 64, msk_emsk + 64, 64, NULL, 0); if (!ttls->phase2->state) goto err; if (ttls->phase2->init) ttls->phase2->init(eap); return; err: l_tls_close(ttls->tls); } static void eap_ttls_disconnect_cb(enum l_tls_alert_desc reason, bool remote, void *user_data) { struct eap_state *eap = user_data; struct eap_ttls_state *ttls = eap_get_data(eap); ttls->completed = true; } static void eap_ttls_handle_payload(struct eap_state *eap, const uint8_t *pkt, size_t pkt_len) { struct eap_ttls_state *ttls = eap_get_data(eap); struct avp_iter iter; l_tls_handle_rx(ttls->tls, pkt, pkt_len); if (!ttls->phase2->handle_avp) return; /* Plaintext phase two data is stored into ttls->avp_buf */ if (!ttls->avp_buf) return; avp_iter_init(&iter, ttls->avp_buf->data, ttls->avp_buf->len); while (avp_iter_next(&iter)) { if (ttls->phase2->handle_avp(eap, iter.type, iter.vendor_id, iter.data, iter.len)) continue; if (iter.flags & TTLS_AVP_FLAG_M) l_tls_close(ttls->tls); } databuf_free(ttls->avp_buf); ttls->avp_buf = NULL; } static void eap_ttls_handle_request(struct eap_state *eap, const uint8_t *pkt, size_t len) { uint8_t flags; uint32_t total_len; struct eap_ttls_state *ttls = eap_get_data(eap); size_t fragment_len; uint8_t *tx_buf; if (len < 1) { l_error("EAP-TTLS request too short"); goto err; } flags = pkt[0]; pkt += 1; len -= 1; if (!(flags & EAP_TTLS_FLAG_S) && (flags & 7) != ttls->negotiated_version) { l_error("Non-zero EAP-TTLS version: %i", flags & 7); goto err; } /* Check if we're expecting a fragment ACK */ if (ttls->tx_pkt_len) { if ((flags & EAP_TTLS_FLAG_MASK) || len) { l_error("EAP-TTLS request is not an ACK"); goto err; } /* Send next response fragment, prepend the 6-byte header */ tx_buf = &ttls->tx_pkt_buf[ttls->tx_pkt_offset - 6]; fragment_len = eap_get_mtu(eap) - 6; tx_buf[5] = EAP_TTLS_FLAG_M | ttls->negotiated_version; /* Flags */ if (ttls->tx_pkt_len <= fragment_len) { fragment_len = ttls->tx_pkt_len; tx_buf[5] = ttls->negotiated_version; /* Flags */ } eap_send_response(eap, EAP_TYPE_TTLS, tx_buf, fragment_len + 6); ttls->tx_pkt_len -= fragment_len; ttls->tx_pkt_offset += fragment_len; return; } /* Complain if S bit is not correct */ if (!(flags & EAP_TTLS_FLAG_S) == !ttls->tls) { l_error("EAP-TTLS request S flag invalid"); goto err; } /* Method can't be restarted */ if ((flags & EAP_TTLS_FLAG_S) && ttls->completed) { l_error("EAP-TTLS start after completed"); goto err; } if (flags & EAP_TTLS_FLAG_L) { if (len < 7) { l_error("EAP-TTLS request with L flag too short"); goto err; } total_len = l_get_be32(pkt); pkt += 4; len -= 4; if (ttls->rx_pkt_buf) { l_error("EAP-TTLS request L flag invalid"); l_free(ttls->rx_pkt_buf); ttls->rx_pkt_buf = NULL; goto err; } if (!(flags & EAP_TTLS_FLAG_M) && total_len != len) { l_error("EAP-TTLS request Length value invalid"); goto err; } } if (!ttls->rx_pkt_buf && (flags & EAP_TTLS_FLAG_M)) { if (!(flags & EAP_TTLS_FLAG_L)) { l_error("EAP-TTLS request 1st fragment with no length"); goto err; } ttls->rx_pkt_buf = l_malloc(total_len); ttls->rx_pkt_len = total_len; ttls->rx_pkt_received = 0; } if (ttls->rx_pkt_buf) { if ( ((flags & EAP_TTLS_FLAG_M) && ttls->rx_pkt_received + len >= ttls->rx_pkt_len) || (!(flags & EAP_TTLS_FLAG_M) && ttls->rx_pkt_received + len != ttls->rx_pkt_len)) { l_error("EAP-TTLS request fragment length mismatch"); l_free(ttls->rx_pkt_buf); ttls->rx_pkt_buf = NULL; goto err; } memcpy(ttls->rx_pkt_buf + ttls->rx_pkt_received, pkt, len); ttls->rx_pkt_received += len; } if (flags & EAP_TTLS_FLAG_M) { uint8_t buf[6]; /* Send an empty response as ACK */ buf[5] = 0; eap_send_response(eap, EAP_TYPE_TTLS, buf, 6); return; } if (ttls->rx_pkt_buf) { pkt = ttls->rx_pkt_buf; len = ttls->rx_pkt_len; } eap_ttls_tx_buf_reserve(ttls, EAP_TTLS_RESPONSE_HEADER_LEN); ttls->tx_pkt_offset = ttls->tx_pkt_len; ttls->tx_pkt_len = 0; if (flags & EAP_TTLS_FLAG_S) { ttls->tls = l_tls_new(false, eap_ttls_data_cb, eap_ttls_tx_cb, eap_ttls_ready_cb, eap_ttls_disconnect_cb, eap); if (!ttls->tls) { l_error("Creating a TLS instance failed"); goto err; } l_tls_set_auth_data(ttls->tls, ttls->client_cert, ttls->client_key, ttls->passphrase); if (ttls->ca_cert) l_tls_set_cacert(ttls->tls, ttls->ca_cert); /* * RFC5281 section 9.1: "For all packets other than a * Start packet, the Data field consists of the raw * TLS message sequence or fragment thereof. For a * Start packet, the Data field may optionally * contain an AVP sequence." * We ignore the unencrypted AVP sequence if there is * any. */ len = 0; } if (len) eap_ttls_handle_payload(eap, pkt, len); if (ttls->rx_pkt_buf) { l_free(ttls->rx_pkt_buf); ttls->rx_pkt_buf = NULL; } /* * Note if ttls->completed && !eap->method_success we can send an empty * response instead of passing the TLS alert. */ if (ttls->tx_pkt_len + 6 <= eap_get_mtu(eap)) { /* * Response fits in a single response packet, prepend the * 6-byte header (no length) before the data. */ tx_buf = &ttls->tx_pkt_buf[ttls->tx_pkt_offset - 6]; tx_buf[5] = ttls->negotiated_version; /* Flags */ eap_send_response(eap, EAP_TYPE_TTLS, tx_buf, ttls->tx_pkt_len + 6); ttls->tx_pkt_len = 0; } else { /* * Fragmentation needed, prepend the 10-byte header * (4 EAP header + 2 response + 4 length) to build the * initial fragment packet. */ tx_buf = &ttls->tx_pkt_buf[ttls->tx_pkt_offset - 10]; tx_buf[5] = EAP_TTLS_FLAG_L | EAP_TTLS_FLAG_M | ttls->negotiated_version; /* Flags */ l_put_be32(ttls->tx_pkt_len, &tx_buf[6]); fragment_len = eap_get_mtu(eap) - 10; eap_send_response(eap, EAP_TYPE_TTLS, tx_buf, fragment_len + 10); ttls->tx_pkt_len -= fragment_len; ttls->tx_pkt_offset += fragment_len; } if (ttls->completed) { l_tls_free(ttls->tls); ttls->tls = NULL; if (ttls->phase2->destroy) { ttls->phase2->destroy(ttls->phase2->state); ttls->phase2->state = NULL; } } return; err: ttls->completed = true; l_tls_free(ttls->tls); ttls->tls = NULL; eap_method_error(eap); } static const struct { const char *name; struct phase2_method *method; } tunneled_non_eap_methods[] = { { } }; static int eap_ttls_check_tunneled_auth_settings(struct l_settings *settings, struct l_queue *secrets, const char *prefix, struct l_queue **out_missing) { const struct eap_secret_info *secret; char identity_key[64]; char password_key[64]; L_AUTO_FREE_VAR(char *, identity); L_AUTO_FREE_VAR(char *, password) = NULL; snprintf(identity_key, sizeof(identity_key), "%sIdentity", prefix); snprintf(password_key, sizeof(password_key), "%sPassword", prefix); identity = l_settings_get_string(settings, "Security", identity_key); if (!identity) { secret = l_queue_find(secrets, eap_secret_info_match, identity_key); if (!secret) { eap_append_secret(out_missing, EAP_SECRET_REMOTE_USER_PASSWORD, identity_key, password_key, NULL, EAP_CACHE_TEMPORARY); } return 0; } password = l_settings_get_string(settings, "Security", password_key); if (!password) { secret = l_queue_find(secrets, eap_secret_info_match, password_key); if (!secret) { eap_append_secret(out_missing, EAP_SECRET_REMOTE_PASSWORD, password_key, NULL, identity, EAP_CACHE_TEMPORARY); } } return 0; } static int eap_ttls_check_settings(struct l_settings *settings, struct l_queue *secrets, const char *prefix, struct l_queue **out_missing) { char setting[64], client_cert_setting[64], passphrase_setting[64]; L_AUTO_FREE_VAR(char *, path) = NULL; L_AUTO_FREE_VAR(char *, client_cert) = NULL; L_AUTO_FREE_VAR(char *, passphrase) = NULL; uint8_t *cert; size_t size; const char *phase2_method; uint8_t i; snprintf(setting, sizeof(setting), "%sTTLS-CACert", prefix); path = l_settings_get_string(settings, "Security", setting); if (path) { cert = l_pem_load_certificate(path, &size); if (!cert) { l_error("Failed to load %s", path); return -EIO; } l_free(cert); } snprintf(client_cert_setting, sizeof(client_cert_setting), "%sTTLS-ClientCert", prefix); client_cert = l_settings_get_string(settings, "Security", client_cert_setting); if (client_cert) { cert = l_pem_load_certificate(client_cert, &size); if (!cert) { l_error("Failed to load %s", client_cert); return -EIO; } l_free(cert); } l_free(path); snprintf(setting, sizeof(setting), "%sTTLS-ClientKey", prefix); path = l_settings_get_string(settings, "Security", setting); if (path && !client_cert) { l_error("%s present but no client certificate (%s)", setting, client_cert_setting); return -ENOENT; } snprintf(passphrase_setting, sizeof(passphrase_setting), "%sTTLS-ClientKeyPassphrase", prefix); passphrase = l_settings_get_string(settings, "Security", passphrase_setting); if (!passphrase) { const struct eap_secret_info *secret; secret = l_queue_find(secrets, eap_secret_info_match, passphrase_setting); if (secret) passphrase = l_strdup(secret->value); } if (path) { bool encrypted; uint8_t *priv_key; size_t size; priv_key = l_pem_load_private_key(path, passphrase, &encrypted, &size); if (!priv_key) { if (!encrypted) { l_error("Error loading client private key %s", path); return -EIO; } if (passphrase) { l_error("Error loading encrypted client " "private key %s", path); return -EACCES; } /* * We've got an encrypted key and passphrase was not * saved in the network settings, need to request * the passphrase. */ eap_append_secret(out_missing, EAP_SECRET_LOCAL_PKEY_PASSPHRASE, passphrase_setting, NULL, path, EAP_CACHE_TEMPORARY); } else { memset(priv_key, 0, size); l_free(priv_key); if (passphrase && !encrypted) { l_error("%s present but client private " "key %s is not encrypted", passphrase_setting, path); return -EIO; } } } else if (passphrase) { l_error("%s present but no client private key path set (%s)", passphrase_setting, setting); return -ENOENT; } snprintf(setting, sizeof(setting), "%sTTLS-Phase2-Method", prefix); phase2_method = l_settings_get_value(settings, "Security", setting); snprintf(setting, sizeof(setting), "%sTTLS-Phase2-", prefix); for (i = 0; tunneled_non_eap_methods[i].name; i++) { if (strcmp(tunneled_non_eap_methods[i].name, phase2_method)) continue; return eap_ttls_check_tunneled_auth_settings(settings, secrets, setting, out_missing); } return __eap_check_settings(settings, secrets, setting, false, out_missing); } static bool eap_ttls_load_settings(struct eap_state *eap, struct l_settings *settings, const char *prefix) { struct eap_ttls_state *ttls; const char *phase2_method; char setting[64]; uint8_t i; ttls = l_new(struct eap_ttls_state, 1); snprintf(setting, sizeof(setting), "%sTTLS-CACert", prefix); ttls->ca_cert = l_settings_get_string(settings, "Security", setting); snprintf(setting, sizeof(setting), "%sTTLS-ClientCert", prefix); ttls->client_cert = l_settings_get_string(settings, "Security", setting); snprintf(setting, sizeof(setting), "%sTTLS-ClientKey", prefix); ttls->client_key = l_settings_get_string(settings, "Security", setting); snprintf(setting, sizeof(setting), "%sTTLS-ClientKeyPassphrase", prefix); ttls->passphrase = l_settings_get_string(settings, "Security", setting); snprintf(setting, sizeof(setting), "%sTTLS-Phase2-Method", prefix); phase2_method = l_settings_get_value(settings, "Security", setting); for (i = 0; tunneled_non_eap_methods[i].name; i++) { if (strcmp(tunneled_non_eap_methods[i].name, phase2_method)) continue; ttls->phase2 = tunneled_non_eap_methods[i].method; break; } if (!ttls->phase2) ttls->phase2 = &phase2_eap; eap_set_data(eap, ttls); snprintf(setting, sizeof(setting), "%sTTLS-Phase2-", prefix); if (ttls->phase2->load_settings && !ttls->phase2->load_settings(eap, settings, setting)) goto err; return true; err: eap_set_data(eap, NULL); l_free(ttls->ca_cert); l_free(ttls->client_cert); l_free(ttls->client_key); if (ttls->passphrase) memset(ttls->passphrase, 0, strlen(ttls->passphrase)); l_free(ttls->passphrase); l_free(ttls); return false; } static struct eap_method eap_ttls = { .request_type = EAP_TYPE_TTLS, .exports_msk = true, .name = "TTLS", .free = eap_ttls_free, .handle_request = eap_ttls_handle_request, .check_settings = eap_ttls_check_settings, .load_settings = eap_ttls_load_settings, .reset_state = eap_ttls_reset_state, }; static int eap_ttls_init(void) { l_debug(""); return eap_register_method(&eap_ttls); } static void eap_ttls_exit(void) { l_debug(""); eap_unregister_method(&eap_ttls); } EAP_METHOD_BUILTIN(eap_ttls, eap_ttls_init, eap_ttls_exit)