This implements very initial support of WPS PIN based connections. The
scanning logic attempts to find an AP in PIN mode and tries to connect
to that AP. We currently do not try multiple APs if available or
implement the WSC 1.0 connection logic.
Right now the code checks for is_rsn to wait for the 4-way handshake and
sends the NETDEV_EVENT_4WAY_HANDSHAKE. However, is_rsn condition is not
true for WSC connections since they do not set an RSN field. Still,
they are EAP based handshakes and should be treated in the same manner.
We relax the is_rsn check to instead check for netdev->sm. Currently
netdev->sm is only non-NULL if handshake->own_ie field is not NULL or in
the case of eap-wsc connections.
Define minimum delay between roam attempts and add automatic retries.
This handles a few situations:
* roam attempt failing, then RSSI going above the threshold and below
again -- in that case we don't want to reattempt too soon, we'll only
reattempt after 60s.
* roam attempt failing then RSSI staying low for longer than 60 -- in
that case we want to reattempt after 60s too.
* signal being low from the moment we connected -- in that case we also
want to attempt a roam every some time.
Fix a leak of the MDE buffer. It is now only needed for the single call
to handshake_state_set_mde which copies the bytes anyway so use a buffer
on stack.
Since caab23f192085e6c8e47c41fc1ae9f795d1cbe86 hostapd is going to set
this bit to zero for RSN networks but both values will obviously be in
use. Only check the value if is_wpa is true - in this case check the
value is exactly 16, see hostapd commit:
commit caab23f192085e6c8e47c41fc1ae9f795d1cbe86
Author: Jouni Malinen <j@w1.fi>
Date: Sun Feb 5 13:52:43 2017 +0200
Set EAPOL-Key Key Length field to 0 for group message 1/2 in RSN
P802.11i/D3.0 described the Key Length as having value 16 for the group
key handshake. However, this was changed to 0 in the published IEEE Std
802.11i-2004 amendment (and still remains 0 in the current standard IEEE
Std 802.11-2016). We need to maintain the non-zero value for WPA (v1)
cases, but the RSN case can be changed to 0 to be closer to the current
standard.
Add sr NULL check before accessing sr->id. Call scan_request_free on
request structure and call the destroy callback. Cancel the netlink
TRIGGER_SCAN command if still running and try starting the next scan
in the queue. It'll probably still fail with EBUSY but it'll be
reattempted later.
Always call start_next_scan_request when a scan request has finished,
with a success or a failure, including a periodic scan attempt. Inside
that function check if there's any work to be done, either for one-off
scan requests or periodic scan, instead of having this check only inside
get_scan_done. Call start_next_scan_request in scan_periodic_start and
scan_periodic_timeout.
Also call the trigger callback with an error code when sending the
netlink command fails after the scan request has been queued because
another scan was in progress when the scan was requested.
Program received signal SIGSEGV, Segmentation fault.
0x0000000000419d38 in scan_done (msg=0x692580, userdata=0x688250)
at src/scan.c:250
250 sc->state = sr->passive ? SCAN_STATE_PASSIVE : SCAN_STATE_ACTIVE;
(gdb) bt
0 0x0000000000419d38 in scan_done (msg=0x692580, userdata=0x688250)
at src/scan.c:250
1 0x000000000043cac0 in process_unicast (genl=0x686d60, nlmsg=0x7fffffffc3b0)
at ell/genl.c:390
2 0x000000000043ceb0 in received_data (io=0x686e60, user_data=0x686d60)
at ell/genl.c:506
3 0x000000000043967d in io_callback (fd=6, events=1, user_data=0x686e60)
at ell/io.c:120
4 0x000000000043824d in l_main_run () at ell/main.c:381
5 0x000000000040303c in main (argc=1, argv=0x7fffffffe668) at src/main.c:259
The reasoning is that the logic inside scan_common is reversed. Instead
of freeing the scan request on error, we always do it. This causes the
trigger_scan callback to receive invalid userdata.
Save the ids of the netlink trigger scan commands that we send and
cancel them in scan_ifindex_remove to fix a race leading to a
segfault. The segfault would happen every time if scan_ifindex_remove
was called in the same main loop iteration in which we sent the
command, on shutdown:
^CTerminate
src/netdev.c:netdev_free() Freeing netdev wlan3[6]
src/device.c:device_disassociated() 6
src/device.c:device_enter_state() Old State: connected, new state:
disconnected
src/device.c:device_enter_state() Old State: disconnected, new state:
autoconnect
src/scan.c:scan_periodic_start() Starting periodic scan for ifindex: 6
src/device.c:device_free()
src/device.c:bss_free() Freeing BSS 02:00:00:00:00:00
src/device.c:bss_free() Freeing BSS 02:00:00:00:01:00
Removing scan context for ifindex: 6
src/scan.c:scan_context_free() sc: 0x5555557ca290
src/scan.c:scan_notify() Scan notification 33
src/netdev.c:netdev_operstate_down_cb() netdev: 6, success: 1
src/scan.c:scan_periodic_done()
src/scan.c:scan_periodic_done() Periodic scan triggered for ifindex:
1434209520
Program received signal SIGSEGV, Segmentation fault.
0x0000000000000064 in ?? ()
(gdb) bt
#0 0x0000000000000064 in ?? ()
#1 0x0000555555583560 in process_unicast (nlmsg=0x7fffffffc1a0,
genl=0x5555557c1d60) at ell/genl.c:390
#2 received_data (io=<optimized out>, user_data=0x5555557c1d60)
at ell/genl.c:506
#3 0x0000555555580d45 in io_callback (fd=<optimized out>,
events=1, user_data=0x5555557c1e60) at ell/io.c:120
#4 0x000055555558005f in l_main_run () at ell/main.c:381
#5 0x00005555555599c1 in main (argc=<optimized out>, argv=<optimized out>)
at src/main.c:259
Parse the contents of the GTK and IGTK subelements in an FT IE instead
of working with buffers containing the whole subelement. Some more
validation of the subelement contents. Drop support for GTK / IGTK when
building the FTE (unused).
Don't start the handshake timeout in eapol_start if either
handshake->ptk_complete is set (handshake already done) or
handshake->have_snonce is set (steps 1&2 done). This accounts for
eapol_start being called after a Fast Transition when a 4-Way handshake
is not expected.
Add a flush flag to scan_parameters to tell the kernel to flush the
cache of scan results before the new scan. Use this flag in the
active scan during roaming.
Split the igtk parameter to handshake_state_install_igtk into one
parameter for the actual IGTK buffer and one for the IPN buffer instead
of requiring the caller to have them both in one continuous buffer.
With FT protocol, one is received encrypted and the other in plain text.
Make sure that the Neighbor Report timeout is cancelled when connection
breaks or device is being destroyed, and call the callback. Add an
errno parameter to the callback to indicate the cause.