Some drivers might not actually support control port properly even if
advertised by mac80211. Introduce a new method to wiphy that will take
care of looking up any driver quirks that override the presence of
NL80211_EXT_FEATURE_CONTROL_PORT_OVER_NL80211
Under certain conditions, access points with very low signal could be
detected. This signal is too low to estimate a data rate and causes
this L_WARN to fire. Fix this by returning a -ENETUNREACH error code in
case the signal is too low for any of the supported rates.
Transition Disable indications and information stored in the network
profile needs to be enforced. Since Transition Disable information is
now stored inside the network object, add a new method
'network_can_connect_bss' that will take this information into account.
wiphy_can_connect method is thus deprecated and removed.
Transition Disable can also result in certain AKMs and pairwise ciphers
being disabled, so wiphy_select_akm method's signature is changed and
takes the (possibly overriden) ie_rsn_info as input.
Returns a template RSNX element that can be further modified by callers
to set any additional capabilities if required. wiphy will fill in
those capabilities that are driver / firmware dependent.
Move the band definition out of wiphy.c and into band.[ch]. This is
done to make certain utilities that depend on band information capable
of being tested from unit tests.
The band concept will most likely grow over time. For now, the only
user will be wiphy.c and unit tests, so the structures are kept public.
The data rate estimation belongs in wiphy since it should take hardware
capabilities into account. Right now the data rate calculation simply
assumes the hardware is as capable as the AP. scan.c will be ported to
use this utility and the data rate estimation will be expanded to take
wiphy capabilities into account.
Right now a very limited set of band parameters are parsed into wiphy.
This includes the supported rates and the supported frequencies.
However, there is much more information that is given for each band.
Introduce a new band object that will store this information and can be
extended for future use.
A prior commit refactored the AKM selection in wiphy.c. This
ended up breaking FILS tests due to the hard coding of a
false fils_hint in wiphy_select_akm. Since our FILS tests
only advertise FILS AKMs wiphy_can_connect would return false
for these networks.
Similar to wiphy_select_akm, add a fils hint parameter to
wiphy_can_connect and pass that down directly to wiphy_select_akm.
Until now FT was only supported via Auth/Assoc commands which barred
any fullmac cards from using FT AKMs. With PSK offload support these
cards can do FT but only when offloading is used.
Commit 6e8b76527 added a switch statement for AKM suites which
was not correct as this is a bitmask and may contain multiple
values. Intead we can rely on wiphy_select_akm which is a more
robust check anyways.
Fixes: 6e8b765278 ("wiphy: add check for CMD_AUTH/CMD_ASSOC support")
Fix a logic error which prevented iwd from using SAE/WPA3 when
attempting to connect to APs that are in transition mode. The SAE/WPA3
check incorrectly required mfpr bit to be set, which is true for
APs in WPA3-Personal only mode, but is set to 0 for APs in
WPA3-Personal transition mode.
This patch also adds a bit more diagnostic output to help diagnose
causes for connections where WPA3 is not attempted even when advertised
by the AP.
These APIs will handle fairness and order in any operations which
radios can only do sequentially (offchannel, scanning, connection etc.).
Both scan and frame-xchg are complex modules (especially scanning)
which is why the radio management APIs were implemented generic enough
where the changes to both modules will be minimal. Any module that
requires this kind of work can push a work item into the radio
management work queue (wiphy_radio_work_insert) and when the work
is ready to be started radio management will call back into the module.
Once the work is completed (and this may be some time later e.g. in
scan results or a frame watch) the module can signal back that the
work is finished (wiphy_radio_work_done). Wiphy will then pop the
queue and continue with the next work item.
A concept of priority was added in order to allow important offchannel
operations (e.g. ANQP) to take priority over other work items. The
priority is an integer, where lower values are of a higher priority.
The concept of priority cleanly solves a lot of the complexity that
was added in order to support ANQP queries (suspending scanning and
waiting for ANQP to finish before connecting).
Instead ANQP queries can be queued at a higher priority than scanning
which removes the need for suspending scans. In addition we can treat
connections as radio management work and insert them at a lower
priority than ANQP, but higher than scanning. This forces the
connection to wait for ANQP without having to track any state.
Some full mac cards don't like being given a FT AKM when connecting.
From an API perspective this should be supported, but in practice
these cards behave differently and some do no accept FT AKMs. Until
this becomes more stable any cards not supporting Auth/Assoc commands
(full mac) will not connect using FT AKMs.
When a new wiphy is added query its regulatory domain and listen for
nl80211 regulatory notifications to be able to provide current
regulatory country code through the new wiphy_get_reg_domain_country().
If the AP only supports an AKM which requires an auth protocol
CMD_AUTHENTICATE/CMD_ASSOCIATE must be supported or else the
auth protocol cannot be run. All the auth protocols are started
assuming that the card supports these commands, but the support
was never checked when parsing supported commands.
This patch will prevent any fullMAC cards from using
SAE/FILS/OWE. This was the same behavior as before, just an
earlier failure path.
This API is being added to support per-network MAC address
generation. The MAC is generated based on the network SSID
and the adapters permanent address using HMAC-SHA256. The
SHA digest is then constrained to make it MAC address
compliant.
Generating the MAC address like this will ensure that the
MAC remains the same each time a given SSID is connected to.
The kernel emits NEW_WIPHY events whenever a new wiphy is registered.
Unfortunately these events are emitted under the 'legacy' semantics and
have a hard size limit of 4096 bytes. Unfortunately, it is possible for
a NEW_WIPHY message to exceed this limit (ath10k cards seem to be
affected in particular), which results in the kernel never sending these
messages out. This can lead to NEW_INTERFACE events being emitted with
a wiphy_id that had no corresponding NEW_WIPHY event emitted. Such a
sequence can confuse iwd's hardware detection logic, particularly during
hot-plug or system boot.
Fix this by re-dumping the wiphy if such a condition is detected. This
has some interaction with blacklisted wiphys, so the wiphy objects are
now always tracked and marked as blacklisted. Before, the blacklisted
wiphys were simply not added to the iwd list of tracked wiphys.
The extended capability bits were not being set properly inside
wiphy. Since we build the IE after the wiphy dump the first 2
bytes are the IE type and length. The way we were setting the bits
did not take this into account and were actually setting the
completely wrong bits.
Some capability bits are required by the spec to be set for
probe requests for certain features (HS20, FILS, FT). Currently
these features work as-is, but depending on the hardware we may
be in violation of the spec if we assume the correct bits are
set when we get the wiphy dump.
Just to be safe we can explicity set these capability bits.
There are also two ways the kernel exposes these capabilities.
Per-type or globally. The hardware may expose one, or both of
these capability arrays. To combat this we are now always
creating a per-type capability array for stations. If the
wiphy dump has not produced a per-type capability array we
now create one based off the global capability array. That
way we can always assume there is a capability array for a
station iftype.
Regulatory domain management is now completely handled by the kernel, so
iwd doesn't really need to query or be aware of changes to this. This
may change in the future, but for now this code has not been used and
can be safely gotten rid of.
Read the driver name for each wiphy from sysfs if available. I didn't
find a better way to obtain the driver name for a phy than by reading
the dir name that the "driver" symlink points at. For an existing
netdev this can be done using the SIOCETHTOOL ioctl.
Let manager.c signal to wiphy.c when the wiphy parsing from the genl
messages is complete. When we query for existing wiphy using the
GET_WIPHY dump command we get many genl messages per wiphy, on a
notification we only get one message. So after wiphy_create there may
be one or many calls to wiphy_update_from_genl. wiphy_create_complete
is called after all of them, so wiphy.c can be sure it's done with
parsing the wiphy attributes when in prints the new wiphy summary log
message, like it did before manager.c was added.
I had wrongly assumed that all the important wiphy attributes were in
the first message in the dump, but NL80211_ATTR_EXT_FEATURES was not and
wasn't being parsed which was breaking at least testRSSIAgent.
wiphy_select_akm needed to be updated to take a flag, which can be
set to true if there are known reauth keys for this connection. If
we have reauth keys, and FILS is available we will choose it.
Add wiphy_create, wiphy_update_from_genl and wiphy_destroy that together
will let a new file command the wiphy creation, updates and deletion
with the same functionality the current config notification handler
implements in wiphy.c.
As mentioned in code comments the name is NUL-terminated so there's no
need to return the length path, which was ignored in some occasions
anyway. Consistently treat it as NUL-terminated but also validate.
wiphy_select_akm will now check if BIP is supported, and if MFPR is
set in the scan_bss before returning either SAE AKMs. This will allow
fallback to another PSK AKM (e.g. hybrid APs) if any of the requirements
are not met.
Also add a mask parameter to wiphy_get_supported_iftypes to make sure
the SupportedModes property only contains the values that can be used
as Device.Mode.
dbus_iftype_to_string returns NULL for unknown iftypes, the strdup will
also return NULL and ret[i] will be assigned a NULL. As a result
the l_strjoinv will not print the known iftypes that might have come
after that and will the l_strfreev will leak the strduped strings.
This is a replacement for station's static select_akm_suite. This was
done because wiphy can make a much more intellegent decision about the
akm suite by checking the wiphy supported features e.g. SAE support.
This allows a connection to hybrid WPA2/WPA3 AP's if SAE is not
supported in the kernel.
DBus has certain rules on what constitutes a valid path. Since the
wiphy name is freeform, it is possible to set it such that the contents
do not contain a valid path.
We fall back to simply using the wiphy index as the path.
DBus strings must be valid utf8. The kernel only enforces that the
wiphy name is null terminated string. It does not validate or otherwise
check the contents in any way. Thus it is possible to have
non-printable or non-utf8 characters inside.
NL80211_CMD_SET_WIPHY can be used to set various attributes on the wiphy
object in the kernel. This includes ATTR_WIPHY_NAME among others. iwd
currently does not parse or store any of the other attributes, so we
react to changes in WIPHY_NAME only.
The wiphy attribute should never be repeated by the kernel, so this
check is ultimately not needed. This condition can also be easily
checked by looking at the iwmon output in case things do go terribly
wrong.