802.11 mandates that IEs inside management frames are presented in a
given order. However, in the real world, many APs seem to ignore the
rules and send their IEs in seemingly arbitrary order, especially when
it comes to VENDOR tags. Change this function to no longer be strict in
enforcing the order.
Also, drop checking of rules specific to Probe Responses. These will
have to be handled separately (most likely by the AP module) since
802.11-2016, Section 11.1.4.3.5 essentially allows just about anything.
In netdev_associate_event the ignore_connect_event was getting set true,
but afterwards there were still potential failure paths. Now, once in
assoc_failed we explicitly set ignore_connect_event to false so the
the failure can be handled properly inside netdev_connect_event
The list of PSK/8021x AKM's in security_determine was getting long,
and difficult to keep under 80 characters. This moves them all into
two new macros, AKM_IS_PSK/AKM_IS_8021X.
It was assumed that the hunt-and-peck loop was guarenteed to find
a PWE. This was incorrect in terms of kernel support. If a system
does not have support for AF_ALG or runs out of file descriptors
the KDFs may fail. The loop continued to run if found == false,
which is also incorrect because we want to stop after 20 iterations
regarless of success.
This changes the loop to a for loop so it will always exit after
the set number of iterations.
CC src/scan.o
src/scan.c: In function ‘scan_bss_compute_rank’:
src/scan.c:1048:4: warning: this decimal constant is unsigned only in ISO C90
factor = factor * data_rate / 2340000000 +
The auto-connect state will now consist of the two phases:
STATION_STATE_AUTOCONNECT_QUICK and STATION_STATE_AUTOCONNECT_FULL.
The auto-connect will always start with STATION_STATE_AUTOCONNECT_QUICK
and then transition into STATION_STATE_AUTOCONNECT_FULL if no
connection has been established. During STATION_STATE_AUTOCONNECT_QUICK
phase we take advantage of the wireless scans with the limited number
of channels on which the known networks have been observed before.
This approach allows to shorten the time required for the network
sweeps, therefore decreases the connection latency if the connection
is possible. Thereafter, if no connection has been established after
the first phase we transition into STATION_STATE_AUTOCONNECT_FULL and
do the periodic scan just like we did before the split in
STATION_STATE_AUTOCONNECT state.
For simplicity 160Mhz and 80+80Mhz were grouped together when
parsing the VHT capabilities, but the 80+80 bits were left in
vht_widht_map. This could cause an overflow when getting the
width map.
The AdHoc methods used to miss the change in properties
on AdHoc interface. To address the race condition, we
subscribe 'PropertiesChanged' signal first and then do
GetAll properties call. This way we are not missing
'PropertiesChanged' signal in between these calls.
wiphy_select_akm will now check if BIP is supported, and if MFPR is
set in the scan_bss before returning either SAE AKMs. This will allow
fallback to another PSK AKM (e.g. hybrid APs) if any of the requirements
are not met.