The test-runner logging is very basic and just dumps everything into files
per-test. This means any subtests are just appended to existing log files
which can be difficult to parse after the fact. This is especially hard
when IWD/Hostapd runs once for the entirety of the test (as opposed to
killing between tests).
This patch writes out a separator between each subtests in the form:
===== <file>:<function> =====
To do this all processes are now kept as weak references inside the
Process class itself. Process.write_separators() can be called which
will iterate through all running processes and write the provided
separator.
This also paves the way to remove the ctx.processes array which is more
trouble than its worth due to reference issues.
Note: For tests which start IWD this will have no effect as the separator
is written prior to the test running. For these tests though, it is
much easier to read the log files because you can clearly see when
IWD starts and exits.
Processes which were not explicitly killed ended up staying around
forever because they internally held references to other objects
such as GLib IO watches or write FDs.
This shuffles some code so these objects get cleaned up both when
explititly killed and after being waited for.
This was a placeholder at one point but modules grew to depend on it
being a string. Fix these dependencies and set the root namespace
name to None so there is no more special case needed to handle both
a named namespace and the original 'root' namespace.
In netconfig_load_settings apply the DNS overrides strings we've loaded
instead of leaking them.
Fixes: ad228461ab ("netconfig: Move loading settings to new method, refactor")
With various versions of wpa_supplicant tested, after an IWD GO tears
the group down, the wpa_supplicant P2P client will not immediately
signal that the group has disappeared but will at least wait for the
lost beacon signal, wait some more and try reconnecting and all that
takes it 10s or a little longer. Possibly sending Deauthenticate frames
to clients first would improve this.
netdev now assumes the SSID was set in the handshake (normally via
network_handshake_setup) but WSC calls netdev_connect directly so
it also should set the SSID.
In order to support OWE in the CMD_CONNECT path the scan_bss parameter
needs to be removed since this is lost after netdev_connect returns.
Nearly everything needed is also stored in the handshake except the
privacy capability which is now being mirrored in the netdev object
itself.
Check whether verbose output is enabled for process name arg[0] before
prepending the "ip netns exec" part to arg since arg[0] is going to be
"ip" after that.
Use the MAC addresses for the gateways and DNS servers received in the
FILS IP Assigment IE together with the gateway IP and DNS server IP.
Commit the IP to MAC mappings directly to the ARP/NDP tables so that the
network stack can skip sending the corresponding queries over the air.
Send and receive the FILS IP Address Assignment IEs during association.
As implemented this would work independently of FILS although the only
AP software handling this mechanism without FILS is likely IWD itself.
No support is added for handling the IP assignment information sent from
the server after the initial Association Request/Response frames, i.e.
the information is only used if it is received directly in the
Association Response without the "response pending" bit, otherwise the
DHCP client will be started.
Add two methods that will allow station to implement FILS IP Address
Assigment, one method to decide whether to send the request during
association, and fill in the values to be used in the request IE, and
another to handle the response IE values received from the server and
apply them. The netconfig->rtm_protocol value used when the address is
assigned this way remains RTPROT_DHCP because from the user's point of
view this is automatic IP assigment by the server, a replacement for
DHCP.
Split loading settings out of network_configure into a new method,
network_load_settings. Make sure both consistently handle errors by
printing messages and informing the caller.
These modules only needed to be imported a single time for the entire
run of tests. This is significantly cheaper in terms of memory and
should prevent random OOM exceptions.
The Procss class was doing quite a bit of what Popen already does like
storing the return code and process arguments. In addition the Process
class ended up storing a Popen object which was frequently accessed.
For both simplicity and memory savings have Process inherit Popen and
add the additional functionality test-runner needs like stdout
processing to output files and the console.
To do this Popen.wait() needed to be overridden to to prevent blocking
as well as wait for the HUP signal so we are sure all the process
output was written. kill() was also overritten to perform cleanup.
The most intrusive change was removing wait as a kwarg, and instead
requiring the caller to call wait(). This doesn't change much in
terms of complexity to the caller, but simplifies the __init__
routine of Process.
Some convenient improvements:
- Separate multiple process instance output (Terminate: <args> will
be written to outfiles each time a process dies.)
- Append to outfile if the same process is started again
- Wait for HUP before returning from wait(). This allows any remaining
output to be written without the need to manually call process_io.
- Store ctx as a class variable so callers don't need to pass it in
(e.g. when using Process directly rather than start_process)
Setter which forces the use of group 19 rather than the group order
that ELL provides. Certain APs have been found to have buggy group
negotiation and only work if group 19 is tried first, and only. When
an AP like this this is found (based on vendor OUI match) SAE will
use group 19 unconditionally, and fail if group 19 does not work.
Other groups could be tried upon failure but per the spec group 19
must be supported so there isn't much use in trying other, optional
groups.
mac80211_hwsim has a funny quirk with multiple addresses in
radios. Some operations require address index zero, some index
one. And these addresses (possibly a result of how test-runner
initializes radios) sometimes get mixed up. For example scan
results may show a BSS address as 02:00:00:00:00:00, while the
next test run shows 42:00:00:00:00:00.
Ultimately, sending out frames requires the first nibble of the
address to be 0x4 so to handle both variants of addresses described
above hwsim.py was updated to always bitwise OR the first byte
with 0x40.
Handle the 802.11ai FILS IP Address Assignment IEs in Association
Request frames when netconfig is enabled. Only IPv4 is supported.
Like the P2P IP Allocation mechanism, since the payload format and logic
is independent from the rest of the FILS standard this is enabled
unconditionally for clients who want to use it even though we don't
actually do FILS in AP mode.
If netconfig is enabled tell the DHCP server to expire any leases owned
by the client that is disconnecting by using l_dhcp_server_expire_by_mac
to return the IPs to the IP pool. They're added to the expired list
so they'd only be used if there are no other addresses left in the pool
and can be reactivated if the client comes back before the address is
used by somebody else.
This should ensure that we're always able to offer an address to a new
client as long as there are fewer concurrent clients than addresses in
the configured subnet or IP range.
Use the struct handshake_state::support_ip_allocation field already
supported in eapol.c authenticator side to enable the P2P IP Allocation
mechanism in ap.c. Add the P2P_GROUP_CAP_IP_ALLOCATION bit in P2P group
capabilities to signal the feature is now supported.
There's no harm in enabling this feature in every AP (not just P2P Group
Owner) but the clients won't know whether we support it other than
through that P2P-specific group capability bit.
Add a handshake event for use by the AP side for mechanisms that
allocate client IPs during the handshake: P2P address allocation and
FILS address assignment. This is emitted only when EAPOL or the
auth_proto is actually about to send the network configuration data to
the client so that ap.c can skip allocating a DHCP leases altogether if
the client doesn't send the required KDE or IE.
This test was failing due to a change introduced in commit
5c9de0cf23 which changed handshake state storage of IPs from host
order to network byte order. Update the test to set IPs in network
byte-order.
Fixes: 5c9de0cf23 ("eapol: Store IP address in network byte order")