/* * Copyright (c) 2013, Kenneth MacKay * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include "ecc.h" #define MAX_TRIES 16 typedef struct { uint64_t m_low; uint64_t m_high; } uint128_t; static uint64_t curve_p[NUM_ECC_DIGITS] = CURVE_P_32; static uint64_t curve_b[NUM_ECC_DIGITS] = CURVE_B_32; static void vli_clear(uint64_t *vli) { int i; for (i = 0; i < NUM_ECC_DIGITS; i++) vli[i] = 0; } /* Returns true if vli == 0, false otherwise. */ static bool vli_is_zero(const uint64_t *vli) { int i; for (i = 0; i < NUM_ECC_DIGITS; i++) { if (vli[i]) return false; } return true; } /* Returns nonzero if bit bit of vli is set. */ static uint64_t vli_test_bit(const uint64_t *vli, unsigned int bit) { return (vli[bit / 64] & ((uint64_t) 1 << (bit % 64))); } /* Counts the number of 64-bit "digits" in vli. */ static unsigned int vli_num_digits(const uint64_t *vli) { int i; /* Search from the end until we find a non-zero digit. * We do it in reverse because we expect that most digits will * be nonzero. */ for (i = NUM_ECC_DIGITS - 1; i >= 0 && vli[i] == 0; i--); return (i + 1); } /* Counts the number of bits required for vli. */ unsigned int vli_num_bits(const uint64_t *vli) { unsigned int i, num_digits; uint64_t digit; num_digits = vli_num_digits(vli); if (num_digits == 0) return 0; digit = vli[num_digits - 1]; for (i = 0; digit; i++) digit >>= 1; return ((num_digits - 1) * 64 + i); } /* Sets dest = src. */ static void vli_set(uint64_t *dest, const uint64_t *src) { int i; for (i = 0; i < NUM_ECC_DIGITS; i++) dest[i] = src[i]; } /* Returns sign of left - right. */ int vli_cmp(const uint64_t *left, const uint64_t *right) { int i; for (i = NUM_ECC_DIGITS - 1; i >= 0; i--) { if (left[i] > right[i]) return 1; else if (left[i] < right[i]) return -1; } return 0; } /* Constant-time comparison function - secure way to compare long integers */ /* Returns one if left == right, zero otherwise. */ static bool vli_equal(const uint64_t *left, const uint64_t *right) { uint64_t diff = 0; int i; for (i = NUM_ECC_DIGITS - 1; i >= 0; --i) diff |= (left[i] ^ right[i]); return (diff == 0); } /* Computes result = in << c, returning carry. Can modify in place * (if result == in). 0 < shift < 64. */ static uint64_t vli_lshift(uint64_t *result, const uint64_t *in, unsigned int shift) { uint64_t carry = 0; int i; for (i = 0; i < NUM_ECC_DIGITS; i++) { uint64_t temp = in[i]; result[i] = (temp << shift) | carry; carry = temp >> (64 - shift); } return carry; } /* Computes vli = vli >> 1. */ static void vli_rshift1(uint64_t *vli) { uint64_t *end = vli; uint64_t carry = 0; vli += NUM_ECC_DIGITS; while (vli-- > end) { uint64_t temp = *vli; *vli = (temp >> 1) | carry; carry = temp << 63; } } /* Computes result = left + right, returning carry. Can modify in place. */ static uint64_t vli_add(uint64_t *result, const uint64_t *left, const uint64_t *right) { uint64_t carry = 0; int i; for (i = 0; i < NUM_ECC_DIGITS; i++) { uint64_t sum; sum = left[i] + right[i] + carry; if (sum != left[i]) carry = (sum < left[i]); result[i] = sum; } return carry; } /* Computes result = left - right, returning borrow. Can modify in place. */ uint64_t vli_sub(uint64_t *result, const uint64_t *left, const uint64_t *right) { uint64_t borrow = 0; int i; for (i = 0; i < NUM_ECC_DIGITS; i++) { uint64_t diff; diff = left[i] - right[i] - borrow; if (diff != left[i]) borrow = (diff > left[i]); result[i] = diff; } return borrow; } static uint128_t mul_64_64(uint64_t left, uint64_t right) { uint64_t a0 = left & 0xffffffffull; uint64_t a1 = left >> 32; uint64_t b0 = right & 0xffffffffull; uint64_t b1 = right >> 32; uint64_t m0 = a0 * b0; uint64_t m1 = a0 * b1; uint64_t m2 = a1 * b0; uint64_t m3 = a1 * b1; uint128_t result; m2 += (m0 >> 32); m2 += m1; /* Overflow */ if (m2 < m1) m3 += 0x100000000ull; result.m_low = (m0 & 0xffffffffull) | (m2 << 32); result.m_high = m3 + (m2 >> 32); return result; } static uint128_t add_128_128(uint128_t a, uint128_t b) { uint128_t result; result.m_low = a.m_low + b.m_low; result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); return result; } static void vli_mult(uint64_t *result, const uint64_t *left, const uint64_t *right) { uint128_t r01 = { 0, 0 }; uint64_t r2 = 0; unsigned int i, k; /* Compute each digit of result in sequence, maintaining the * carries. */ for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) { unsigned int min; if (k < NUM_ECC_DIGITS) min = 0; else min = (k + 1) - NUM_ECC_DIGITS; for (i = min; i <= k && i < NUM_ECC_DIGITS; i++) { uint128_t product; product = mul_64_64(left[i], right[k - i]); r01 = add_128_128(r01, product); r2 += (r01.m_high < product.m_high); } result[k] = r01.m_low; r01.m_low = r01.m_high; r01.m_high = r2; r2 = 0; } result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low; } static void vli_square(uint64_t *result, const uint64_t *left) { uint128_t r01 = { 0, 0 }; uint64_t r2 = 0; int i, k; for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) { unsigned int min; if (k < NUM_ECC_DIGITS) min = 0; else min = (k + 1) - NUM_ECC_DIGITS; for (i = min; i <= k && i <= k - i; i++) { uint128_t product; product = mul_64_64(left[i], left[k - i]); if (i < k - i) { r2 += product.m_high >> 63; product.m_high = (product.m_high << 1) | (product.m_low >> 63); product.m_low <<= 1; } r01 = add_128_128(r01, product); r2 += (r01.m_high < product.m_high); } result[k] = r01.m_low; r01.m_low = r01.m_high; r01.m_high = r2; r2 = 0; } result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low; } /* Computes result = (left + right) % mod. * Assumes that left < mod and right < mod, result != mod. */ void vli_mod_add(uint64_t *result, const uint64_t *left, const uint64_t *right, const uint64_t *mod) { uint64_t carry; carry = vli_add(result, left, right); /* result > mod (result = mod + remainder), so subtract mod to * get remainder. */ if (carry || vli_cmp(result, mod) >= 0) vli_sub(result, result, mod); } /* Computes result = (left - right) % mod. * Assumes that left < mod and right < mod, result != mod. */ void vli_mod_sub(uint64_t *result, const uint64_t *left, const uint64_t *right, const uint64_t *mod) { uint64_t borrow = vli_sub(result, left, right); /* In this case, p_result == -diff == (max int) - diff. * Since -x % d == d - x, we can get the correct result from * result + mod (with overflow). */ if (borrow) vli_add(result, result, mod); } /* Computes result = product % curve_p from http://www.nsa.gov/ia/_files/nist-routines.pdf */ static void vli_mmod_fast(uint64_t *result, const uint64_t *product) { uint64_t tmp[NUM_ECC_DIGITS]; int carry; /* t */ vli_set(result, product); /* s1 */ tmp[0] = 0; tmp[1] = product[5] & 0xffffffff00000000ull; tmp[2] = product[6]; tmp[3] = product[7]; carry = vli_lshift(tmp, tmp, 1); carry += vli_add(result, result, tmp); /* s2 */ tmp[1] = product[6] << 32; tmp[2] = (product[6] >> 32) | (product[7] << 32); tmp[3] = product[7] >> 32; carry += vli_lshift(tmp, tmp, 1); carry += vli_add(result, result, tmp); /* s3 */ tmp[0] = product[4]; tmp[1] = product[5] & 0xffffffff; tmp[2] = 0; tmp[3] = product[7]; carry += vli_add(result, result, tmp); /* s4 */ tmp[0] = (product[4] >> 32) | (product[5] << 32); tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); tmp[2] = product[7]; tmp[3] = (product[6] >> 32) | (product[4] << 32); carry += vli_add(result, result, tmp); /* d1 */ tmp[0] = (product[5] >> 32) | (product[6] << 32); tmp[1] = (product[6] >> 32); tmp[2] = 0; tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); carry -= vli_sub(result, result, tmp); /* d2 */ tmp[0] = product[6]; tmp[1] = product[7]; tmp[2] = 0; tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); carry -= vli_sub(result, result, tmp); /* d3 */ tmp[0] = (product[6] >> 32) | (product[7] << 32); tmp[1] = (product[7] >> 32) | (product[4] << 32); tmp[2] = (product[4] >> 32) | (product[5] << 32); tmp[3] = (product[6] << 32); carry -= vli_sub(result, result, tmp); /* d4 */ tmp[0] = product[7]; tmp[1] = product[4] & 0xffffffff00000000ull; tmp[2] = product[5]; tmp[3] = product[6] & 0xffffffff00000000ull; carry -= vli_sub(result, result, tmp); if (carry < 0) { do { carry += vli_add(result, result, curve_p); } while (carry < 0); } else { while (carry || vli_cmp(curve_p, result) != 1) carry -= vli_sub(result, result, curve_p); } } /* Computes result = (left * right) % curve_p. */ void vli_mod_mult_fast(uint64_t *result, const uint64_t *left, const uint64_t *right) { uint64_t product[2 * NUM_ECC_DIGITS]; vli_mult(product, left, right); vli_mmod_fast(result, product); } /* Computes result = left^2 % curve_p. */ static void vli_mod_square_fast(uint64_t *result, const uint64_t *left) { uint64_t product[2 * NUM_ECC_DIGITS]; vli_square(product, left); vli_mmod_fast(result, product); } #define EVEN(vli) (!(vli[0] & 1)) /* Computes result = (1 / p_input) % mod. All VLIs are the same size. * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf */ void vli_mod_inv(uint64_t *result, const uint64_t *input, const uint64_t *mod) { uint64_t a[NUM_ECC_DIGITS], b[NUM_ECC_DIGITS]; uint64_t u[NUM_ECC_DIGITS], v[NUM_ECC_DIGITS]; uint64_t carry; int cmp_result; if (vli_is_zero(input)) { vli_clear(result); return; } vli_set(a, input); vli_set(b, mod); vli_clear(u); u[0] = 1; vli_clear(v); while ((cmp_result = vli_cmp(a, b)) != 0) { carry = 0; if (EVEN(a)) { vli_rshift1(a); if (!EVEN(u)) carry = vli_add(u, u, mod); vli_rshift1(u); if (carry) u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; } else if (EVEN(b)) { vli_rshift1(b); if (!EVEN(v)) carry = vli_add(v, v, mod); vli_rshift1(v); if (carry) v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; } else if (cmp_result > 0) { vli_sub(a, a, b); vli_rshift1(a); if (vli_cmp(u, v) < 0) vli_add(u, u, mod); vli_sub(u, u, v); if (!EVEN(u)) carry = vli_add(u, u, mod); vli_rshift1(u); if (carry) u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; } else { vli_sub(b, b, a); vli_rshift1(b); if (vli_cmp(v, u) < 0) vli_add(v, v, mod); vli_sub(v, v, u); if (!EVEN(v)) carry = vli_add(v, v, mod); vli_rshift1(v); if (carry) v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; } } vli_set(result, u); } /* ------ Point operations ------ */ /* Returns true if p_point is the point at infinity, false otherwise. */ static bool ecc_point_is_zero(const struct ecc_point *point) { return (vli_is_zero(point->x) && vli_is_zero(point->y)); } /* Point multiplication algorithm using Montgomery's ladder with co-Z * coordinates. From http://eprint.iacr.org/2011/338.pdf */ /* Double in place */ static void ecc_point_double_jacobian(uint64_t *x1, uint64_t *y1, uint64_t *z1) { /* t1 = x, t2 = y, t3 = z */ uint64_t t4[NUM_ECC_DIGITS]; uint64_t t5[NUM_ECC_DIGITS]; if (vli_is_zero(z1)) return; vli_mod_square_fast(t4, y1); /* t4 = y1^2 */ vli_mod_mult_fast(t5, x1, t4); /* t5 = x1*y1^2 = A */ vli_mod_square_fast(t4, t4); /* t4 = y1^4 */ vli_mod_mult_fast(y1, y1, z1); /* t2 = y1*z1 = z3 */ vli_mod_square_fast(z1, z1); /* t3 = z1^2 */ vli_mod_add(x1, x1, z1, curve_p); /* t1 = x1 + z1^2 */ vli_mod_add(z1, z1, z1, curve_p); /* t3 = 2*z1^2 */ vli_mod_sub(z1, x1, z1, curve_p); /* t3 = x1 - z1^2 */ vli_mod_mult_fast(x1, x1, z1); /* t1 = x1^2 - z1^4 */ vli_mod_add(z1, x1, x1, curve_p); /* t3 = 2*(x1^2 - z1^4) */ vli_mod_add(x1, x1, z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */ if (vli_test_bit(x1, 0)) { uint64_t carry = vli_add(x1, x1, curve_p); vli_rshift1(x1); x1[NUM_ECC_DIGITS - 1] |= carry << 63; } else { vli_rshift1(x1); } /* t1 = 3/2*(x1^2 - z1^4) = B */ vli_mod_square_fast(z1, x1); /* t3 = B^2 */ vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - A */ vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - 2A = x3 */ vli_mod_sub(t5, t5, z1, curve_p); /* t5 = A - x3 */ vli_mod_mult_fast(x1, x1, t5); /* t1 = B * (A - x3) */ vli_mod_sub(t4, x1, t4, curve_p); /* t4 = B * (A - x3) - y1^4 = y3 */ vli_set(x1, z1); vli_set(z1, y1); vli_set(y1, t4); } /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ static void apply_z(uint64_t *x1, uint64_t *y1, uint64_t *z) { uint64_t t1[NUM_ECC_DIGITS]; vli_mod_square_fast(t1, z); /* z^2 */ vli_mod_mult_fast(x1, x1, t1); /* x1 * z^2 */ vli_mod_mult_fast(t1, t1, z); /* z^3 */ vli_mod_mult_fast(y1, y1, t1); /* y1 * z^3 */ } /* P = (x1, y1) => 2P, (x2, y2) => P' */ static void xycz_initial_double(uint64_t *x1, uint64_t *y1, uint64_t *x2, uint64_t *y2, uint64_t *p_initial_z) { uint64_t z[NUM_ECC_DIGITS]; vli_set(x2, x1); vli_set(y2, y1); vli_clear(z); z[0] = 1; if (p_initial_z) vli_set(z, p_initial_z); apply_z(x1, y1, z); ecc_point_double_jacobian(x1, y1, z); apply_z(x2, y2, z); } /* Input P = (x1, y1, Z), Q = (x2, y2, Z) * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) * or P => P', Q => P + Q */ static void xycz_add(uint64_t *x1, uint64_t *y1, uint64_t *x2, uint64_t *y2) { /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ uint64_t t5[NUM_ECC_DIGITS]; vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */ vli_mod_square_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */ vli_mod_mult_fast(x1, x1, t5); /* t1 = x1*A = B */ vli_mod_mult_fast(x2, x2, t5); /* t3 = x2*A = C */ vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */ vli_mod_square_fast(t5, y2); /* t5 = (y2 - y1)^2 = D */ vli_mod_sub(t5, t5, x1, curve_p); /* t5 = D - B */ vli_mod_sub(t5, t5, x2, curve_p); /* t5 = D - B - C = x3 */ vli_mod_sub(x2, x2, x1, curve_p); /* t3 = C - B */ vli_mod_mult_fast(y1, y1, x2); /* t2 = y1*(C - B) */ vli_mod_sub(x2, x1, t5, curve_p); /* t3 = B - x3 */ vli_mod_mult_fast(y2, y2, x2); /* t4 = (y2 - y1)*(B - x3) */ vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */ vli_set(x2, t5); } /* Input P = (x1, y1, Z), Q = (x2, y2, Z) * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) * or P => P - Q, Q => P + Q */ static void xycz_add_c(uint64_t *x1, uint64_t *y1, uint64_t *x2, uint64_t *y2) { /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ uint64_t t5[NUM_ECC_DIGITS]; uint64_t t6[NUM_ECC_DIGITS]; uint64_t t7[NUM_ECC_DIGITS]; vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */ vli_mod_square_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */ vli_mod_mult_fast(x1, x1, t5); /* t1 = x1*A = B */ vli_mod_mult_fast(x2, x2, t5); /* t3 = x2*A = C */ vli_mod_add(t5, y2, y1, curve_p); /* t4 = y2 + y1 */ vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */ vli_mod_sub(t6, x2, x1, curve_p); /* t6 = C - B */ vli_mod_mult_fast(y1, y1, t6); /* t2 = y1 * (C - B) */ vli_mod_add(t6, x1, x2, curve_p); /* t6 = B + C */ vli_mod_square_fast(x2, y2); /* t3 = (y2 - y1)^2 */ vli_mod_sub(x2, x2, t6, curve_p); /* t3 = x3 */ vli_mod_sub(t7, x1, x2, curve_p); /* t7 = B - x3 */ vli_mod_mult_fast(y2, y2, t7); /* t4 = (y2 - y1)*(B - x3) */ vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */ vli_mod_square_fast(t7, t5); /* t7 = (y2 + y1)^2 = F */ vli_mod_sub(t7, t7, t6, curve_p); /* t7 = x3' */ vli_mod_sub(t6, t7, x1, curve_p); /* t6 = x3' - B */ vli_mod_mult_fast(t6, t6, t5); /* t6 = (y2 + y1)*(x3' - B) */ vli_mod_sub(y1, t6, y1, curve_p); /* t2 = y3' */ vli_set(x1, t7); } void ecc_point_mult(struct ecc_point *result, const struct ecc_point *point, uint64_t *scalar, uint64_t *initial_z, int num_bits) { /* R0 and R1 */ uint64_t rx[2][NUM_ECC_DIGITS]; uint64_t ry[2][NUM_ECC_DIGITS]; uint64_t z[NUM_ECC_DIGITS]; int i, nb; vli_set(rx[1], point->x); vli_set(ry[1], point->y); xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z); for (i = num_bits - 2; i > 0; i--) { nb = !vli_test_bit(scalar, i); xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]); xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]); } nb = !vli_test_bit(scalar, 0); xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]); /* Find final 1/Z value. */ vli_mod_sub(z, rx[1], rx[0], curve_p); /* X1 - X0 */ vli_mod_mult_fast(z, z, ry[1 - nb]); /* Yb * (X1 - X0) */ vli_mod_mult_fast(z, z, point->x); /* xP * Yb * (X1 - X0) */ vli_mod_inv(z, z, curve_p); /* 1 / (xP * Yb * (X1 - X0)) */ vli_mod_mult_fast(z, z, point->y); /* yP / (xP * Yb * (X1 - X0)) */ vli_mod_mult_fast(z, z, rx[1 - nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */ /* End 1/Z calculation */ xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]); apply_z(rx[0], ry[0], z); vli_set(result->x, rx[0]); vli_set(result->y, ry[0]); } bool ecc_valid_point(struct ecc_point *point) { uint64_t tmp1[NUM_ECC_DIGITS]; uint64_t tmp2[NUM_ECC_DIGITS]; uint64_t _3[NUM_ECC_DIGITS] = { 3 }; /* -a = 3 */ /* The point at infinity is invalid. */ if (ecc_point_is_zero(point)) return false; /* x and y must be smaller than p. */ if (vli_cmp(curve_p, point->x) != 1 || vli_cmp(curve_p, point->y) != 1) return false; /* Computes result = y^2. */ vli_mod_square_fast(tmp1, point->y); /* Computes result = x^3 + ax + b. result must not overlap x. */ vli_mod_square_fast(tmp2, point->x); /* r = x^2 */ vli_mod_sub(tmp2, tmp2, _3, curve_p); /* r = x^2 - 3 */ vli_mod_mult_fast(tmp2, tmp2, point->x); /* r = x^3 - 3x */ vli_mod_add(tmp2, tmp2, curve_b, curve_p); /* r = x^3 - 3x + b */ /* Make sure that y^2 == x^3 + ax + b */ return vli_equal(tmp1, tmp2); } /* * The code below was not in the original file and was added to support EAP-PWD. * The above ECC implementation did not include functionality for point * addition or the ability to solve for Y value given some X. */ /* (rx, ry) = (px, py) + (qx, qy) */ void ecc_point_add(struct ecc_point *ret, struct ecc_point *p, struct ecc_point *q) { /* * s = (py - qy)/(px - qx) * * rx = s^2 - px - qx * ry = s(px - rx) - py */ uint64_t s[NUM_ECC_DIGITS]; uint64_t kp1[NUM_ECC_DIGITS]; uint64_t kp2[NUM_ECC_DIGITS]; uint64_t resx[NUM_ECC_DIGITS]; uint64_t resy[NUM_ECC_DIGITS]; vli_clear(s); /* kp1 = py - qy */ vli_mod_sub(kp1, q->y, p->y, curve_p); /* kp2 = px - qx */ vli_mod_sub(kp2, q->x, p->x, curve_p); /* s = kp1/kp2 */ vli_mod_inv(kp2, kp2, curve_p); vli_mod_mult_fast(s, kp1, kp2); /* rx = s^2 - px - qx */ vli_mod_mult_fast(kp1, s, s); vli_mod_sub(kp1, kp1, p->x, curve_p); vli_mod_sub(resx, kp1, q->x, curve_p); /* ry = s(px - rx) - py */ vli_mod_sub(kp1, p->x, resx, curve_p); vli_mod_mult_fast(kp1, s, kp1); vli_mod_sub(resy, kp1, p->y, curve_p); vli_set(ret->x, resx); vli_set(ret->y, resy); } /* result = (base ^ exp) % p */ void vli_mod_exp(uint64_t *result, uint64_t *base, uint64_t *exp, const uint64_t *mod) { int i; int bit; uint64_t n[NUM_ECC_DIGITS]; uint64_t r[NUM_ECC_DIGITS] = { 1 }; vli_set(n, base); for (i = 0; i < NUM_ECC_DIGITS; i++) { for (bit = 0; bit < 64; bit++) { uint64_t tmp[NUM_ECC_DIGITS]; if (exp[i] & (1ull << bit)) { vli_mod_mult_fast(tmp, r, n); memcpy(r, tmp, 32); } vli_mod_mult_fast(tmp, n, n); memcpy(n, tmp, 32); } } memcpy(result, r, 32); } bool ecc_compute_y(uint64_t *y, uint64_t *x) { /* * y = sqrt(x^3 + ax + b) (mod p) * * Since our prime p satisfies p = 3 (mod 4), we can say: * * y = (x^3 - 3x + b)^((p + 1) / 4) * * This avoids the need for a square root function. */ uint64_t sum[NUM_ECC_DIGITS] = { 0 }; uint64_t expo[NUM_ECC_DIGITS] = { 0 }; uint64_t one[NUM_ECC_DIGITS] = { 1ull }; uint64_t check[NUM_ECC_DIGITS] = { 0 }; uint64_t _3[NUM_ECC_DIGITS] = { 3ull }; /* -a = 3 */ uint64_t tmp[NUM_ECC_DIGITS] = { 0 }; vli_set(expo, curve_p); vli_mod_square_fast(sum, x); vli_mod_mult_fast(sum, sum, x); /* x^3 */ vli_mod_mult_fast(tmp, _3, x); vli_mod_sub(sum, sum, tmp, curve_p); /* x^3 - ax */ vli_mod_add(sum, sum, curve_b, curve_p); /* x^3 - ax + b */ /* (p + 1) / 4 == (p >> 2) + 1 */ vli_rshift1(expo); vli_rshift1(expo); vli_mod_add(expo, expo, one, curve_p); /* sum ^ ((p + 1) / 4) */ vli_mod_exp(y, sum, expo, curve_p); /* square y to ensure we have a correct value */ vli_mod_mult_fast(check, y, y); if (vli_cmp(check, sum) != 0) return false; return true; }