/* * * Wireless daemon for Linux * * Copyright (C) 2013-2014 Intel Corporation. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include "sha1.h" #include "crypto.h" static bool hmac_common(enum l_checksum_type type, const void *key, size_t key_len, const void *data, size_t data_len, void *output, size_t size) { struct l_checksum *hmac; hmac = l_checksum_new_hmac(type, key, key_len); if (!hmac) return false; l_checksum_update(hmac, data, data_len); l_checksum_get_digest(hmac, output, size); l_checksum_free(hmac); return true; } bool hmac_md5(const void *key, size_t key_len, const void *data, size_t data_len, void *output, size_t size) { return hmac_common(L_CHECKSUM_MD5, key, key_len, data, data_len, output, size); } bool hmac_sha1(const void *key, size_t key_len, const void *data, size_t data_len, void *output, size_t size) { return hmac_common(L_CHECKSUM_SHA1, key, key_len, data, data_len, output, size); } bool hmac_sha256(const void *key, size_t key_len, const void *data, size_t data_len, void *output, size_t size) { return hmac_common(L_CHECKSUM_SHA256, key, key_len, data, data_len, output, size); } bool cmac_aes(const void *key, size_t key_len, const void *data, size_t data_len, void *output, size_t size) { struct l_checksum *cmac_aes; cmac_aes = l_checksum_new_cmac_aes(key, key_len); if (!cmac_aes) return false; l_checksum_update(cmac_aes, data, data_len); l_checksum_get_digest(cmac_aes, output, size); l_checksum_free(cmac_aes); return true; } /* * Implements AES Key-Unwrap from RFC 3394 * * The key is specified using @kek. @in contains the encrypted data and @len * contains its length. @out will contain the decrypted data. The result * will be (len - 8) bytes. * * Returns: true on success, false if an IV mismatch has occurred. * * NOTE: Buffers @in and @out can overlap */ bool aes_unwrap(const uint8_t *kek, const uint8_t *in, size_t len, uint8_t *out) { uint8_t a[8], b[16]; uint8_t *r; size_t n = (len - 8) >> 3; int i, j; struct l_cipher *cipher; cipher = l_cipher_new(L_CIPHER_AES, kek, 16); if (!cipher) return false; /* Set up */ memcpy(a, in, 8); memmove(out, in + 8, n * 8); /* Unwrap */ for (j = 5; j >= 0; j--) { r = out + (n - 1) * 8; for (i = n; i >= 1; i--) { memcpy(b, a, 8); memcpy(b + 8, r, 8); b[7] ^= n * j + i; l_cipher_decrypt(cipher, b, b, 16); memcpy(a, b, 8); memcpy(r, b + 8, 8); r -= 8; } } l_cipher_free(cipher); /* Check IV */ for (i = 0; i < 8; i++) if (a[i] != 0xA6) return false; return true; } bool arc4_skip(const uint8_t *key, size_t key_len, size_t skip, const uint8_t *in, size_t len, uint8_t *out) { char skip_buf[1024]; struct l_cipher *cipher; cipher = l_cipher_new(L_CIPHER_ARC4, key, key_len); if (!cipher) return false; while (skip > 0) { size_t to_skip = skip > sizeof(skip_buf) ? sizeof(skip_buf) : skip; l_cipher_decrypt(cipher, skip_buf, skip_buf, to_skip); skip -= to_skip; } l_cipher_decrypt(cipher, in, out, len); l_cipher_free(cipher); return true; } /* 802.11, Section 11.6.2, Table 11-4 */ int crypto_cipher_key_len(enum crypto_cipher cipher) { switch (cipher) { case CRYPTO_CIPHER_WEP40: return 5; case CRYPTO_CIPHER_WEP104: return 13; case CRYPTO_CIPHER_TKIP: return 32; case CRYPTO_CIPHER_CCMP: return 16; case CRYPTO_CIPHER_BIP: return 16; }; return 0; } int crypto_cipher_tk_bits(enum crypto_cipher cipher) { return crypto_cipher_key_len(cipher) * 8; } int crypto_psk_from_passphrase(const char *passphrase, const unsigned char *ssid, size_t ssid_len, unsigned char *out_psk) { size_t passphrase_len; size_t i; bool result; unsigned char psk[32]; if (!passphrase) return -EINVAL; if (!ssid) return -EINVAL; /* * IEEE 802.11, Annex M, Section M.4.1: * "A pass-phrase is a sequence of between 8 and 63 ASCII-encoded * characters. The limit of 63 comes from the desire to distinguish * between a pass-phrase and a PSK displayed as 64 hexadecimal * characters." */ passphrase_len = strlen(passphrase); if (passphrase_len < 8 || passphrase_len > 63) return -ERANGE; if (ssid_len == 0 || ssid_len > 32) return -ERANGE; /* IEEE 802.11, Annex M, Section M.4.1: * "Each character in the pass-phrase must have an encoding in the * range of 32 to 126 (decimal), inclusive." * * This corresponds to printable characters only */ for (i = 0; i < passphrase_len; i++) { if (l_ascii_isprint(passphrase[i])) continue; return -EINVAL; } result = pbkdf2_sha1(passphrase, passphrase_len, ssid, ssid_len, 4096, psk, sizeof(psk)); if (!result) return -ENOKEY; if (out_psk) memcpy(out_psk, psk, sizeof(psk)); return 0; } /* * 802.11, Section 11.6.6.7: * PTK = PRF-X(PMK, "Pairwise key expansion", Min(AA, SA) || Max(AA, SA) || * Min(ANonce, SNonce) || Max(ANonce, SNonce)) * * 802.11, Section 11.6.1.3: * The PTK shall be derived from the PMK by * PTK ← PRF-X(PMK, “Pairwise key expansion”, Min(AA,SPA) || Max(AA,SPA) || * Min(ANonce,SNonce) || Max(ANonce,SNonce)) * where X = 256 + TK_bits. The value of TK_bits is cipher-suite dependent and * is defined in Table 11-4. The Min and Max operations for IEEE 802 addresses * are with the address converted to a positive integer treating the first * transmitted octet as the most significant octet of the integer. The Min and * Max operations for nonces are with the nonces treated as positive integers * converted as specified in 8.2.2. */ bool crypto_derive_ptk(const uint8_t *pmk, size_t pmk_len, const char *label, const uint8_t *addr1, const uint8_t *addr2, const uint8_t *nonce1, const uint8_t *nonce2, uint8_t *out_ptk, size_t ptk_len) { /* Nonce length is 32 */ uint8_t data[ETH_ALEN * 2 + 64]; size_t pos = 0; /* Address 1 is less than Address 2 */ if (memcmp(addr1, addr2, ETH_ALEN) < 0) { memcpy(data, addr1, ETH_ALEN); memcpy(data + ETH_ALEN, addr2, ETH_ALEN); } else { memcpy(data, addr2, ETH_ALEN); memcpy(data + ETH_ALEN, addr1, ETH_ALEN); } pos += ETH_ALEN * 2; /* Nonce1 is less than Nonce2 */ if (memcmp(nonce1, nonce2, 32) < 0) { memcpy(data + pos, nonce1, 32); memcpy(data + pos + 32, nonce2, 32); } else { memcpy(data + pos, nonce2, 32); memcpy(data + pos + 32, nonce1, 32); } pos += 64; return prf_sha1(pmk, pmk_len, label, strlen(label), data, sizeof(data), out_ptk, ptk_len); } bool crypto_derive_pairwise_ptk(const uint8_t *pmk, const uint8_t *addr1, const uint8_t *addr2, const uint8_t *nonce1, const uint8_t *nonce2, struct crypto_ptk *out_ptk, size_t ptk_len) { return crypto_derive_ptk(pmk, 32, "Pairwise key expansion", addr1, addr2, nonce1, nonce2, (uint8_t *) out_ptk, ptk_len); }