Save the source frame type in struct scan_bss as it may affect how some
of the data in the struct will be parsed. Also replace the P2P IE
payload data in that struct with a union containing pre-parsed p2p
attributes corresponding to the frame type.
This means users don't have to call the parsers in p2putil.c on that
data, which wouldn't have worked anyway because those parsers assume
input is the raw IE sequence rather than just the "payload".
All these functions free up the resources used by the struct but don't
free the struct itself (allowing it to be static) so rename the
functions to avoid confusion.
The kernel sends NL80211_ATTR_SCAN_START_TIME_TSF with CMD_TRIGGER and
RRM requires this value for beacon measurement reports.
The start time is parsed during CMD_TRIGGER and set into the scan request.
A getter was added to obtain this time value for an already triggered
scan.
After making the change, the SCAN_ABORTED case was cleaned up a bit to
remove the local scan_request usage in favor of the one used for all the
other cases.
Create and destroy the device state struct and the DBus interfaces in a
way more similar to the Station, AdHoc and AP interfaces. Drop
netdev_get_device() and the device specific code in netdev that as far
as I can tell wasn't needed.
Check the iftype before registering ANQP on new interface.
Not that the check here and in rrm.c (which already checks the iftype)
may need to be extended to run on NETDEV_WATCH_EVENT_UP because a device
could be created with a different iftype and then have the iftype changed
before powering up.
The RCPI value was using floating point values as per the spec. But instead
we can just use the signal strength coming from the kernel in mili mdm and
scale the hard coded values by a factor of 100.
Beacon requests can specify a scan duration, and set a flag which makes
this duration mandatory. The kernel supports both these values for scan
requests so we no longer need to reject requests which contain these.
Drivers which do not support EXT_FEATURE_SET_SCAN_DWELL will ignore the
duration value, but if duration mandatory is set we must reject the
request.
The kernel allows a scan duration and duration mandatory flag to be
set in scan requests. RRM requests can contain these values so they
have been added to scan_parameters.
Scanning with drivers which do not support EXT_FEATURE_SET_SCAN_DWELL
will not include these values in scan requests.
If a scan is requested during the middle of a connection we should
return busy instead of attempting the scan. The kernel ends up coming
back with not supported in this case, which is misleading and
difficult to debug.
The module framework was changed to call the module exit functions in
the reverse order as the init functions. This uncovered/caused known
networks to try and free the network_info structures after hotspot had
already freed them. Since known networks clean up the network_info's
anyways, we don't actually need hotspot to do any cleanup.
Apparently the intention was for the dependent module's name to appear
in the variable name resulting from using IWD_MODULE_DEPENDS, so the
dependencies all have unique names (apparently not critical).
Despite that PEAPv0 spec indicates that TLS tunnel needs to be torn
down after the transmission of a secure Result response, some servers
treat this TLS close alert as a failure. This patch changes the above
behavior to explicitly torn the tunnel only in the case of
authentication failure and leave it open after the success.
The previous refactoring somehow changed the 'Settings' section name
into 'General'
Fixes: ac53239109 ("doc: Split network configuration description into separate manpage")
This module takes care of radio measurements which an AP can request.
There are many types of requests, and for now only beacon requests
are supported.
IWD will filter certain types of beacon requests that are NOT
supported:
- AP channel reports. Only single channel requests will be supported
- Autonomous measurements. Only direct requests will be supported.
IWD will not accept requets to trigger reports under certain
conditions (SNR/RSSI thresholds, etc.)
- Timed measurements. Only immediate measurements will be performed.
The accuracy for timed measurements cannot be reliably guaranteed
due to kernel scheduling/queues.
- Full reporting detail. The AP can request the STA return the full
set of IEs in a beacon. IWD does not currently save all IEs, plus
there is quite a bit of complexity involved as certain IEs get
truncated, and there are other length limitations.
There are other limitations not specific to beacon requests:
- IWD will support single measurement requests per report. Multiple
measurement request IEs can be included, but the reports will be
sent out separately.
- IWD will limit the number of requests it responds to in a given
amount of time. As it stands now this is hard coded to 2 requests
per second maximum. This will prevent DoS attacks.
- IWD will not accept any measurement requests from APs it is not
connected to, and will not accept any requests until connected.
For Radio Resource Management (RRM) we will need access to the currently
connected BSS as well as the last scan results in order to do certain
kinds of requested measurements.
netdev_connect can achieve the same effect as netdev_connect_wsc but is
more flexible as it allows us to supply additional association IEs. We
will need this capability to make P2P connections. This way we're also
moving the WSC-specific bits to wsc.c from the crowded netdev.c.
On EAP events, call the handshake_event handler with the new event type
HANDSHAKE_EVENT_EAP_NOTIFY isntead of the eapol_event callback.
This allows the handler to be set before calling
netdev_connect/netdev_connect_wsc. It's also in theory more type-safe
because we don't need the cast in netdev_connect_wsc anymore.
Convert the handshake event callback type to use variable argument
list to allow for more flexibility in event-specific arguments
passed to the callbacks.
Note the uint16_t reason code is promoted to an int when using variable
arguments so va_arg(args, int) has to be used.
no_cck_rates is set in the scan parameters generally to make sure
that the Probe Request frames are not sent at any of the 802.11b
rates during active scans. With this patch we also omit those rates
from the Supported Rates IEs, which is required by the p2p spec and
also matches our flag's name.
The current logic did not make sure that each entry provided was
actually parsed. Also add a sanity check to make sure that no duplicate
parsing occurs.
When updating the network ranking there was a potential out of bounds
array access. The condition was if known_network_offset returned a
negative value, indicating the known network was not found. Since
network->info is only set for known networks this should not ever
happen as network->info is checked prior.
Though this is likely impossible, knownnetworks is complex enough that
its better to just be paranoid and put an L_WARN_ON to check the
return.
Since the property Autoconnect was renamed to AutoConnect, change the
Autoconnect setting to match.
For now we still allow the legacy name to be used here, but a warning is
printed to remind users to update.
Relax the pre-check for local user certificate. Before we used to check
that the CA provided (if any) was used to verify both the peer identity
and the local certificate chain. However, there seem to be networks
that use different CAs to sign AP/Radius certificates and certificates
issued to users.
Drop the ca_certs argument from l_certchain_verify, but keep the call
there to make sure the certificate chain is indeed a chain as a sanity
check.
The commit/confirm processing was incorrectly subtracting 2 from
the length when they should be subtracting 6. As with the other
similar change, the length is validated with mpdu_validate so
subtracting 6 will not cause an overflow.
This function was returning a boolean and the expected return was
a signed integer. Since this function actually returned false in
all cases the check for a success (0) return always worked.
The comment about the 'standard code path' was removed as this is
no longer valid.
If an authentication frame of length <= 5 is sent sae will overflow an
integer. The original cause of this was due to incorrectly using the
sizeof(struct mmpdu_header). The header can be either 24 or 28 bytes
depending on fc.order. sizeof does not account for this so 28 is always
the calculated length.
This, in addition to hostapd not including a group number when rejecting,
cause this erroneous length calculation to be worked around as seen in
the removed comment. The comment is still valid (and described again
in another location) but the actual check for len == 4 is not correct.
To fix this we now rely on mpdu_validate to check that the authentication
frame is valid, and then subtract the actual header length using
mmpdu_header_len rather than sizeof. Doing this lets us also remove the
length check since it was validated previously.
A recent change checked the return value of ie_parse_rsne_from_data
inside the ptk 1/4 handler. This seemed safe, but actually caused
the eapol unit test to fail.
The reason was because eapol was parsing the IEs assuming they were
an RSN, when they could be a WPA IE (WPA1 not WPA2). The WPA case
does not end up using the rsn_info at all, so having rsn_info
uninitialized did not pose a problem. After adding the return value
check it was found this fails every time for WPA1.
Since the rsn_info is not needed for WPA1 we can only do the RSN
parse for WPA2 and leave rsn_info uninitialized.
The intent here was to validate that the frequency is a multiple of 5
and lies in a certain range. Somehow the channel was checked for being
a multiple of 5 instead.
The logic here intended to check whether all required attributes were
available. However, it set the parse_error to true instead of
have_required to false as intended.
Replace uses of strcpy by the safer l_strlcpy. Note that both of these
functions can only be called with a buffer of max 253 bytes (the
identity string), so this is purely a precautionary measure.
Technically there's no problem here as l_queue_remove does not
dereference the pointer. Still, it confuses certain static analysis
tools in the current form. Reordering this will not change the behavior
at all.
This was refactored to set the mtu via __eap_set_config rather than
passing the MTU into eap_init. This makes eap work in a similar fashion
as eapol (i.e. __eapol_set_config).
If __eap_set_config is not used, the MTU will be set to 1020, which is
the same as previously passing 0 to eap_init.
Since iwd_modules_init is now defered until nl80211_appeared, we can
assume the nl80211 object is available. This removes the need for
netdev_set_nl80211 completely.
In preparation for integrating IWD_MODULE into modules which require
nl80211 we move the module init into the nl80211_appeared callback.
This will guarentee that the nl80211 is available during module init
and allow modules to get their own copy of nl80211 rather than needing
a set function (e.g. netdev_set_nl80211).
Since the dbus name request callback happens before this as well any
dbus module can also use IWD_MODULE and simply assume the dbus object
is ready.
plugin_init was also deferred to nl80211_appeared since some plugins
depend on modules being initialized.
Converts agent into an IWD module. This removes the dbus dependency
on agent. Since dbus is initialized very early we can assume
dbus_get_bus is going to return a valid object.
Previously, station state 'connected' used to identify an interface associated
with AP. With the introduction of netconfig, an interface is assumed to be
connected after the IP addresses have been assigned to it. If netconfig is
disabled, the behavior remains unchanged.
Refactoring was required to allow for embedded certs. The existing
eap_tls_state object was changed to hold the cert types (l_queue,
l_certchain, l_key) rather than the file path, since there may not
actually be separate PEM files.
Care was taken to properly manage the memory of these objects.
Since the TLS object takes ownership when setting auth data or the
CA certs all error cases must be handled properly to free these
objects after they are loaded and in addition they must be set to
NULL so that the cleanup doesn't double free them.
If everything goes to plan, we load all the PEMs in settings_load,
provide these objects to the TLS APIs, and then NULL out the
pointers (TLS now owns this memory). If anything fails between
settings_load and l_tls_start we must free these objects.
A special format must be used to indicate that a PEM is embedded
inside the settings file. First, the l_settings format should be
followed for the PEM itself, e.g.
[@pem@my_ca_cert]
<CA Cert data>
This PEM can then be referenced by "embed:my_ca_cert", e.g.
EAP-TLS-CACert=embed:my_ca_cert
Any other value not starting with "embed:" will be treated as a file
path.
The IPv6 default route needs to be explicitly revoked. Unlike in IPv4,
there is no SRC address associated with the route and it will not be
removed on address removal.
The network configuration options for IPv6 are grouped under [IPv6]
and include the following:
ip= ADDRESS/PREFIX
gateway=ADDRESS
dns=ADDRESS
The placeholders for DHCPv6 are placed along the way and marked
as TODO items.
Previously, netconfig_ipv4_select_and_install was used to install
addresses on initial connection to a network and after we have roamed.
Now for the after roaming connection scenario we have
netconfig_reconfigure. Remove roaming related code from
netconfig_ipv4_select_and_install
As part of the de-coupling from station object, switch all of
the network settings inquiries to use active_settings. active_settings
are set with netconfig_configure by the owner of netconfig object
and removed with netconfig_reset once network disconnects.
Instead of relying on station state changed signal, netconfig
introduces three new API calls to configure, re-configure and
reset the network configurations. The owner of netconfig object
is responsible for initiating the re-configuration of the device
depending on its state.
As a first step to enable the usage of netconfig in ead and
prospective transition to be a part of ell, the public API for
creation and destruction of the netconfig objects has been
renamed and changed. Instead of hiding the netconfig objects inside
of netconfig module, the object is now passed back to the caller.
The internal queue of netconfig objects remains untouched, due
to limitations in ell’s implementation of rtnl. After the proper
changes are done to ell, netconfig_list is expected to be removed
from netconfig module.
A NEW_WIPHY event may not always contain all the information about a
given phy, but GET_WIPHY will. In order to get everything we must
mimic the behavior done during initalization and dump both wiphy
and interfaces when a NEW_WIPHY comes in.
Now, any NEW_WIPHY event will initialize a wiphy, but then do a
GET_WIPHY/GET_INTERFACE to obtain all the information. Because of
this we can ignore any NEW_INTERFACE notifications since we are
dumping the interface anyways.
Once some kernel changes get merged we wont need to do this anymore
so long as the 'full' NEW_WIPHY feature is supported.