ECDH was expecting the private key in LE, but the public key in BE byte ordering.
For consistency the ECDH now expect all inputs in LE byte ordering. It is up to
the caller to order the bytes appropriately.
This required adding some ecc_native2be/be2native calls in OWE
The changes to station.c are minor. Specifically,
station_build_handshake_rsn was modified to always build up the RSN
information, not just for SECURITY_8021X and SECURITY_PSK. This is
because OWE needs this RSN information, even though it is still
SECURITY_NONE. Since "regular" open networks don't need this, a check
was added (security == NONE && akm != OWE) which skips the RSN
building.
netdev.c needed to be changed in nearly the same manor as it was for
SAE. When connecting, we check if the AKM is for OWE, and if so create
a new OWE SM and start it. OWE handles all the ECDH, and netdev handles
sending CMD_AUTHENTICATE and CMD_ASSOCIATE when triggered by OWE. The
incoming authenticate/associate events just get forwarded to OWE as they
do with SAE.
This module is similar to SAE in that it communicates over authenticate
and associate frames. Creating a new OWE SM requires registering two TX
functions that handle sending the data out over CMD_AUTHENTICATE/ASSOCIATE,
as well as a complete function.
Once ready, calling owe_start will kick off the OWE process, first by
sending out an authenticate frame. There is nothing special here, since
OWE is done over the associate request/response.
After the authenticate response comes in OWE will send out the associate
frame which includes the ECDH public key, and then receive the AP's
public key via the associate response. From here OWE will use ECDH to
compute the shared secret, and the PMK/PMKID. Both are set into the
handshake object.
Assuming the PMK/PMKID are successfully computed the OWE complete callback
will trigger, meaning the 4-way handshake can begin using the PMK/PMKID
that were set in the handshake object.
The RFC (5869) for this implementation defines two functions,
HKDF-Extract and HKDF-Expand. The existing 'hkdf_256' was implementing
the Extract function, so it was renamed appropriately. The name was
changed for consistency when the Expand function will be added in the
future.
In the current version SECURITY_PSK was handled inside the is_rsn block
while the SECURITY_8021X was off in its own block. This was weird and a
bit misleading. Simplify the code flow through the use of a goto and
decrease the nesting level.
Also optimize out unnecessary use of scan_bss_get_rsn_info
In network_autoconnect, when the network was SECURITY_8021X there was no
check (for SECURITY_PSK) before calling network_load_psk. Since the
provisioning file was for an 8021x network neither PreSharedKey or
Passphrase existed so this would always fail. This fixes the 8021x failure
in testConnectAutoconnect.
During the handshake setup, if security != SECURITY_PSK then 8021x settings
would get set in the handshake object. This didn't appear to break anything
(e.g. Open/WEP) but its better to explicitly check that we are setting up
an 8021x network.
Check for HAVE_EXECINFO_H for all __iwd_backtrace_init usages.
Fixes:
src/main.o: In function `main':
main.c:(.text.startup+0x798): undefined reference to `__iwd_backtrace_init'
collect2: error: ld returned 1 exit status
A sorted list of hidden network BSSs observed in the recent scan
is kept for the informational purposes of the clients. In addition,
it has deprecated the usage of seen_hidden_networks variable.
Refactor the network->psk and network->passphrase loading and saving
logic to not require the PreSharedKey entry in the psk config file and
to generate network->psk lazily on request. Still cache the computed
PSK in memory and in the .psk file to avoid recomputing it which uses
many syscalls. While there update the ask_psk variable to
ask_passphrase because we're specifically asking for the passphrase.
According to the specification, Supported rates IE is supposed
to have a maximum length of eight rate bytes. In the wild an
Access Point is found to add 12 bytes of data instead of placing
excess rate bytes in an Extended Rates IE.
BSS: len 480
BSSID 44:39:C4:XX:XX:XX
Probe Response: true
TSF: 0 (0x0000000000000000)
IEs: len 188
...
Supported rates:
1.0(B) 2.0(B) 5.5(B) 6.0(B) 9.0 11.0(B) 12.0(B) 18.0 Mbit/s
24.0(B) 36.0 48.0 54.0 Mbit/s
82 84 8b 8c 12 96 98 24 b0 48 60 6c .......$.H`l
DSSS parameter set: channel 3
03
...
Any following IEs decode nicely, thus it seems that we can relax
Supported Rates IE length handling to support this thermostat.
After moving AP EAPoL code into eapol.c there were a few functions that
no longer needed to be public API's. These were changed to static's and
the header definition was removed.
Set an upper limit on a fragmented EAP-TLS request size similar to how
we do it in EAP-TTLS. While there make the code more similar to the
EAP-TTLS flag processing to keep them closer in sync. Note that the
spec suggests a 64KB limit but it's not clear if that is for the TLS
record or EAP request although it takes into account the whole TLS
negotiation so it might be good for both.
Some of the TTLS server implementations set the L flag in the fragment
packets other than the first one. To stay interoperable with such devices,
iwd is relaxing the L bit check.
Switch EAP-MD5 to use the common password setting key nomenclature.
The key name has been changed from PREFIX-MD5-Secret to PREFIX-Password.
Note: The old key name is supported.
In addition, this patch adds an ability to request Identity and/or
Password from user.
Adhoc was not waiting for BOTH handshakes to complete before adding the
new peer to the ConnectedPeers property. Actually waiting for the gtk/igtk
(in a previous commit) helps with this, but adhoc also needed to keep track
of which handshakes had completed, and only add the peer once BOTH were done.
This required a small change in netdev, where we memcmp the addresses from
both handshakes and only set the PTK on one.
Currently, netdev triggers the HANDSHAKE_COMPLETE event after completing
the SET_STATION (after setting the pairwise key). Depending on the timing
this may happen before the GTK/IGTK are set which will result in group
traffic not working initially (the GTK/IGTK would still get set, but group
traffic would not work immediately after DBus said you were connected, this
mainly poses a problem with autotests).
In order to fix this, several flags were added in netdev_handshake_state:
ptk_installed, gtk_installed, igtk_installed, and completed. Each of these
flags are set true when their respective keys are set, and in each key
callback we try to trigger the handshake complete event (assuming all the
flags are true). Initially the gtk/igtk flags are set to true, for reasons
explained below.
In the WPA2 case, all the key setter functions are called sequentially from
eapol. With this change, the PTK is now set AFTER the gtk/igtk. This is
because the gtk/igtk are optional and only set if group traffic is allowed.
If the gtk/igtk are not used, we set the PTK and can immediately trigger the
handshake complete event (since gtk_installed/igtk_installed are initialized
as true). When the gtk/igtk are being set, we immediately set their flags to
false and wait for their callbacks in addition to the PTK callback. Doing it
this way handles both group traffic and non group traffic paths.
WPA1 throws a wrench into this since the group keys are obtained in a
separate handshake. For this case a new flag was added to the handshake_state,
'wait_for_gtk'. This allows netdev to set the PTK after the initial 4-way,
but still wait for the gtk/igtk setters to get called before triggering the
handshake complete event. As a precaution, netdev sets a timeout that will
trigger if the gtk/igtk setters are never called. In this case we can still
complete the connection, but print a warning that group traffic will not be
allowed.
==1628== Invalid read of size 1
==1628== at 0x405E71: hardware_rekey_cb (netdev.c:1381)
==1628== by 0x444E5B: process_unicast (genl.c:415)
==1628== by 0x444E5B: received_data (genl.c:534)
==1628== by 0x442032: io_callback (io.c:126)
==1628== by 0x4414CD: l_main_iterate (main.c:387)
==1628== by 0x44158B: l_main_run (main.c:434)
==1628== by 0x403775: main (main.c:489)
==1628== Address 0x5475208 is 312 bytes inside a block of size 320 free'd
==1628== at 0x4C2ED18: free (vg_replace_malloc.c:530)
==1628== by 0x43D94D: l_queue_clear (queue.c:107)
==1628== by 0x43D998: l_queue_destroy (queue.c:82)
==1628== by 0x40B431: netdev_shutdown (netdev.c:4765)
==1628== by 0x403B17: iwd_shutdown (main.c:81)
==1628== by 0x4419D2: signal_callback (signal.c:82)
==1628== by 0x4414CD: l_main_iterate (main.c:387)
==1628== by 0x44158B: l_main_run (main.c:434)
==1628== by 0x403775: main (main.c:489)
==1628== Block was alloc'd at
==1628== at 0x4C2DB6B: malloc (vg_replace_malloc.c:299)
==1628== by 0x43CA4D: l_malloc (util.c:62)
==1628== by 0x40A853: netdev_create_from_genl (netdev.c:4517)
==1628== by 0x444E5B: process_unicast (genl.c:415)
==1628== by 0x444E5B: received_data (genl.c:534)
==1628== by 0x442032: io_callback (io.c:126)
==1628== by 0x4414CD: l_main_iterate (main.c:387)
==1628== by 0x44158B: l_main_run (main.c:434)
==1628== by 0x403775: main (main.c:489)
Adhoc requires 2 GTK's to be set, a single TX GTK and a per-mac RX GTK.
The per-mac RX GTK already gets set via netdev_set_gtk. The single TX GTK
is created the same as AP, where, upon the first station connecting a GTK
is generated and set in the kernel. Then any subsequent stations use
GET_KEY to retrieve the GTK and set it in the handshake.
AdHoc will also need the same functionality to verify and parse the
key sequence from GET_KEY. This block of code was moved from AP's
GET_KEY callback into nl80211_parse_get_key_seq.
Netdev/AP share several NL80211 commands and each has their own
builder API's. These were moved into a common file nl80211_util.[ch].
A helper was added to AP for building NEW_STATION to make the associate
callback look cleaner (rather than manually building NEW_STATION).
Check that netdev->device is not NULL before doing device_remove()
(which would crash) and emitting NETDEV_WATCH_EVENT_DEL. It may be
NULL if the initial RTM_SETLINK has failed to bring device UP.
If there are Ad-hoc BSSes they should be present in the scan results
together with regular APs as far as scan.c is concerned. But in
station mode we can't connect to them -- the Connect method will fail and
autoconnect would fail. Since we have no property to indicate a
network is an IBSS just filter these results out for now. There are
perhaps better solutions but the benefit is very low.