/* * * Wireless daemon for Linux * * Copyright (C) 2013-2019 Intel Corporation. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include "src/util.h" #include "src/crypto.h" #include "src/ie.h" const unsigned char ieee_oui[3] = { 0x00, 0x0f, 0xac }; const unsigned char microsoft_oui[3] = { 0x00, 0x50, 0xf2 }; const unsigned char wifi_alliance_oui[3] = { 0x50, 0x6f, 0x9a }; void ie_tlv_iter_init(struct ie_tlv_iter *iter, const unsigned char *tlv, unsigned int len) { iter->tlv = tlv; iter->max = len; iter->pos = 0; } void ie_tlv_iter_recurse(struct ie_tlv_iter *iter, struct ie_tlv_iter *recurse) { recurse->tlv = iter->data; recurse->max = iter->len; recurse->pos = 0; } bool ie_tlv_iter_next(struct ie_tlv_iter *iter) { const unsigned char *tlv = iter->tlv + iter->pos; const unsigned char *end = iter->tlv + iter->max; unsigned int tag; unsigned int len; if (iter->pos + 1 >= iter->max) return false; tag = *tlv++; len = *tlv++; if (tag == IE_TYPE_EXTENSION) { if (iter->pos + 2 >= iter->max || len < 1) return false; tag = 256 + *tlv++; len--; } if (tlv + len > end) return false; iter->tag = tag; iter->len = len; iter->data = tlv; iter->pos = tlv + len - iter->tlv; return true; } /* * Concatenate all vendor IEs with a given OUI + type. * * Returns a newly allocated buffer with the contents of the matching ies * copied into it. @out_len is set to the overall size of the contents. * If no matching elements were found, NULL is returned and @out_len is * set to -ENOENT. */ static void *ie_tlv_vendor_ie_concat(const unsigned char oui[], unsigned char type, const unsigned char *ies, unsigned int len, bool empty_ok, ssize_t *out_len) { struct ie_tlv_iter iter; const unsigned char *data; unsigned int ie_len; unsigned int concat_len = 0; unsigned char *ret; bool ie_found = false; ie_tlv_iter_init(&iter, ies, len); while (ie_tlv_iter_next(&iter)) { if (ie_tlv_iter_get_tag(&iter) != IE_TYPE_VENDOR_SPECIFIC) continue; ie_len = ie_tlv_iter_get_length(&iter); if (ie_len < 4) continue; data = ie_tlv_iter_get_data(&iter); if (memcmp(data, oui, 3)) continue; if (data[3] != type) continue; concat_len += ie_len - 4; ie_found = true; } if (concat_len == 0) { if (out_len) *out_len = (ie_found && empty_ok) ? 0 : -ENOENT; return NULL; } ie_tlv_iter_init(&iter, ies, len); ret = l_malloc(concat_len); concat_len = 0; while (ie_tlv_iter_next(&iter)) { if (ie_tlv_iter_get_tag(&iter) != IE_TYPE_VENDOR_SPECIFIC) continue; ie_len = ie_tlv_iter_get_length(&iter); if (ie_len < 4) continue; data = ie_tlv_iter_get_data(&iter); if (memcmp(data, oui, 3)) continue; if (data[3] != type) continue; memcpy(ret + concat_len, data + 4, ie_len - 4); concat_len += ie_len - 4; } if (out_len) *out_len = concat_len; return ret; } /* * Wi-Fi Simple Configuration v2.0.5, Section 8.2: * "There may be more than one instance of the Wi-Fi Simple Configuration * Information Element in a single 802.11 management frame. If multiple * Information Elements are present, the Wi-Fi Simple Configuration data * consists of the concatenation of the Data components of those Information * Elements (the order of these elements in the original packet shall be * preserved when concatenating Data components)." */ void *ie_tlv_extract_wsc_payload(const unsigned char *ies, size_t len, ssize_t *out_len) { return ie_tlv_vendor_ie_concat(microsoft_oui, 0x04, ies, len, false, out_len); } /* * Wi-Fi P2P Technical Specification v1.7, Section 8.2: * "More than one P2P IE may be included in a single frame. If multiple P2P * IEs are present, the complete P2P attribute data consists of the * concatenation of the P2P Attribute fields of the P2P IEs. The P2P * Attributes field of each P2P IE may be any length up to the maximum * (251 octets). The order of the concatenated P2P attribute data shall be * preserved in the ordering of the P2P IEs in the frame. All of the P2P IEs * shall fit within a single frame and shall be adjacent in the frame." */ void *ie_tlv_extract_p2p_payload(const unsigned char *ies, size_t len, ssize_t *out_len) { return ie_tlv_vendor_ie_concat(wifi_alliance_oui, 0x09, ies, len, true, out_len); } /* * Encapsulate & Fragment data into Vendor IE with a given OUI + type * * Returns a newly allocated buffer with the contents of encapsulated into * multiple vendor IE. @out_len is set to the overall size of the contents. */ static void *ie_tlv_vendor_ie_encapsulate(const unsigned char oui[], uint8_t type, const void *data, size_t len, bool build_empty, size_t *out_len) { size_t overhead; size_t ie_len; size_t offset; uint8_t *ret; /* * Each Vendor IE can contain up to 251 bytes of data. * 255 byte maximum length - 3 for oui and 1 for type */ overhead = (len + 250) / 251 * 6; if (len == 0 && build_empty) overhead = 6; ret = l_malloc(len + overhead); if (out_len) *out_len = len + overhead; offset = 0; while (overhead) { ie_len = len <= 251 ? len : 251; ret[offset++] = IE_TYPE_VENDOR_SPECIFIC; ret[offset++] = ie_len + 4; memcpy(ret + offset, oui, 3); offset += 3; ret[offset++] = type; memcpy(ret + offset, data, ie_len); data += ie_len; len -= ie_len; overhead -= 6; } return ret; } void *ie_tlv_encapsulate_wsc_payload(const uint8_t *data, size_t len, size_t *out_len) { return ie_tlv_vendor_ie_encapsulate(microsoft_oui, 0x04, data, len, false, out_len); } void *ie_tlv_encapsulate_p2p_payload(const uint8_t *data, size_t len, size_t *out_len) { return ie_tlv_vendor_ie_encapsulate(wifi_alliance_oui, 0x09, data, len, true, out_len); } #define TLV_HEADER_LEN 2 static bool ie_tlv_builder_init_recurse(struct ie_tlv_builder *builder, unsigned char *tlv, unsigned int size) { if (!builder) return false; if (!tlv) { memset(builder->buf, 0, MAX_BUILDER_SIZE); builder->tlv = builder->buf; builder->max = MAX_BUILDER_SIZE; } else { builder->tlv = tlv; builder->max = size; } builder->pos = 0; builder->parent = NULL; builder->tag = 0xffff; builder->len = 0; return true; } bool ie_tlv_builder_init(struct ie_tlv_builder *builder, unsigned char *buf, size_t len) { return ie_tlv_builder_init_recurse(builder, buf, len); } static void ie_tlv_builder_write_header(struct ie_tlv_builder *builder) { unsigned char *tlv = builder->tlv + builder->pos; if (builder->tag < 256) { tlv[0] = builder->tag; tlv[1] = builder->len; } else { tlv[0] = IE_TYPE_EXTENSION; tlv[1] = builder->len + 1; tlv[2] = builder->tag - 256; } } bool ie_tlv_builder_set_length(struct ie_tlv_builder *builder, unsigned int new_len) { unsigned int new_pos = builder->pos + TLV_HEADER_LEN + new_len; if (builder->tag >= 256) new_pos += 1; if (new_pos > builder->max) return false; if (builder->parent) ie_tlv_builder_set_length(builder->parent, new_pos); builder->len = new_len; return true; } bool ie_tlv_builder_next(struct ie_tlv_builder *builder, unsigned int new_tag) { if (new_tag > 0x1ff) return false; if (builder->tag != 0xffff) { ie_tlv_builder_write_header(builder); builder->pos += TLV_HEADER_LEN + builder->tlv[builder->pos + 1]; } builder->tag = new_tag; return ie_tlv_builder_set_length(builder, 0); } unsigned char *ie_tlv_builder_get_data(struct ie_tlv_builder *builder) { return builder->tlv + TLV_HEADER_LEN + builder->pos + (builder->tag >= 256 ? 1 : 0); } bool ie_tlv_builder_set_data(struct ie_tlv_builder *builder, const void *data, size_t len) { if (!ie_tlv_builder_set_length(builder, len)) return false; memcpy(ie_tlv_builder_get_data(builder), data, len); return true; } bool ie_tlv_builder_recurse(struct ie_tlv_builder *builder, struct ie_tlv_builder *recurse) { unsigned char *end = builder->buf + builder->max; unsigned char *data = ie_tlv_builder_get_data(builder); if (!ie_tlv_builder_init_recurse(recurse, data, end - data)) return false; recurse->parent = builder; return true; } unsigned char *ie_tlv_builder_finalize(struct ie_tlv_builder *builder, unsigned int *out_len) { unsigned int len = 0; if (builder->tag != 0xffff) { ie_tlv_builder_write_header(builder); len = builder->pos + TLV_HEADER_LEN + builder->tlv[builder->pos + 1]; } if (out_len) *out_len = len; return builder->tlv; } /* * Converts RSN cipher suite into an unsigned integer suitable to be used * by nl80211. The enumeration is the same as found in crypto.h * * If the suite value is invalid, this function returns 0. */ uint32_t ie_rsn_cipher_suite_to_cipher(enum ie_rsn_cipher_suite suite) { switch (suite) { case IE_RSN_CIPHER_SUITE_CCMP: return CRYPTO_CIPHER_CCMP; case IE_RSN_CIPHER_SUITE_TKIP: return CRYPTO_CIPHER_TKIP; case IE_RSN_CIPHER_SUITE_WEP40: return CRYPTO_CIPHER_WEP40; case IE_RSN_CIPHER_SUITE_WEP104: return CRYPTO_CIPHER_WEP104; case IE_RSN_CIPHER_SUITE_BIP: return CRYPTO_CIPHER_BIP; default: return 0; } } /* 802.11, Section 8.4.2.27.2 */ static bool ie_parse_cipher_suite(const uint8_t *data, enum ie_rsn_cipher_suite *out) { /* * Compare the OUI to the ones we know. OUI Format is found in * Figure 8-187 of 802.11 */ if (!memcmp(data, ieee_oui, 3)) { /* Suite type from Table 8-99 */ switch (data[3]) { case 0: *out = IE_RSN_CIPHER_SUITE_USE_GROUP_CIPHER; return true; case 1: *out = IE_RSN_CIPHER_SUITE_WEP40; return true; case 2: *out = IE_RSN_CIPHER_SUITE_TKIP; return true; case 4: *out = IE_RSN_CIPHER_SUITE_CCMP; return true; case 5: *out = IE_RSN_CIPHER_SUITE_WEP104; return true; case 6: *out = IE_RSN_CIPHER_SUITE_BIP; return true; case 7: *out = IE_RSN_CIPHER_SUITE_NO_GROUP_TRAFFIC; return true; default: return false; } } return false; } /* 802.11, Section 8.4.2.27.2 */ static int ie_parse_rsn_akm_suite(const uint8_t *data, enum ie_rsn_akm_suite *out) { /* * Compare the OUI to the ones we know. OUI Format is found in * Figure 8-187 of 802.11 */ if (!memcmp(data, ieee_oui, 3)) { /* Suite type from Table 8-101 */ switch (data[3]) { case 0: return -EINVAL; case 1: *out = IE_RSN_AKM_SUITE_8021X; return 0; case 2: *out = IE_RSN_AKM_SUITE_PSK; return 0; case 3: *out = IE_RSN_AKM_SUITE_FT_OVER_8021X; return 0; case 4: *out = IE_RSN_AKM_SUITE_FT_USING_PSK; return 0; case 5: *out = IE_RSN_AKM_SUITE_8021X_SHA256; return 0; case 6: *out = IE_RSN_AKM_SUITE_PSK_SHA256; return 0; case 7: *out = IE_RSN_AKM_SUITE_TDLS; return 0; case 8: *out = IE_RSN_AKM_SUITE_SAE_SHA256; return 0; case 9: *out = IE_RSN_AKM_SUITE_FT_OVER_SAE_SHA256; return 0; case 10: *out = IE_RSN_AKM_SUITE_AP_PEER_KEY_SHA256; return 0; case 11: *out = IE_RSN_AKM_SUITE_8021X_SUITE_B_SHA256; return 0; case 12: *out = IE_RSN_AKM_SUITE_8021X_SUITE_B_SHA384; return 0; case 13: *out = IE_RSN_AKM_SUITE_FT_OVER_8021X_SHA384; return 0; case 14: *out = IE_RSN_AKM_SUITE_FILS_SHA256; return 0; case 15: *out = IE_RSN_AKM_SUITE_FILS_SHA384; return 0; case 16: *out = IE_RSN_AKM_SUITE_FT_OVER_FILS_SHA256; return 0; case 17: *out = IE_RSN_AKM_SUITE_FT_OVER_FILS_SHA384; return 0; case 18: *out = IE_RSN_AKM_SUITE_OWE; return 0; default: return -ENOENT; } } return -ENOENT; } static int ie_parse_osen_akm_suite(const uint8_t *data, enum ie_rsn_akm_suite *out) { if (memcmp(data, wifi_alliance_oui, 3)) return -ENOENT; if (data[3] != 1) return -ENOENT; *out = IE_RSN_AKM_SUITE_OSEN; return 0; } static bool ie_parse_group_cipher(const uint8_t *data, enum ie_rsn_cipher_suite *out) { enum ie_rsn_cipher_suite tmp; bool r = ie_parse_cipher_suite(data, &tmp); if (!r) return r; switch (tmp) { case IE_RSN_CIPHER_SUITE_CCMP: case IE_RSN_CIPHER_SUITE_TKIP: case IE_RSN_CIPHER_SUITE_WEP104: case IE_RSN_CIPHER_SUITE_WEP40: case IE_RSN_CIPHER_SUITE_NO_GROUP_TRAFFIC: break; default: return false; } *out = tmp; return true; } static bool ie_parse_pairwise_cipher(const uint8_t *data, enum ie_rsn_cipher_suite *out) { enum ie_rsn_cipher_suite tmp; bool r = ie_parse_cipher_suite(data, &tmp); if (!r) return r; switch (tmp) { case IE_RSN_CIPHER_SUITE_CCMP: case IE_RSN_CIPHER_SUITE_TKIP: case IE_RSN_CIPHER_SUITE_WEP104: case IE_RSN_CIPHER_SUITE_WEP40: case IE_RSN_CIPHER_SUITE_USE_GROUP_CIPHER: break; default: return false; } *out = tmp; return true; } static bool ie_parse_group_management_cipher(const uint8_t *data, enum ie_rsn_cipher_suite *out) { enum ie_rsn_cipher_suite tmp; bool r = ie_parse_cipher_suite(data, &tmp); if (!r) return r; switch (tmp) { case IE_RSN_CIPHER_SUITE_BIP: case IE_RSN_CIPHER_SUITE_NO_GROUP_TRAFFIC: break; default: return false; } *out = tmp; return true; } #define RSNE_ADVANCE(data, len, step) \ data += step; \ len -= step; \ \ if (len == 0) \ goto done \ static int parse_ciphers(const uint8_t *data, size_t len, int (*akm_parse)(const uint8_t *data, enum ie_rsn_akm_suite *out), struct ie_rsn_info *out_info) { uint16_t count; uint16_t i; /* Parse Group Cipher Suite field */ if (len < 4) return -EBADMSG; if (!ie_parse_group_cipher(data, &out_info->group_cipher)) return -ERANGE; RSNE_ADVANCE(data, len, 4); /* Parse Pairwise Cipher Suite Count field */ if (len < 2) return -EBADMSG; count = l_get_le16(data); /* * The spec doesn't seem to explicitly say what to do in this case, * so we assume this situation is invalid. */ if (count == 0) return -EINVAL; data += 2; len -= 2; if (len < 4 * count) return -EBADMSG; /* Parse Pairwise Cipher Suite List field */ for (i = 0, out_info->pairwise_ciphers = 0; i < count; i++) { enum ie_rsn_cipher_suite suite; if (!ie_parse_pairwise_cipher(data + i * 4, &suite)) return -ERANGE; out_info->pairwise_ciphers |= suite; } RSNE_ADVANCE(data, len, count * 4); /* Parse AKM Suite Count field */ if (len < 2) return -EBADMSG; count = l_get_le16(data); if (count == 0) return -EINVAL; data += 2; len -= 2; if (len < 4 * count) return -EBADMSG; /* Parse AKM Suite List field */ for (i = 0, out_info->akm_suites = 0; i < count; i++) { enum ie_rsn_akm_suite suite; int ret; ret = akm_parse(data + i * 4, &suite); switch (ret) { case 0: out_info->akm_suites |= suite; break; case -ENOENT: /* Skip unknown or vendor specific AKMs */ break; default: return -EBADMSG; } } RSNE_ADVANCE(data, len, count * 4); if (len < 2) return -EBADMSG; out_info->preauthentication = util_is_bit_set(data[0], 0); out_info->no_pairwise = util_is_bit_set(data[0], 1); out_info->ptksa_replay_counter = util_bit_field(data[0], 2, 2); out_info->gtksa_replay_counter = util_bit_field(data[0], 4, 2); out_info->mfpr = util_is_bit_set(data[0], 6); out_info->mfpc = util_is_bit_set(data[0], 7); out_info->peerkey_enabled = util_is_bit_set(data[1], 1); out_info->spp_a_msdu_capable = util_is_bit_set(data[1], 2); out_info->spp_a_msdu_required = util_is_bit_set(data[1], 3); out_info->pbac = util_is_bit_set(data[1], 4); out_info->extended_key_id = util_is_bit_set(data[1], 5); /* * BIP—default group management cipher suite in an RSNA with * management frame protection enabled */ if (out_info->mfpc) out_info->group_management_cipher = IE_RSN_CIPHER_SUITE_BIP; RSNE_ADVANCE(data, len, 2); /* Parse PMKID Count field */ if (len < 2) return -EBADMSG; out_info->num_pmkids = l_get_le16(data); RSNE_ADVANCE(data, len, 2); if (out_info->num_pmkids > 0) { if (len < 16 * out_info->num_pmkids) return -EBADMSG; /* * Parse PMKID List field. * * We simply assign the pointer to the PMKIDs to the structure. * The PMKIDs are fixed size, 16 bytes each. */ out_info->pmkids = data; RSNE_ADVANCE(data, len, out_info->num_pmkids * 16); } /* Parse Group Management Cipher Suite field */ if (len < 4) return -EBADMSG; if (!ie_parse_group_management_cipher(data, &out_info->group_management_cipher)) return -ERANGE; RSNE_ADVANCE(data, len, 4); return -EBADMSG; done: return 0; } int ie_parse_rsne(struct ie_tlv_iter *iter, struct ie_rsn_info *out_info) { const uint8_t *data = iter->data; size_t len = iter->len; uint16_t version; struct ie_rsn_info info; memset(&info, 0, sizeof(info)); info.group_cipher = IE_RSN_CIPHER_SUITE_CCMP; info.pairwise_ciphers = IE_RSN_CIPHER_SUITE_CCMP; info.akm_suites = IE_RSN_AKM_SUITE_8021X; /* Parse Version field */ if (len < 2) return -EMSGSIZE; version = l_get_le16(data); if (version != 0x01) return -EBADMSG; RSNE_ADVANCE(data, len, 2); if (parse_ciphers(data, len, ie_parse_rsn_akm_suite, &info) < 0) return -EBADMSG; done: if (out_info) memcpy(out_info, &info, sizeof(info)); return 0; } int ie_parse_rsne_from_data(const uint8_t *data, size_t len, struct ie_rsn_info *info) { struct ie_tlv_iter iter; ie_tlv_iter_init(&iter, data, len); if (!ie_tlv_iter_next(&iter)) return -EMSGSIZE; if (ie_tlv_iter_get_tag(&iter) != IE_TYPE_RSN) return -EPROTOTYPE; return ie_parse_rsne(&iter, info); } int ie_parse_osen(struct ie_tlv_iter *iter, struct ie_rsn_info *out_info) { const uint8_t *data = iter->data; size_t len = iter->len; struct ie_rsn_info info; if (ie_tlv_iter_get_tag(iter) != IE_TYPE_VENDOR_SPECIFIC) return -EPROTOTYPE; if (!is_ie_wfa_ie(iter->data, iter->len, IE_WFA_OI_OSEN)) return -EPROTOTYPE; memset(&info, 0, sizeof(info)); info.group_cipher = IE_RSN_CIPHER_SUITE_NO_GROUP_TRAFFIC; info.pairwise_ciphers = IE_RSN_CIPHER_SUITE_CCMP; info.akm_suites = IE_RSN_AKM_SUITE_8021X; RSNE_ADVANCE(data, len, 4); if (parse_ciphers(data, len, ie_parse_osen_akm_suite, &info) < 0) return -EBADMSG; done: if (out_info) memcpy(out_info, &info, sizeof(info)); return 0; } int ie_parse_osen_from_data(const uint8_t *data, size_t len, struct ie_rsn_info *info) { struct ie_tlv_iter iter; ie_tlv_iter_init(&iter, data, len); if (!ie_tlv_iter_next(&iter)) return -EMSGSIZE; return ie_parse_osen(&iter, info); } /* * 802.11, Section 8.4.2.27.2 * 802.11i, Section 7.3.2.25.1 and WPA_80211_v3_1 Section 2.1 */ static bool ie_build_cipher_suite(uint8_t *data, const uint8_t *oui, const enum ie_rsn_cipher_suite suite) { switch (suite) { case IE_RSN_CIPHER_SUITE_USE_GROUP_CIPHER: memcpy(data, oui, 3); data[3] = 0; return true; case IE_RSN_CIPHER_SUITE_WEP40: memcpy(data, oui, 3); data[3] = 1; return true; case IE_RSN_CIPHER_SUITE_TKIP: memcpy(data, oui, 3); data[3] = 2; return true; case IE_RSN_CIPHER_SUITE_CCMP: memcpy(data, oui, 3); data[3] = 4; return true; case IE_RSN_CIPHER_SUITE_WEP104: memcpy(data, oui, 3); data[3] = 5; return true; case IE_RSN_CIPHER_SUITE_BIP: memcpy(data, oui, 3); data[3] = 6; return true; case IE_RSN_CIPHER_SUITE_NO_GROUP_TRAFFIC: memcpy(data, oui, 3); data[3] = 7; return true; } return false; } #define RETURN_AKM(data, oui, id) \ memcpy((data), (oui), 3); \ (data)[3] = (id); \ return true; /* 802.11-2016, Section 9.4.2.25.3 */ static bool ie_build_rsn_akm_suite(uint8_t *data, enum ie_rsn_akm_suite suite) { switch (suite) { case IE_RSN_AKM_SUITE_8021X: RETURN_AKM(data, ieee_oui, 1); case IE_RSN_AKM_SUITE_PSK: RETURN_AKM(data, ieee_oui, 2); case IE_RSN_AKM_SUITE_FT_OVER_8021X: RETURN_AKM(data, ieee_oui, 3); case IE_RSN_AKM_SUITE_FT_USING_PSK: RETURN_AKM(data, ieee_oui, 4); case IE_RSN_AKM_SUITE_8021X_SHA256: RETURN_AKM(data, ieee_oui, 5); case IE_RSN_AKM_SUITE_PSK_SHA256: RETURN_AKM(data, ieee_oui, 6); case IE_RSN_AKM_SUITE_TDLS: RETURN_AKM(data, ieee_oui, 7); case IE_RSN_AKM_SUITE_SAE_SHA256: RETURN_AKM(data, ieee_oui, 8); case IE_RSN_AKM_SUITE_FT_OVER_SAE_SHA256: RETURN_AKM(data, ieee_oui, 9); case IE_RSN_AKM_SUITE_AP_PEER_KEY_SHA256: RETURN_AKM(data, ieee_oui, 10); case IE_RSN_AKM_SUITE_8021X_SUITE_B_SHA256: RETURN_AKM(data, ieee_oui, 11); case IE_RSN_AKM_SUITE_8021X_SUITE_B_SHA384: RETURN_AKM(data, ieee_oui, 12); case IE_RSN_AKM_SUITE_FT_OVER_8021X_SHA384: RETURN_AKM(data, ieee_oui, 13); case IE_RSN_AKM_SUITE_FILS_SHA256: RETURN_AKM(data, ieee_oui, 14); case IE_RSN_AKM_SUITE_FILS_SHA384: RETURN_AKM(data, ieee_oui, 15); case IE_RSN_AKM_SUITE_FT_OVER_FILS_SHA256: RETURN_AKM(data, ieee_oui, 16); case IE_RSN_AKM_SUITE_FT_OVER_FILS_SHA384: RETURN_AKM(data, ieee_oui, 17); case IE_RSN_AKM_SUITE_OWE: RETURN_AKM(data, ieee_oui, 18); case IE_RSN_AKM_SUITE_OSEN: RETURN_AKM(data, wifi_alliance_oui, 1); } return false; } /* 802.11i, Section 7.3.2.25.2 and WPA_80211_v3_1 Section 2.1 */ static bool ie_build_wpa_akm_suite(uint8_t *data, enum ie_rsn_akm_suite suite) { switch (suite) { case IE_RSN_AKM_SUITE_8021X: RETURN_AKM(data, microsoft_oui, 1); case IE_RSN_AKM_SUITE_PSK: RETURN_AKM(data, microsoft_oui, 2); default: break; } return false; } static int build_ciphers_common(const struct ie_rsn_info *info, uint8_t *to, uint8_t max_len, bool force_group_mgmt_cipher) { /* These are the only valid pairwise suites */ static enum ie_rsn_cipher_suite pairwise_suites[] = { IE_RSN_CIPHER_SUITE_CCMP, IE_RSN_CIPHER_SUITE_TKIP, IE_RSN_CIPHER_SUITE_WEP104, IE_RSN_CIPHER_SUITE_WEP40, IE_RSN_CIPHER_SUITE_USE_GROUP_CIPHER, }; unsigned int pos = 0; unsigned int i; uint8_t *countptr; uint16_t count; enum ie_rsn_akm_suite akm_suite; /* Group Data Cipher Suite */ if (!ie_build_cipher_suite(to + pos, ieee_oui, info->group_cipher)) return -EINVAL; pos += 4; /* Save position for Pairwise Cipher Suite Count field */ countptr = to + pos; pos += 2; for (i = 0, count = 0; i < L_ARRAY_SIZE(pairwise_suites); i++) { enum ie_rsn_cipher_suite suite = pairwise_suites[i]; if (!(info->pairwise_ciphers & suite)) continue; if (pos + 4 > max_len) return -EBADMSG; if (!ie_build_cipher_suite(to + pos, ieee_oui, suite)) return -EINVAL; pos += 4; count += 1; } l_put_le16(count, countptr); /* Save position for AKM Suite Count field */ countptr = to + pos; pos += 2; akm_suite = IE_RSN_AKM_SUITE_8021X; count = 0; for (count = 0, akm_suite = IE_RSN_AKM_SUITE_8021X; akm_suite <= IE_RSN_AKM_SUITE_OSEN; akm_suite <<= 1) { if (!(info->akm_suites & akm_suite)) continue; if (pos + 4 > max_len) return -EBADMSG; if (!ie_build_rsn_akm_suite(to + pos, akm_suite)) return -EINVAL; pos += 4; count += 1; } l_put_le16(count, countptr); /* Bits 0 - 7 of RSNE Capabilities field */ to[pos] = 0; if (info->preauthentication) to[pos] |= 0x1; if (info->no_pairwise) to[pos] |= 0x2; to[pos] |= info->ptksa_replay_counter << 2; to[pos] |= info->gtksa_replay_counter << 4; if (info->mfpr) to[pos] |= 0x40; if (info->mfpc) to[pos] |= 0x80; pos += 1; /* Bits 8 - 15 of RSNE Capabilities field */ to[pos] = 0; if (info->peerkey_enabled) to[pos] |= 0x2; if (info->spp_a_msdu_capable) to[pos] |= 0x4; if (info->spp_a_msdu_required) to[pos] |= 0x8; if (info->pbac) to[pos] |= 0x10; if (info->extended_key_id) to[pos] |= 0x20; pos += 1; /* Short hand the generated RSNE if possible */ if (info->num_pmkids == 0 && !force_group_mgmt_cipher) { /* No Group Management Cipher Suite */ if (to[pos - 2] == 0 && to[pos - 1] == 0) /* * The RSN Capabilities bytes are in theory optional, * but some APs don't seem to like us not including * them in the RSN element. Also wireshark has a * bug and complains of a malformed element if these * bytes are not included. */ goto done; else if (!info->mfpc) goto done; else if (info->group_management_cipher == IE_RSN_CIPHER_SUITE_BIP) goto done; } /* PMKID Count */ l_put_le16(info->num_pmkids, to + pos); pos += 2; if (pos + info->num_pmkids * 16 > max_len) return -EINVAL; /* PMKID List */ if (info->num_pmkids) { memcpy(to + pos, info->pmkids, 16 * info->num_pmkids); pos += 16 * info->num_pmkids; } if (!force_group_mgmt_cipher && !info->mfpc) goto done; if (!force_group_mgmt_cipher && info->group_management_cipher == IE_RSN_CIPHER_SUITE_BIP) goto done; /* Group Management Cipher Suite */ if (!ie_build_cipher_suite(to + pos, ieee_oui, info->group_management_cipher)) return -EINVAL; pos += 4; done: return pos; } /* * Generate an RSNE IE based on the information found in info. * The to array must be 256 bytes in size * * In theory it is possible to generate 257 byte IE RSNs (1 byte for IE Type, * 1 byte for Length and 255 bytes of data) but we don't support this * possibility. */ bool ie_build_rsne(const struct ie_rsn_info *info, uint8_t *to) { unsigned int pos; int ret; to[0] = IE_TYPE_RSN; /* Version field, always 1 */ pos = 2; l_put_le16(1, to + pos); pos += 2; ret = build_ciphers_common(info, to + 4, 252, false); if (ret < 0) return false; pos += ret; to[1] = pos - 2; return true; } bool ie_build_osen(const struct ie_rsn_info *info, uint8_t *to) { unsigned int pos; int ret; to[0] = IE_TYPE_VENDOR_SPECIFIC; pos = 2; memcpy(to + pos, wifi_alliance_oui, 3); pos += 3; to[pos++] = 0x12; ret = build_ciphers_common(info, to + 6, 250, true); if (ret < 0) return false; pos += ret; to[1] = pos - 2; return true; } /* 802.11i-2004, Section 7.3.2.25.1 and WPA_80211_v3_1 Section 2.1 */ static bool ie_parse_wpa_cipher_suite(const uint8_t *data, enum ie_rsn_cipher_suite *out) { /* * Compare the OUI to the ones we know. OUI Format is found in * Figure 8-187 of 802.11 */ if (!memcmp(data, microsoft_oui, 3)) { /* Suite type from 802.11i-2004, Table 20da */ switch (data[3]) { case 0: *out = IE_RSN_CIPHER_SUITE_USE_GROUP_CIPHER; return true; case 1: *out = IE_RSN_CIPHER_SUITE_WEP40; return true; case 2: *out = IE_RSN_CIPHER_SUITE_TKIP; return true; case 4: *out = IE_RSN_CIPHER_SUITE_CCMP; return true; case 5: *out = IE_RSN_CIPHER_SUITE_WEP104; return true; default: return false; } } return false; } /* 802.11i-2004, Section 7.3.2.25.2 and WPA_80211_v3_1 Section 2.1 */ static bool ie_parse_wpa_akm_suite(const uint8_t *data, enum ie_rsn_akm_suite *out) { /* * Compare the OUI to the ones we know. OUI Format is found in * Figure 8-187 of 802.11 */ if (!memcmp(data, microsoft_oui, 3)) { /* Suite type from 802.11i-2004, Table 20dc */ switch (data[3]) { case 1: *out = IE_RSN_AKM_SUITE_8021X; return true; case 2: *out = IE_RSN_AKM_SUITE_PSK; return true; default: return false; } } return false; } static bool ie_parse_wpa_group_cipher(const uint8_t *data, enum ie_rsn_cipher_suite *out) { enum ie_rsn_cipher_suite tmp; bool r = ie_parse_wpa_cipher_suite(data, &tmp); if (!r) return r; switch (tmp) { case IE_RSN_CIPHER_SUITE_CCMP: case IE_RSN_CIPHER_SUITE_TKIP: case IE_RSN_CIPHER_SUITE_WEP104: case IE_RSN_CIPHER_SUITE_WEP40: break; default: return false; } *out = tmp; return true; } static bool ie_parse_wpa_pairwise_cipher(const uint8_t *data, enum ie_rsn_cipher_suite *out) { enum ie_rsn_cipher_suite tmp; bool r = ie_parse_wpa_cipher_suite(data, &tmp); if (!r) return r; switch (tmp) { case IE_RSN_CIPHER_SUITE_CCMP: case IE_RSN_CIPHER_SUITE_TKIP: case IE_RSN_CIPHER_SUITE_WEP104: case IE_RSN_CIPHER_SUITE_WEP40: /* TODO : not sure about GROUP_CIPHER */ break; default: return false; } *out = tmp; return true; } bool is_ie_wfa_ie(const uint8_t *data, uint8_t len, uint8_t oi_type) { if (!data) return false; if (oi_type == IE_WFA_OI_OSEN && len < 22) return false; else if (oi_type == IE_WFA_OI_HS20_INDICATION && len != 5 && len != 7) return false; else if (len < 4) /* OI not handled, but at least check length */ return false; if (!memcmp(data, wifi_alliance_oui, 3) && data[3] == oi_type) return true; return false; } bool is_ie_wpa_ie(const uint8_t *data, uint8_t len) { if (!data || len < 6) return false; if ((!memcmp(data, microsoft_oui, 3) && data[3] == 1 && l_get_le16(data + 4) == 1)) return true; return false; } int ie_parse_wpa(struct ie_tlv_iter *iter, struct ie_rsn_info *out_info) { const uint8_t *data = iter->data; size_t len = iter->len; struct ie_rsn_info info; uint16_t count; uint16_t i; if (!is_ie_wpa_ie(iter->data, iter->len)) return -EINVAL; memset(&info, 0, sizeof(info)); info.group_cipher = IE_RSN_CIPHER_SUITE_TKIP; info.pairwise_ciphers = IE_RSN_CIPHER_SUITE_TKIP; info.akm_suites = IE_RSN_AKM_SUITE_PSK; RSNE_ADVANCE(data, len, 6); /* Parse Group Cipher Suite field */ if (len < 4) return -EBADMSG; if (!ie_parse_wpa_group_cipher(data, &info.group_cipher)) return -ERANGE; RSNE_ADVANCE(data, len, 4); /* Parse Pairwise Cipher Suite Count field */ if (len < 2) return -EBADMSG; count = l_get_le16(data); /* * The spec doesn't seem to explicitly say what to do in this case, * so we assume this situation is invalid. */ if (count == 0) return -EINVAL; data += 2; len -= 2; if (len < 4 * count) return -EBADMSG; /* Parse Pairwise Cipher Suite List field */ for (i = 0, info.pairwise_ciphers = 0; i < count; i++) { enum ie_rsn_cipher_suite suite; if (!ie_parse_wpa_pairwise_cipher(data + i * 4, &suite)) return -ERANGE; info.pairwise_ciphers |= suite; } RSNE_ADVANCE(data, len, count * 4); /* Parse AKM Suite Count field */ if (len < 2) return -EBADMSG; count = l_get_le16(data); if (count == 0) return -EINVAL; data += 2; len -= 2; if (len < 4 * count) return -EBADMSG; /* Parse AKM Suite List field */ for (i = 0, info.akm_suites = 0; i < count; i++) { enum ie_rsn_akm_suite suite; if (!ie_parse_wpa_akm_suite(data + i * 4, &suite)) return -ERANGE; info.akm_suites |= suite; } RSNE_ADVANCE(data, len, count * 4); if (len < 2) return -EBADMSG; out_info->preauthentication = util_is_bit_set(data[0], 0); out_info->no_pairwise = util_is_bit_set(data[0], 1); out_info->ptksa_replay_counter = util_bit_field(data[0], 2, 2); out_info->gtksa_replay_counter = util_bit_field(data[0], 4, 2); RSNE_ADVANCE(data, len, 2); l_warn("Received WPA element with extra trailing bytes -" " which will be ignored"); return 0; done: /* * 802.11i, Section 7.3.2.25.1 * Use of CCMP as the group cipher suite with TKIP as the * pairwise cipher suite shall not be supported. */ if (info.group_cipher & IE_RSN_CIPHER_SUITE_CCMP && info.pairwise_ciphers & IE_RSN_CIPHER_SUITE_TKIP) return -EBADMSG; if (out_info) memcpy(out_info, &info, sizeof(info)); return 0; } int ie_parse_wpa_from_data(const uint8_t *data, size_t len, struct ie_rsn_info *info) { struct ie_tlv_iter iter; ie_tlv_iter_init(&iter, data, len); if (!ie_tlv_iter_next(&iter)) return -EMSGSIZE; if (ie_tlv_iter_get_tag(&iter) != IE_TYPE_VENDOR_SPECIFIC) return -EPROTOTYPE; return ie_parse_wpa(&iter, info); } /* * Generate an WPA IE based on the information found in info. * The to array must be minimum of 19 bytes in size */ bool ie_build_wpa(const struct ie_rsn_info *info, uint8_t *to) { /* These are the only valid pairwise suites */ static enum ie_rsn_cipher_suite pairwise_suites[] = { IE_RSN_CIPHER_SUITE_CCMP, IE_RSN_CIPHER_SUITE_TKIP, IE_RSN_CIPHER_SUITE_WEP104, IE_RSN_CIPHER_SUITE_WEP40, /* TODO: not sure about USE_GROUP_CIPHER,*/ }; /* These are the only valid AKM suites */ static enum ie_rsn_akm_suite akm_suites[] = { IE_RSN_AKM_SUITE_8021X, IE_RSN_AKM_SUITE_PSK, }; unsigned int pos; unsigned int i; uint8_t *countptr; uint16_t count; /* * 802.11i, Section 7.3.2.25.1 * Use of CCMP as the group cipher suite with TKIP as the * pairwise cipher suite shall not be supported. */ if (info->group_cipher == IE_RSN_CIPHER_SUITE_CCMP && info->pairwise_ciphers & IE_RSN_CIPHER_SUITE_TKIP) return false; to[0] = IE_TYPE_VENDOR_SPECIFIC; /* Vendor OUI and Type */ pos = 2; memcpy(to + pos, microsoft_oui, 3); pos += 3; to[pos] = 1; /* OUI type 1 means WPA element */ pos++; /* Version field, always 1 */ l_put_le16(1, to + pos); pos += 2; /* Group Data Cipher Suite */ if (!ie_build_cipher_suite(to + pos, microsoft_oui, info->group_cipher)) return false; pos += 4; /* Save position for Pairwise Cipher Suite Count field */ countptr = to + pos; pos += 2; for (i = 0, count = 0; i < L_ARRAY_SIZE(pairwise_suites); i++) { enum ie_rsn_cipher_suite suite = pairwise_suites[i]; if (!(info->pairwise_ciphers & suite)) continue; if (!ie_build_cipher_suite(to + pos, microsoft_oui, suite)) return false; pos += 4; count += 1; } l_put_le16(count, countptr); /* Save position for AKM Suite Count field */ countptr = to + pos; pos += 2; for (i = 0, count = 0; i < L_ARRAY_SIZE(akm_suites); i++) { enum ie_rsn_akm_suite suite = akm_suites[i]; if (!(info->akm_suites & suite)) continue; if (!ie_build_wpa_akm_suite(to + pos, suite)) return false; pos += 4; count += 1; } l_put_le16(count, countptr); to[1] = pos - 2; return true; } int ie_parse_bss_load(struct ie_tlv_iter *iter, uint16_t *out_sta_count, uint8_t *out_channel_utilization, uint16_t *out_admission_capacity) { const uint8_t *data; if (ie_tlv_iter_get_length(iter) != 5) return -EINVAL; data = ie_tlv_iter_get_data(iter); if (out_sta_count) *out_sta_count = data[0] | data[1] << 8; if (out_channel_utilization) *out_channel_utilization = data[2]; if (out_admission_capacity) *out_admission_capacity = data[3] | data[4] << 8; return 0; } int ie_parse_bss_load_from_data(const uint8_t *data, uint8_t len, uint16_t *out_sta_count, uint8_t *out_channel_utilization, uint16_t *out_admission_capacity) { struct ie_tlv_iter iter; ie_tlv_iter_init(&iter, data, len); if (!ie_tlv_iter_next(&iter)) return -EMSGSIZE; if (ie_tlv_iter_get_tag(&iter) != IE_TYPE_BSS_LOAD) return -EPROTOTYPE; return ie_parse_bss_load(&iter, out_sta_count, out_channel_utilization, out_admission_capacity); } /* * We have to store this mapping since basic rates dont come with a convenient * MCS index. Rates are stored as they are encoded in the Supported Rates IE. * This does not include non 802.11g data rates, e.g. 1/2/4Mbps. This data was * taken from 802.11 Section 17.3.10.2 and Table 10-7. * * Section 17.3.10.2 defines minimum RSSI for modulations, and Table * 10-7 defines reference rates for the different modulations. Together we * have minimum RSSI required for a given data rate. */ struct basic_rate_map { int32_t rssi; uint8_t rate; }; /* * Rates are stored in 500Kbps increments. This is how the IE encodes the data * so its more convenient to match by this encoding. The actual data rate is * converted to Mbps after we find a match */ static const struct basic_rate_map rate_rssi_map[] = { { -82, 12 }, { -81, 18 }, { -79, 24 }, { -77, 36 }, { -74, 48 }, { -70, 72 }, { -66, 96 }, { -65, 108 }, }; static int ie_parse_supported_rates(struct ie_tlv_iter *supp_rates_iter, struct ie_tlv_iter *ext_supp_rates_iter, int32_t rssi, uint64_t *data_rate) { uint8_t max_rate = 0; uint8_t highest = 0; const uint8_t *rates; unsigned int len; unsigned int i; len = ie_tlv_iter_get_length(supp_rates_iter); if (len == 0) return -EINVAL; /* Find highest rates possible with our RSSI */ for (i = 0; i < L_ARRAY_SIZE(rate_rssi_map); i++) { const struct basic_rate_map *map = &rate_rssi_map[i]; if (rssi < map->rssi) break; max_rate = map->rate; } /* Find highest rate in Supported Rates IE */ rates = ie_tlv_iter_get_data(supp_rates_iter); for (i = 0; i < len; i++) { uint8_t r = rates[i] & 0x7f; if (r <= max_rate && r > highest) highest = r; } /* Find highest rate in Extended Supported Rates IE */ if (ext_supp_rates_iter) { len = ie_tlv_iter_get_length(ext_supp_rates_iter); rates = ie_tlv_iter_get_data(ext_supp_rates_iter); for (i = 0; i < len; i++) { uint8_t r = rates[i] & 0x7f; if (r <= max_rate && r > highest) highest = r; } } *data_rate = (highest / 2) * 1000000; return 0; } int ie_parse_supported_rates_from_data(const uint8_t *supp_rates_ie, uint8_t supp_rates_len, const uint8_t *ext_supp_rates_ie, uint8_t ext_supp_rates_len, int32_t rssi, uint64_t *data_rate) { struct ie_tlv_iter supp_rates_iter; struct ie_tlv_iter ext_supp_rates_iter; if (supp_rates_ie) { ie_tlv_iter_init(&supp_rates_iter, supp_rates_ie, supp_rates_len); if (!ie_tlv_iter_next(&supp_rates_iter)) return -EMSGSIZE; if (ie_tlv_iter_get_tag(&supp_rates_iter) != IE_TYPE_SUPPORTED_RATES) return -EPROTOTYPE; } if (ext_supp_rates_ie) { ie_tlv_iter_init(&ext_supp_rates_iter, ext_supp_rates_ie, ext_supp_rates_len); if (!ie_tlv_iter_next(&ext_supp_rates_iter)) return -EMSGSIZE; if (ie_tlv_iter_get_tag(&ext_supp_rates_iter) != IE_TYPE_EXTENDED_SUPPORTED_RATES) return -EPROTOTYPE; } return ie_parse_supported_rates( (supp_rates_ie) ? &supp_rates_iter : NULL, (ext_supp_rates_ie) ? &ext_supp_rates_iter : NULL, rssi, data_rate); } enum ht_vht_channel_width { HT_VHT_CHANNEL_WIDTH_20MHZ = 0, HT_VHT_CHANNEL_WIDTH_40MHZ, HT_VHT_CHANNEL_WIDTH_80MHZ, HT_VHT_CHANNEL_WIDTH_160MHZ, }; /* * Base RSSI values for 20MHz (both HT and VHT) channel. These values can be * used to calculate the minimum RSSI values for all other channel widths. HT * MCS indexes are grouped into ranges of 8 (per spatial stream) where VHT are * grouped in chunks of 10. This just means HT will not use the last two * index's of this array. */ static const int32_t ht_vht_base_rssi[] = { -82, -79, -77, -74, -70, -66, -65, -64, -59, -57 }; struct ht_vht_rate { uint64_t rate; uint64_t sgi_rate; }; static const struct ht_vht_rate ht_vht_rates[] = { [HT_VHT_CHANNEL_WIDTH_20MHZ] = { .rate = 6500000, .sgi_rate = 7200000 }, [HT_VHT_CHANNEL_WIDTH_40MHZ] = { .rate = 13500000, .sgi_rate = 15000000 }, [HT_VHT_CHANNEL_WIDTH_80MHZ] = { .rate = 29300000, .sgi_rate = 32500000 }, [HT_VHT_CHANNEL_WIDTH_160MHZ] = { .rate = 58500000, .sgi_rate = 65000000 }, }; /* * Both HT and VHT rates are calculated in the same fashion. The only difference * is a relative MCS index is used for HT since, for each NSS, the formula * is the same with relative index's. This is why this is called with index % 8 * for HT, but not VHT. */ static bool calculate_ht_vht_data_rate(uint8_t index, enum ht_vht_channel_width width, int32_t rssi, uint8_t nss, bool sgi, uint64_t *data_rate) { const struct ht_vht_rate *rate = &ht_vht_rates[width]; int32_t width_adjust = width * 3; if (rssi < ht_vht_base_rssi[index] + width_adjust) return false; if (sgi) *data_rate = rate->sgi_rate; else *data_rate = rate->rate; /* adjust base for spatial streams */ *data_rate *= nss; /* * As with HT, the VHT rates multiplier jumps up * by 2 after MCS index 4 */ if (index < 4) *data_rate *= index + 1; else *data_rate *= index + 3; return true; } static int ie_parse_ht_capability(struct ie_tlv_iter *iter, int32_t rssi, uint64_t *data_rate) { unsigned int len; const uint8_t *data; uint8_t ht_cap; int i; uint64_t highest_rate = 0; bool support_40mhz; bool short_gi_20mhz; bool short_gi_40mhz; len = ie_tlv_iter_get_length(iter); if (len < 26) return -EINVAL; if (ie_tlv_iter_get_tag(iter) != IE_TYPE_HT_CAPABILITIES) return -EINVAL; data = ie_tlv_iter_get_data(iter); /* Parse out channel width set and short GI */ ht_cap = l_get_u8(data++); support_40mhz = util_is_bit_set(ht_cap, 1); short_gi_20mhz = util_is_bit_set(ht_cap, 5); short_gi_40mhz = util_is_bit_set(ht_cap, 6); data += 2; /* * TODO: Support MCS values 32 - 76 * * The MCS values > 31 do not follow the same pattern since they use * unequal modulation per spatial stream. These higher MCS values * actually don't follow a pattern at all, since each stream can have a * different modulation a higher MCS value does not mean higher * throughput. For this reason these MCS indexes are left out. */ for (i = 31; i >= 0; i--) { uint64_t drate; uint8_t byte = i / 8; uint8_t bit = i % 8; if (!util_is_bit_set(data[byte], bit)) continue; if (!support_40mhz) goto check_20; if (calculate_ht_vht_data_rate(i % 8, HT_VHT_CHANNEL_WIDTH_40MHZ, rssi, (i / 8) + 1, short_gi_40mhz, &drate)) { *data_rate = drate; return 0; } check_20: if (!calculate_ht_vht_data_rate(i % 8, HT_VHT_CHANNEL_WIDTH_20MHZ, rssi, (i / 8) + 1, short_gi_20mhz, &drate)) continue; if (!support_40mhz) { *data_rate = drate; return 0; } if (drate > highest_rate) highest_rate = drate; } if (!highest_rate) return -ENOTSUP; *data_rate = highest_rate; return 0; } static int ie_parse_ht_capability_from_data(const uint8_t *data, uint8_t len, int32_t rssi, uint64_t *data_rate) { struct ie_tlv_iter iter; uint8_t tag; ie_tlv_iter_init(&iter, data, len); if (!ie_tlv_iter_next(&iter)) return -EMSGSIZE; tag = ie_tlv_iter_get_tag(&iter); if (tag != IE_TYPE_HT_CAPABILITIES) return -EPROTOTYPE; return ie_parse_ht_capability(&iter, rssi, data_rate); } /* * IEEE 802.11 - Table 9-250 * * For simplicity, we are ignoring the Extended BSS BW support, per NOTE 11: * * NOTE 11—A receiving STA in which dot11VHTExtendedNSSCapable is false will * ignore the Extended NSS BW Support subfield and effectively evaluate this * table only at the entries where Extended NSS BW Support is 0. * * This also allows us to group the 160/80+80 widths together, since they are * the same when Extended NSS BW is zero. */ static const uint8_t vht_width_map[3][4] = { [0] = { 1, 1, 1, 0 }, [1] = { 1, 1, 1, 1 }, [2] = { 1, 1, 1, 1 }, }; static int ie_parse_vht_capability(struct ie_tlv_iter *vht_iter, struct ie_tlv_iter *ht_iter, int32_t rssi, uint64_t *data_rate) { int width; int mcs; unsigned int nss; unsigned int len; const uint8_t *data; uint8_t channel_width_set; uint8_t rx_mcs_map[2]; uint8_t tx_mcs_map[2]; unsigned int max_rx_mcs = 0; unsigned int rx_nss = 1; unsigned int max_tx_mcs = 0; unsigned int tx_nss = 1; uint8_t ht_cap; bool short_gi_20mhz; bool short_gi_40mhz; bool short_gi_80mhz; bool short_gi_160mhz; uint64_t highest_rate = 0; /* grab the short GI bits from the HT IE */ len = ie_tlv_iter_get_length(ht_iter); if (len != 26) return -EINVAL; data = ie_tlv_iter_get_data(ht_iter); ht_cap = l_get_u8(data); short_gi_20mhz = util_is_bit_set(ht_cap, 5); short_gi_40mhz = util_is_bit_set(ht_cap, 6); /* now move onto VHT */ len = ie_tlv_iter_get_length(vht_iter); if (len != 12) return -EINVAL; data = ie_tlv_iter_get_data(vht_iter); channel_width_set = util_bit_field(*data, 2, 2); short_gi_80mhz = util_bit_field(*data, 5, 1); short_gi_160mhz = util_bit_field(*data, 6, 1); data += 4; rx_mcs_map[0] = *data++; rx_mcs_map[1] = *data++; data += 2; tx_mcs_map[0] = *data++; tx_mcs_map[1] = *data++; /* NSS->MCS map values are grouped in 2-bit values */ for (mcs = 15; mcs >= 0; mcs -= 2) { uint8_t rx_val = util_bit_field(rx_mcs_map[mcs / 8], mcs % 8, 2); uint8_t tx_val = util_bit_field(tx_mcs_map[mcs / 8], mcs % 8, 2); /* * 0 indicates support for MCS 0-7 * 1 indicates support for MCS 0-8 * 2 indicates support for MCS 0-9 * * Therefore 7 + rx/tx_val gives us our max MCS index. */ if (!max_rx_mcs && rx_val < 3) { max_rx_mcs = 7 + rx_val; rx_nss = (mcs / 2) + 1; } if (!max_tx_mcs && tx_val < 3) { max_tx_mcs = 7 + tx_val; tx_nss = (mcs / 2) + 1; } if (max_rx_mcs && max_tx_mcs) break; } if (!max_rx_mcs && !max_tx_mcs) return -EINVAL; /* * Now, using channel width, MCS index, and NSS we can determine the * theoretical maximum data rate. We iterate through all possible * combinations (width, MCS, NSS), saving the highest data rate we find. * * We could calculate a maximum data rate separately for TX/RX, but * since this is only used for BSS ranking, the minumum between the * two should be good enough. */ for (width = sizeof(vht_width_map[0]) - 1; width >= 0; width--) { bool sgi = false; if (!vht_width_map[channel_width_set][width]) continue; /* * Consolidate short GI support into a single boolean, dependent * on the channel width for this iteration. */ switch (width) { case HT_VHT_CHANNEL_WIDTH_20MHZ: sgi = short_gi_20mhz; break; case HT_VHT_CHANNEL_WIDTH_40MHZ: sgi = short_gi_40mhz; break; case HT_VHT_CHANNEL_WIDTH_80MHZ: sgi = short_gi_80mhz; break; case HT_VHT_CHANNEL_WIDTH_160MHZ: sgi = short_gi_160mhz; break; } for (nss = minsize(rx_nss, tx_nss); nss > 0; nss--) { /* NSS > 4 does not apply to 20/40MHz */ if (width <= HT_VHT_CHANNEL_WIDTH_40MHZ && nss > 4) continue; for (mcs = minsize(max_rx_mcs, max_tx_mcs); mcs >= 0; mcs--) { uint64_t drate; if (!calculate_ht_vht_data_rate(mcs, width, rssi, nss, sgi, &drate)) continue; if (drate > highest_rate) highest_rate = drate; /* Lower MCS index will only have lower rates */ goto next_chanwidth; } } next_chanwidth: ; /* empty statement */ } if (highest_rate == 0) return -ENOTSUP; *data_rate = highest_rate; return 0; } static int ie_parse_vht_capability_from_data(const uint8_t *vht_ie, size_t vht_len, const uint8_t *ht_ie, size_t ht_len, int32_t rssi, uint64_t *data_rate) { struct ie_tlv_iter vht_iter; struct ie_tlv_iter ht_iter; uint8_t tag; ie_tlv_iter_init(&vht_iter, vht_ie, vht_len); if (!ie_tlv_iter_next(&vht_iter)) return -EMSGSIZE; tag = ie_tlv_iter_get_tag(&vht_iter); if (tag != IE_TYPE_VHT_CAPABILITIES) return -EPROTOTYPE; ie_tlv_iter_init(&ht_iter, ht_ie, ht_len); if (!ie_tlv_iter_next(&ht_iter)) return -EMSGSIZE; tag = ie_tlv_iter_get_tag(&ht_iter); if (tag != IE_TYPE_HT_CAPABILITIES) return -EPROTOTYPE; return ie_parse_vht_capability(&vht_iter, &ht_iter, rssi, data_rate); } /* * Calculates the theoretical maximum data rates out of the provided * supported rates IE, HT IE, and VHT IE. All 3 parsing functions are allowed * to return -ENOTSUP, which indicates that a data rate was not found given * the provided data. This is not fatal, it most likely means our RSSI was too * low. */ int ie_parse_data_rates(const uint8_t *supp_rates_ie, const uint8_t *ext_supp_rates_ie, const uint8_t *ht_ie, const uint8_t *vht_ie, int32_t rssi, uint64_t *data_rate) { int ret = -ENOTSUP; uint64_t rate = 0; /* An RSSI this low will not yield any rate results */ if (rssi < -82) return -ENOTSUP; if (ht_ie && vht_ie) { ret = ie_parse_vht_capability_from_data(vht_ie, IE_LEN(vht_ie), ht_ie, IE_LEN(ht_ie), rssi, &rate); if (ret == 0) goto done; } if (ht_ie) { ret = ie_parse_ht_capability_from_data(ht_ie, IE_LEN(ht_ie), rssi, &rate); if (ret == 0) goto done; } if (supp_rates_ie || ext_supp_rates_ie) { ret = ie_parse_supported_rates_from_data(supp_rates_ie, IE_LEN(supp_rates_ie), ext_supp_rates_ie, IE_LEN(supp_rates_ie), rssi, &rate); if (ret == 0) goto done; } return ret; done: *data_rate = rate; return 0; } int ie_parse_mobility_domain(struct ie_tlv_iter *iter, uint16_t *mdid, bool *ft_over_ds, bool *resource_req) { const uint8_t *data; if (ie_tlv_iter_get_length(iter) != 3) return -EINVAL; data = ie_tlv_iter_get_data(iter); if (mdid) *mdid = l_get_le16(data); if (ft_over_ds) *ft_over_ds = (data[2] & 0x01) > 0; if (resource_req) *resource_req = (data[2] & 0x02) > 0; return 0; } int ie_parse_mobility_domain_from_data(const uint8_t *data, uint8_t len, uint16_t *mdid, bool *ft_over_ds, bool *resource_req) { struct ie_tlv_iter iter; ie_tlv_iter_init(&iter, data, len); if (!ie_tlv_iter_next(&iter)) return -EMSGSIZE; if (ie_tlv_iter_get_tag(&iter) != IE_TYPE_MOBILITY_DOMAIN) return -EPROTOTYPE; return ie_parse_mobility_domain(&iter, mdid, ft_over_ds, resource_req); } bool ie_build_mobility_domain(uint16_t mdid, bool ft_over_ds, bool resource_req, uint8_t *to) { *to++ = IE_TYPE_MOBILITY_DOMAIN; *to++ = 3; l_put_le16(mdid, to); to[2] = (ft_over_ds ? 0x01 : 0) | (resource_req ? 0x02 : 0); return true; } int ie_parse_fast_bss_transition(struct ie_tlv_iter *iter, uint32_t mic_len, struct ie_ft_info *info) { const uint8_t *data; uint8_t len, subelem_id, subelem_len; len = ie_tlv_iter_get_length(iter); if (len < 66 + mic_len) return -EINVAL; data = ie_tlv_iter_get_data(iter); memset(info, 0, sizeof(*info)); info->mic_element_count = data[1]; memcpy(info->mic, data + 2, mic_len); memcpy(info->anonce, data + mic_len + 2, 32); memcpy(info->snonce, data + mic_len + 34, 32); len -= 66 + mic_len; data += 66 + mic_len; while (len >= 2) { subelem_id = *data++; subelem_len = *data++; switch (subelem_id) { case 1: if (subelem_len != 6) return -EINVAL; memcpy(info->r1khid, data, 6); info->r1khid_present = true; break; case 2: if (subelem_len < 35 || subelem_len > 51) return -EINVAL; info->gtk_key_id = util_bit_field(data[0], 0, 2); info->gtk_len = data[2]; /* * Check Wrapped Key field length is Key Length plus * padding (0 - 7 bytes) plus 8 bytes for AES key wrap. */ if (align_len(info->gtk_len, 8) + 8 != subelem_len - 11) return -EINVAL; memcpy(info->gtk_rsc, data + 3, 8); memcpy(info->gtk, data + 11, subelem_len - 11); break; case 3: if (subelem_len < 1 || subelem_len > 48) return -EINVAL; memcpy(info->r0khid, data, subelem_len); info->r0khid_len = subelem_len; break; case 4: if (subelem_len != 33) return -EINVAL; info->igtk_key_id = l_get_le16(data); memcpy(info->igtk_ipn, data + 2, 6); info->igtk_len = data[8]; if (info->igtk_len > 16) return -EINVAL; memcpy(info->igtk, data + 9, subelem_len - 9); break; } data += subelem_len; len -= subelem_len + 2; } if (len) return -EINVAL; return 0; } int ie_parse_fast_bss_transition_from_data(const uint8_t *data, uint8_t len, uint32_t mic_len, struct ie_ft_info *info) { struct ie_tlv_iter iter; ie_tlv_iter_init(&iter, data, len); if (!ie_tlv_iter_next(&iter)) return -EMSGSIZE; if (ie_tlv_iter_get_tag(&iter) != IE_TYPE_FAST_BSS_TRANSITION) return -EPROTOTYPE; return ie_parse_fast_bss_transition(&iter, mic_len, info); } bool ie_build_fast_bss_transition(const struct ie_ft_info *info, uint32_t mic_len, uint8_t *to) { uint8_t *len; *to++ = IE_TYPE_FAST_BSS_TRANSITION; len = to++; *len = (mic_len == 16) ? 82 : 90; to[0] = 0x00; to[1] = info->mic_element_count; memcpy(to + 2, info->mic, mic_len); memcpy(to + mic_len + 2, info->anonce, 32); memcpy(to + mic_len + 34, info->snonce, 32); to += (mic_len == 16) ? 82 : 90; if (info->r1khid_present) { to[0] = 1; to[1] = 6; memcpy(to + 2, info->r1khid, 6); to += 8; *len += 8; } L_WARN_ON(info->gtk_len); /* Not implemented */ if (info->r0khid_len) { to[0] = 3; to[1] = info->r0khid_len; memcpy(to + 2, info->r0khid, info->r0khid_len); to += 2 + info->r0khid_len; *len += 2 + info->r0khid_len; } L_WARN_ON(info->igtk_len); /* Not implemented */ return true; } enum nr_subelem_id { NR_SUBELEM_ID_TSF_INFO = 1, NR_SUBELEM_ID_CONDENSED_COUNTRY_STR = 2, NR_SUBELEM_ID_BSS_TRANSITION_PREF = 3, NR_SUBELEM_ID_BSS_TERMINATION_DURATION = 4, NR_SUBELEM_ID_BEARING = 5, NR_SUBELEM_ID_WIDE_BW_CHANNEL = 6, /* Remaining defined subelements use the IE_TYPE_* ID values */ }; int ie_parse_neighbor_report(struct ie_tlv_iter *iter, struct ie_neighbor_report_info *info) { unsigned int len = ie_tlv_iter_get_length(iter); const uint8_t *data = ie_tlv_iter_get_data(iter); struct ie_tlv_iter opt_iter; if (len < 13) return -EINVAL; memset(info, 0, sizeof(*info)); memcpy(info->addr, data + 0, 6); info->ht = util_is_bit_set(data[8], 3); info->md = util_is_bit_set(data[8], 2); info->immediate_block_ack = util_is_bit_set(data[8], 1); info->delayed_block_ack = util_is_bit_set(data[8], 0); info->rm = util_is_bit_set(data[9], 7); info->apsd = util_is_bit_set(data[9], 6); info->qos = util_is_bit_set(data[9], 5); info->spectrum_mgmt = util_is_bit_set(data[9], 4); info->key_scope = util_is_bit_set(data[9], 3); info->security = util_is_bit_set(data[9], 2); info->reachable = util_bit_field(data[9], 0, 2); info->oper_class = data[10]; info->channel_num = data[11]; info->phy_type = data[12]; ie_tlv_iter_init(&opt_iter, data + 13, len - 13); while (ie_tlv_iter_next(&opt_iter)) { if (ie_tlv_iter_get_tag(&opt_iter) != NR_SUBELEM_ID_BSS_TRANSITION_PREF) continue; if (ie_tlv_iter_get_length(&opt_iter) != 1) continue; info->bss_transition_pref = ie_tlv_iter_get_data(&opt_iter)[0]; info->bss_transition_pref_present = true; } return 0; } int ie_parse_roaming_consortium(struct ie_tlv_iter *iter, size_t *num_anqp_out, const uint8_t **oi1_out, size_t *oi1_len_out, const uint8_t **oi2_out, size_t *oi2_len_out, const uint8_t **oi3_out, size_t *oi3_len_out) { unsigned int len = ie_tlv_iter_get_length(iter); const uint8_t *data = ie_tlv_iter_get_data(iter); size_t num_anqp; size_t oi1_len; size_t oi2_len; size_t oi3_len; if (len < 4) return -EINVAL; num_anqp = l_get_u8(data); oi1_len = util_bit_field(l_get_u8(data + 1), 0, 4); oi2_len = util_bit_field(l_get_u8(data + 1), 4, 4); oi3_len = len - (2 + oi1_len + oi2_len); if (!oi1_len) return -EINVAL; if (len < oi1_len + oi2_len + oi3_len + 2) return -EINVAL; if (num_anqp_out) *num_anqp_out = num_anqp; if (oi1_out) *oi1_out = data + 2; if (oi1_len_out) *oi1_len_out = oi1_len; /* OI2/3 are optional, explicitly set to NULL if not included */ if (oi2_len) { if (oi2_out) *oi2_out = data + 2 + oi1_len; if (oi2_len_out) *oi2_len_out = oi2_len; } else if (oi2_out) *oi2_out = NULL; if (oi3_len) { if (oi3_out) *oi3_out = data + 2 + oi1_len + oi2_len; if (oi3_len_out) *oi3_len_out = oi3_len; } else if (oi3_out) *oi3_out = NULL; return 0; } int ie_parse_roaming_consortium_from_data(const uint8_t *data, size_t len, size_t *num_anqp_out, const uint8_t **oi1_out, size_t *oi1_len_out, const uint8_t **oi2_out, size_t *oi2_len_out, const uint8_t **oi3_out, size_t *oi3_len_out) { struct ie_tlv_iter iter; ie_tlv_iter_init(&iter, data, len); if (!ie_tlv_iter_next(&iter)) return -EMSGSIZE; if (ie_tlv_iter_get_tag(&iter) != IE_TYPE_ROAMING_CONSORTIUM) return -EPROTOTYPE; return ie_parse_roaming_consortium(&iter, num_anqp_out, oi1_out, oi1_len_out, oi2_out, oi2_len_out, oi3_out, oi3_len_out); } int ie_build_roaming_consortium(const uint8_t *rc, size_t rc_len, uint8_t *to) { *to++ = IE_TYPE_VENDOR_SPECIFIC; *to++ = rc_len + 4; memcpy(to, wifi_alliance_oui, 3); to += 3; *to++ = 0x1d; memcpy(to, rc, rc_len); return 0; } int ie_parse_hs20_indication(struct ie_tlv_iter *iter, uint8_t *version_out, uint16_t *pps_mo_id_out, uint8_t *domain_id_out) { unsigned int len = ie_tlv_iter_get_length(iter); const uint8_t *data = ie_tlv_iter_get_data(iter); uint8_t hs20_config; bool pps_mo_present, domain_id_present; if (!is_ie_wfa_ie(data, iter->len, IE_WFA_OI_HS20_INDICATION)) return -EPROTOTYPE; hs20_config = l_get_u8(data + 4); pps_mo_present = util_is_bit_set(hs20_config, 1); domain_id_present = util_is_bit_set(hs20_config, 2); /* * Hotspot 2.0 Spec - Section 3.1.1 * * "Either the PPS MO ID field or the ANQP Domain ID field (these * are mutually exclusive fields) is included in the HS2.0 Indication * element" */ if (pps_mo_present && domain_id_present) return -EPROTOTYPE; if (version_out) *version_out = util_bit_field(hs20_config, 4, 4); if (pps_mo_id_out) *pps_mo_id_out = 0; if (domain_id_out) *domain_id_out = 0; /* No PPS MO ID or Domain ID */ if (len == 5) return 0; /* we know from is_ie_wfa_ie that the length must be 7 */ if (pps_mo_present) { if (pps_mo_id_out) *pps_mo_id_out = l_get_u16(data + 5); } else if (domain_id_present) { if (domain_id_out) *domain_id_out = l_get_u16(data + 5); } return 0; } int ie_parse_hs20_indication_from_data(const uint8_t *data, size_t len, uint8_t *version, uint16_t *pps_mo_id, uint8_t *domain_id) { struct ie_tlv_iter iter; ie_tlv_iter_init(&iter, data, len); if (!ie_tlv_iter_next(&iter)) return -EMSGSIZE; if (ie_tlv_iter_get_tag(&iter) != IE_TYPE_VENDOR_SPECIFIC) return -EPROTOTYPE; return ie_parse_hs20_indication(&iter, version, pps_mo_id, domain_id); } /* * Only use version for building as this is meant for the (Re)Association IE. * In this case DGAF is always disabled, Domain ID should not be present, and * this device was not configured with PerProviderSubscription MO. */ int ie_build_hs20_indication(uint8_t version, uint8_t *to) { if (version > 2) return -EINVAL; *to++ = IE_TYPE_VENDOR_SPECIFIC; *to++ = 5; memcpy(to, wifi_alliance_oui, 3); to += 3; *to++ = IE_WFA_OI_HS20_INDICATION; *to++ = (version << 4) & 0xf0; return 0; }