Isolate the known_frequency queue management to a function and place
that function in knownnetworks.c where it now belongs. Since we no
longer have network_info objects for unknown networks, only frequencies
for known networks are tracked
networks queue was intended to share basic network information between
multiple adapters running simultaneously. The network_info object was
also serving double duty to carry known network information. This made
things overly complicated and really didn't result in much savings.
This setup also made managing hotspot networks challenging as we would
have ended up with multiple network_info objects for each known hotspot
network.
So get rid of the networks queue and the is_known bit from the
network_info structure.
network_find_rank_index was used to find the offset of the selected
network_info among known networks so as to compute a modifier based on
the rankmod table. Instead of using known_networks_foreach for this,
moove it to knownnetworks.c where it can be coded and optimized
separately.
For now provide a simple for loop implementation.
Previously, the option PrivateDevices=true disabled access to
/dev/rfkill, which lead to:
'iwctl adapter phy0 set-property Powered {off|on}'
to fail.
This patch explicitly allows access to /dev/rfkill
src/rtnlutil.c: In function ‘rtnl_route_add’:
./ell/util.h:248:2: error: ‘rtmmsg’ may be used uninitialized in
this function [-Werror=maybe-uninitialized]
Instead of using a flag ipv4_static, just store the value of the rtm
protocol directly inside netconfig object. This allows us to simplify
the logic quite significantly and avoid repeating the conditional
expression needlessly
The routes are installed as a result of a successful installation
of the IP addresses. The gateway is fetched with netconfig_ipv4_get_gateway
helper function according to the origin of the installed IP address.
The route priority offset can be set in main.conf. The default value
of 300 is used if the offset isn’t set.
The API allows to add connected and gateway routes to the main
routing table.
rtnl_route_ipv4_add_gateway() is equivalent to the following
example 'ip route' command:
ip route add default via 10.0.0.1 dev wlan0 proto dhcp src 10.0.0.2 metric 339
rtnl_route_ipv4_add_connected() is equivalent to the following
example 'ip route' command:
sudo ip route add 10.0.0.0/24 dev wlan0 proto dhcp src 10.0.0.2 scope link
The 'ip route' output from the above commands looks as follows:
rtnl_route_ipv4_add_connected():
10.0.0.0/24 dev wlan0 proto dhcp scope link src 10.0.0.2
rtnl_route_ipv4_add_gateway():
default via 10.0.0.1 dev wlan0 proto dhcp src 10.0.0.2 metric 339
The DNS addresses are installed as a result of a successful
installation of the IP addresses. The DNS lists are fetched
with netconfig_ipv4_get_dns helper function according to the
origin of the installed IP address.
iwd reconfigures the wireless interfaces with respective
connection events. Each supported network protocol is
reconfigured. The address for each protocol is
selected as static or dynamic based on availability.
netconfig_ipv4_get_ifaddr helper function allows to fetch IPv4
addresses from static or dynamic sources. The origin of the addresses
is noted in 'ipv4_is_static' flag.
For (Re)Association the HS20 indication element was passed exactly as
it was found in the scan results. The spec defines what bits can be
set and what cannot when this IE is used in (Re)Association. Instead
of assuming the AP's IE conforms to the spec, we now parse the IE and
re-build it for use with (Re)Association.
Since the full IE is no longer used, it was removed from scan_bss, and
replaced with a bit for HS20 support (hs20_capable). This member is
now used the same as hs20_ie was.
The version parsed during scan results is now used when building the
(Re)Association IE.
The parser fully parses the IE and returns the version, Domain ID,
and PPS MO ID. This is meant to be used with an IE in scan results.
The builder only takes the version number, and assumes DGAF disabled,
and no Domain ID or PPS MO ID.
Previously, iwd used to throw net.connman.iwd.Busy when connection
attempt was made while connected. The new behavior allows iwd to
seamlessly disconnect from the connected network and attempt a new
connection.
Since NAI realms, Roaming Consortium and HESSID are defined in 802.11,
they are not a guarentee that the network is Hotspot 2.0. The indication
element in addition to these IE's gives a better idea of Hotspot 2.0
support. Now, when a BSS is added this is_hs20 boolean will get set to
true if the HS20 IE was found in the BSS.
Now, if is_hs20 is set AND one of NAI realms, roaming consortium, or
HESSID is set we know this is a hotspot 2.0 network.
It is possible for a zero-length anti-clogging token payload to cause
IWD to abort. If the length passed into sae_process_anti_clogging was
1, l_memdup would be called with a size of -1. This will cause malloc
to abort.
Fix this by checking for a minimum packet length and dropping the
packet if the length is too small.
The HS20 indication element should always be included during
(Re)Association per the spec. This removes the need for a
dedicated boolean, and now the hs20_ie can be used instead.
The hotspot spec specifically mentions the roaming consortium OI be
3 or 5 bytes long. This requirement also prevents potential buffer
overflows if the user were to configure a long roaming consortium OI.
If the scan was triggered and later aborted, make sure to reset the
triggered value when the CMD_NEW_SCAN_RESULTS event comes in.
src/station.c:station_enter_state() Old State: disconnected, new state: connecting
src/scan.c:scan_notify() Scan notification 33
src/station.c:station_netdev_event() Associating
src/scan.c:scan_notify() Scan notification 34
Aborting (signal 11) [/home/denkenz/iwd-master/src/iwd]
++++++++ backtrace ++++++++
#0 0x7efd4d6a2ef0 in /lib64/libc.so.6
#1 0x42b20d in scan_notify() at src/scan.c:1383
In the same fashion as the WSC WFA OUI, ie.[ch] will now expose the
other vendor OUIs to avoid duplication across multiple files in IWD
as well as used in iwmon.
P2P probe requests are to be sent at min 6.0 Mb/s using OFDM,
specifically the 802.11b rates are prohibited (section 2.4.1 in Wi-Fi
P2p Technical Spec v1.7), some of which use CCK modulation. This is
already the default for 5G but for 2.4G the drivers generally do this
if we set the NL80211_ATTR_TX_NO_CCK_RATE flags with
NL80211_CMD_TRIGGER_SCAN.
The length check was incorrectly assuming that PPS MO ID or
ANQP Domain ID would be present in the IE. Both these are optional
and without then the minimum length is 5 bytes, not 7.
Per the hotspot 2.0 spec, if a matching roaming consortium OI is
found it should be added to the (Re)Association request. vendor_ies
can now be provided to netdev_connect, which get appended to the IE
attribute.
This API will attempt to find a matching roaming consortium OI
if present in the config file. A single matching OI is returned
or NULL if one was not found.
Hotspot 2.0 network providers allow 'roaming' between a users home
network and other providers networks, assuming they are part of the
same roaming consortium. The roaming consortium is advertised as an
IE in beacon/probe frames.
In terms of the hotspot config files this is similar to HESSID, where
if the AP advertises the roaming consortium IE, and the config file
matches we do not need to do ANQP in order to connect.
This is duplicated when the first scan_bss is added to a network
object that contains the IE. Any future BSS's added will not re-add
the IE. Its assumed that all BSS's under a network will contain the
same roaming consortium OIs.
Parses up to 3 (the max) roaming consortium OIs out of the roaming
consortium IE. If more OIs are available via ANQP the 'num_anqp_out'
value will be set to indicate how many more OIs are available.
Builds according to the hotspot 2.0 spec using the vendor specific
IE.
Declare structures to hold the parsed contents of the P2P IEs and WSC
IEs in P2P-related frames and add functions to free memory used by
those structures.
Define structs and types for most P2P attributes and p2p_parse_attrs
similar to wsc_parse_attrs -- a generic parser for attributes in a P2P
IE payload. This parser may write into the provided buffer even on
error but it's private to p2putil.c. The local callers will take care
of keeping the user-provided buffers untouched on error.
Add a utility for building the simplified WSC IEs used in P2P action
frames and public action frames. Only three types of WSC attributes are
mandatory in those frames (but different subsets are needed by different
frame types) so add a single utility for building those IEs. We may
need to add some more optional attributes to those IEs later.
The ifindex is used to index the netdevs in the system (wlan, ethernet,
etc.) but we can also do wifi scanning on interfaces that have no
corresponding netdev object, like the P2P-device virtual interfaces.
Use the wdev id's to reference interfaces, the nl80211 api doesn't care
whether we use a NL80211_ATTR_IFINDEX or NL80211_ATTR_WDEV. Only
wireless interfaces have a wdev id.
Save the actual cmd_id returned from l_genl_family_dump and zero it in
the get_scan_done. There's no need to zero it in scan_cancel because
get_scan_done gets called automatically.