ELL now has a setting to limit the number of DHCP attempts. This
will now be set in IWD and if reached will result in a failure
event, and in turn a disconnect.
IWD will set a maximum of 4 retries which should keep the maximum
DHCP time to ~60 seconds roughly.
The known frequency list is now a sorted list and the roam scan
results were not complying with this new requirement. The fix is
easy though since the iteration order of the scan results does
not matter (the roam candidates are inserted by rank). To fix
the known frequencies order we can simply reverse the scan results
list before iterating it.
When operating as an AP, drop message 4 of the 4-way handshake if the AP
has not yet received message 2. Otherwise an attacker can skip message 2
and immediately send message 4 to bypass authentication (the AP would be
using an all-zero ptk to verify the authenticity of message 4).
In very large network deployments there could be a vast amount of APs
which could create a large known frequency list after some time once
all the APs are seen in scan results. This then increases the quick
scan time significantly, in the very worst case (but unlikely) just
as long as a full scan.
To help with this support in knownnetworks was added to limit the
number of frequencies per network. Station will now only get 5
recent frequencies per network making the maximum frequencies 25
in the worst case (~2.5s scan).
The magic values are now defines, and the recent roam frequencies
was also changed to use this define as well.
In order to support an ordered list of known frequencies the list
should be in order of last seen BSS frequencies with the highest
ranked ones first. To accomplish this without adding a lot of
complexity the frequencies can be pushed into the list as long as
they are pushed in reverse rank order (lowest rank first, highest
last). This ensures that very high ranked BSS's will always get
superseded by subsequent scans if not seen.
This adds a new network API to update the known frequency list
based on the current newtork->bss_list. This assumes that station
always wipes the BSS list on scans and populates with only fresh
BSS entries. After the scan this API can be called and it will
reverse the list, then add each frequency.
I've had connections to a WPA3-Personal only network fail with no log
message from iwd, and eventually figured out to was because the driver
would've required using CMD_EXTERNAL_AUTH. With the added log messages
the reason becomes obvious.
Additionally the fallback may happen even if the user explicitly
configured WPA3 in NetworkManager, I believe a warning is appropriate
there.
There was an unhandled corner case if netconfig was running and
multiple roam conditions happened in sequence, all before netconfig
had completed. A single roam before netconfig was already handled
(23f0f5717c) but this did not take into account any additional roam
conditions.
If IWD is in this state, having started netconfig, then roamed, and
again restarted netconfig it is still in a roaming state which will
prevent any further roams. IWD will remain "stuck" on the current
BSS until netconfig completes or gets disconnected.
In addition the general state logic is wrong here. If IWD roams
prior to netconfig it should stay in a connecting state (from the
perspective of DBus).
To fix this a new internal station state was added (no changes to
the DBus API) to distinguish between a purely WiFi connecting state
(STATION_STATE_CONNECTING/AUTO) and netconfig
(STATION_STATE_NETCONFIG). This allows IWD roam as needed if
netconfig is still running. Also, some special handling was added so
the station state property remains in a "connected" state until
netconfig actually completes, regardless of roams.
For some background this scenario happens if the DHCP server goes
down for an extended period, e.g. if its being upgraded/serviced.
This gives the tests a lot more fine-tune control to wait for
specific state transitions rather than only what is exposed over
DBus.
The additional events for "ft-roam" and "reassoc-roam" were removed
since these are now covered by the more generic state change events
("ft-roaming" and "roaming" respectively).
Before this change DPP was writing the credentials both to disk
and into the network object directly. This allowed the connection
to work fine but additional settings were not picked up due to
network_set_passphrase/psk loading the settings before they were
written.
Instead DPP can avoid setting the credentials to the network
object entirely and just write them to disk. Then, wait for
known networks to notify that the profile was either created
or updated then DPP can proceed to connecting. network_autoconnect()
will take care of loading the profile that DPP wrote and remove the
need for DPP to touch the network object at all.
One thing to note is that an idle callback is still needed from
within the known networks callback. This is because a new profile
requires network.c to set the network_info which is done in the
known networks callback. Rather than assume that network.c will be
called into before dpp.c an l_idle was added.
If a known network is modified on disk known networks does not have
any way of notifying other modules. This will be needed to support a
corner case in DPP if a profile exists but is overwritten after DPP
configuration. Add this event to known networks and handle it in
network.c (though nothing needs to be done in that case).
Without the change test-dpp fails on aarch64-linux as:
$ unit/test-dpp
TEST: DPP test responder-only key derivation
TEST: DPP test mutual key derivation
TEST: DPP test PKEX key derivation
test-dpp: unit/test-dpp.c:514: test_pkex_key_derivation: Assertion `!memcmp(tmp, __tmp, 32)' failed.
This happens due to int/size_t type mismatch passed to vararg
parameters to prf_plus():
bool prf_plus(enum l_checksum_type type, const void *key, size_t key_len,
void *out, size_t out_len,
size_t n_extra, ...)
{
// ...
va_start(va, n_extra);
for (i = 0; i < n_extra; i++) {
iov[i + 1].iov_base = va_arg(va, void *);
iov[i + 1].iov_len = va_arg(va, size_t);
// ...
Note that varargs here could only be a sequence of `void *` / `size_t`
values.
But in src/dpp-util.c `iwd` attempted to pass `int` there:
prf_plus(sha, prk, bytes, z_out, bytes, 5,
mac_i, 6, // <- here
mac_r, 6, // <- and here
m_x, bytes,
n_x, bytes,
key, strlen(key));
aarch64 stores only 32-bit value part of the register:
mov w7, #0x6
str w7, [sp, #...]
and loads full 64-bit form of the register:
ldr x3, [x3]
As a result higher bits of `iov[].iov_len` contain unexpected values and
sendmsg sends a lot more data than expected to the kernel.
The change fixes test-dpp test for me.
While at it fixed obvious `int` / `size_t` mismatch in src/erp.c.
Fixes: 6320d6db0f ("crypto: remove label from prf_plus, instead use va_args")
The path argument was used purely for debugging. It can be just as
informational printing just the SSID of the profile that failed to
parse the setting without requiring callers allocate a string to
call the function.
Adds a new network profile setting [Security].PasswordIdentifier.
When set (and the BSS enables SAE password identifiers) the network
and handshake object will read this and use it for the SAE
exchange.
Building the handshake will fail if:
- there is no password identifier set and the BSS sets the
"exclusive" bit.
- there is a password identifier set and the BSS does not set
the "in-use" bit.
Using this will provide netdev with a connect callback and unify the
roaming result notification between FT and reassociation. Both paths
will now end up in station_reassociate_cb.
This also adds another return case for ft_handshake_setup which was
previously ignored by ft_associate. Its likely impossible to actually
happen but should be handled nevertheless.
Fixes: 30c6a10f28 ("netdev: Separate connect_failed and disconnected paths")
Essentially exposes (and renames) netdev_ft_tx_associate in order to
be called similarly to netdev_reassociate/netdev_connect where a
connect callback can be provided. This will fix the current bug where
if association times out during FT IWD will hang and never transition
to disconnected.
This also removes the calling of the FT_ROAMED event and instead just
calls the connect callback (since its now set). This unifies the
callback path for reassociation and FT roaming.
This will be called from station after FT-authentication has
finished. It sets up the handshake object to perform reassociation.
This is essentially a copy-paste of ft_associate without sending
the actual frame.
In general only the authenticator FTE is used/validated but with
some FT refactoring coming there needs to be a way to build the
supplicants FTE into the handshake object. Because of this there
needs to be separate FTE buffers for both the authenticator and
supplicant.
For adding SAE password identifiers the capability bits need to be
verified when loading the identifier from the profile. Pass the
BSS object in to network_load_psk rather than the 'need_passphrase'
boolean.
iov_ie_append assumed that a single IE was being added and thus the
length of the IE could be extracted directly from the element. However,
iov_ie_append was used on buffers which could contain multiple IEs
concatenated together, for example in handshake_state::vendor_ies. Most
of the time this was safe since vendor_ies was NULL or contained a
single element, but would result in incorrect behavior in the general
case. Fix that by changing iov_ie_append signature to take an explicit
length argument and have the caller specify whether the element is a
single IE or multiple.
Fixes: 7e9971661b ("netdev: Append any vendor IEs from the handshake")
Use an _auto_ variable to cleanup IEs allocated by
p2p_build_association_req(). While here, take out unneeded L_WARN_ON
since p2p_build_association_req cannot fail.
If the FT-Authenticate frame has been sent then a deauth is received
the work item for sending the FT-Associate frame is never canceled.
When this runs station->connected_network is NULL which causes a
crash:
src/station.c:station_try_next_transition() 7, target xx:xx:xx:xx:xx:xx
src/wiphy.c:wiphy_radio_work_insert() Inserting work item 5843
src/wiphy.c:wiphy_radio_work_insert() Inserting work item 5844
src/wiphy.c:wiphy_radio_work_done() Work item 5842 done
src/wiphy.c:wiphy_radio_work_next() Starting work item 5843
src/netdev.c:netdev_mlme_notify() MLME notification Remain on Channel(55)
src/ft.c:ft_send_authenticate()
src/netdev.c:netdev_mlme_notify() MLME notification Frame TX Status(60)
src/netdev.c:netdev_link_notify() event 16 on ifindex 7
src/netdev.c:netdev_mlme_notify() MLME notification Del Station(20)
src/netdev.c:netdev_mlme_notify() MLME notification Deauthenticate(39)
src/netdev.c:netdev_deauthenticate_event()
src/netdev.c:netdev_mlme_notify() MLME notification Disconnect(48)
src/netdev.c:netdev_disconnect_event()
Received Deauthentication event, reason: 7, from_ap: true
src/station.c:station_disconnect_event() 7
src/station.c:station_disassociated() 7
src/station.c:station_reset_connection_state() 7
src/station.c:station_roam_state_clear() 7
src/netconfig.c:netconfig_event_handler() l_netconfig event 2
src/netconfig-commit.c:netconfig_commit_print_addrs() removing address: yyy.yyy.yyy.yyy
src/resolve.c:resolve_systemd_revert() ifindex: 7
[DHCPv4] l_dhcp_client_stop:1264 Entering state: DHCP_STATE_INIT
src/station.c:station_enter_state() Old State: connected, new state: disconnected
src/station.c:station_enter_state() Old State: disconnected, new state: autoconnect_quick
src/wiphy.c:wiphy_radio_work_insert() Inserting work item 5845
src/netdev.c:netdev_mlme_notify() MLME notification Cancel Remain on Channel(56)
src/wiphy.c:wiphy_radio_work_done() Work item 5843 done
src/wiphy.c:wiphy_radio_work_next() Starting work item 5844
"Program terminated with signal SIGSEGV, Segmentation fault.",
"#0 0x0000565359ee3f54 in network_bss_find_by_addr ()",
"#0 0x0000565359ee3f54 in network_bss_find_by_addr ()",
"#1 0x0000565359ec9d23 in station_ft_work_ready ()",
"#2 0x0000565359ec0af0 in wiphy_radio_work_next ()",
"#3 0x0000565359f20080 in offchannel_mlme_notify ()",
"#4 0x0000565359f4416b in received_data ()",
"#5 0x0000565359f40d90 in io_callback ()",
"#6 0x0000565359f3ff4d in l_main_iterate ()",
"#7 0x0000565359f4001c in l_main_run ()",
"#8 0x0000565359f40240 in l_main_run_with_signal ()",
"#9 0x0000565359eb3888 in main ()"
ssid is declared as a 32 byte field in handshake_state, hence using it
as a string which is assumed to be nul-terminated will fail for SSIDs
that are 32 bytes long.
Fixes: d938d362b2 ("erp: ERP implementation and key cache move")
Fixes: 433373fe28 ("eapol: cache ERP keys on EAP success")
ssid is declared as a 32 byte field in handshake_state, hence using it
as a string which is assumed to be nul-terminated will fail for SSIDs
that are 32 bytes long.
Fixes: 1f14782857 ("wiphy: add _generate_address_from_ssid")
Fixes: 5a1b1184fc ("netdev: support per-network MAC addresses")
In netdev_retry_owe, if l_gen_family_send fails, the connect_cmd is
never freed or reset. Fix that.
While here, use a stack variable instead of netdev member, since the use
of such a member is unnecessary and confusing.
vendor_ies stored in handshake_state are already added as part of
netdev_populate_common_ies(), which is already invoked by
netdev_build_cmd_connect().
Normally vendor_ies is NULL for OWE connections, so no IEs are
duplicated as a result.
CC src/adhoc.o
In file included from src/adhoc.c:28:0:
/usr/include/linux/if.h:234:19: error: field ‘ifru_addr’ has incomplete type
struct sockaddr ifru_addr;
^
/usr/include/linux/if.h:235:19: error: field ‘ifru_dstaddr’ has incomplete type
struct sockaddr ifru_dstaddr;
^
/usr/include/linux/if.h:236:19: error: field ‘ifru_broadaddr’ has incomplete type
struct sockaddr ifru_broadaddr;
^
/usr/include/linux/if.h:237:19: error: field ‘ifru_netmask’ has incomplete type
struct sockaddr ifru_netmask;
^
/usr/include/linux/if.h:238:20: error: field ‘ifru_hwaddr’ has incomplete type
struct sockaddr ifru_hwaddr;
^
Very rarely on ath10k (potentially other ath cards), disabling
power save while the interface is down causes a timeout when
bringing the interface back up. This seems to be a race in the
driver or firmware but it causes IWD to never start up properly
since there is no retry logic on that path.
Retrying is an option, but a more straight forward approach is
to just reorder the logic to set power save off after the
interface is already up. If the power save setting fails we can
just log it, ignore the failure, and continue. From a users point
of view there is no real difference in doing it this way as
PS still gets disabled prior to IWD connecting/sending data.
Changing behavior based on a buggy driver isn't something we
should be doing, but in this instance the change shouldn't have
any downside and actually isn't any different than how it has
been done prior to the driver quirks change (i.e. use network
manager, iw, or iwconfig to set power save after IWD starts).
For reference, this problem is quite rare and difficult to say
exactly how often but certainly <1% of the time:
iwd[1286641]: src/netdev.c:netdev_disable_ps_cb() Disabled power save for ifindex 54
kernel: ath10k_pci 0000:02:00.0: wmi service ready event not received
iwd[1286641]: Error bringing interface 54 up: Connection timed out
kernel: ath10k_pci 0000:02:00.0: Could not init core: -110
After this IWD just sits idle as it has no interface to start using.
This is even reproducable outside of IWD if you loop and run:
ip link set <wlan> down
iw dev <wlan> set power_save off
ip link set <wlan> up
Eventually the 'up' command will fail with a timeout.
I've brought this to the linux-wireless/ath10k mailing list but
even if its fixed in future kernels we'd still need to support
older kernels, so a workaround/change in IWD is still required.
This is done already for DPP, do the same for PKEX. Few drivers
(ath9k upstream, ath10k/11k in progress) support this which is
unfortunate but since a configurator will not work without this
capability its best to fail early.
The DPP spec allows 3rd party fields in the DPP configuration
object (section 4.5.2). IWD can take advantage of this (when
configuring another IWD supplicant) to communicate additional
profile options that may be required for the network.
The new configuration member will be called "/net/connman/iwd"
and will be an object containing settings specific to IWD.
More settings could be added here if needed but for now only
the following are defined:
{
send_hostname: true/false,
hidden: true/false
}
These correspond to the following network profile settings:
[IPv4].SendHostname
[Settings].Hidden
The scan result handling was fragile because it assumed the kernel
would only give results matching the requested SSID. This isn't
something we should assume so instead keep the configuration object
around until after the scan and use the target SSID to lookup the
network.
Nearly every use of the ssid member first has to memcpy it to a
buffer and NULL terminate. Instead just store the ssid as a
string when creating/parsing from JSON.
The DPP-PKEX spec provides a very limited list of frequencies used
to discover configurators, only 3 on 2.4 and 5GHz bands. Since
configurators (at least in IWD's implementation) are only allowed
on the current operating frequency its very unlikely an enrollee
will find a configurator on these frequencies out of the entire
spectrum.
The spec does mention that the 3 default frequencies should be used
"In lieu of specific channel information obtained in a manner outside
the scope of this specification, ...". This allows the implementation
some flexibility in using a broader range of frequencies.
To increase the chances of finding a configurator shared code
enrollees will first issue a scan to determine what access points are
around, then iterate these frequencies. This is especially helpful
when the configurators are IWD-based since we know that they'll be
on the same channels as the APs in the area.
The post-DPP connection was never done quite right due to station's
state being unknown. The state is now tracked in DPP by a previous
patch but the scan path in DPP is still wrong.
It relies on station autoconnect logic which has the potential to
connect to a different network than what was configured with DPP.
Its unlikely but still could happen in theory. In addition the scan
was not selectively filtering results by the SSID that DPP
configured.
This fixes the above problems by first filtering the scan by the
SSID. Then setting the scan results into station without triggering
autoconnect. And finally using network_autoconnect() directly
instead of relying on station to choose the SSID.
DPP (both DPP and PKEX) run the risk of odd behavior if station
decides to change state. DPP is completely unaware of this and
best case would just result in a protocol failure, worst case
duplicate calls to __station_connect_network.
Add a station watch and stop DPP if station changes state during
the protocol.
Commit c59669a366 ("netdev: disambiguate between disconnection types")
introduced different paths for different types of disconnection
notifications from netdev. Formalize this further by having
netdev_connect_failed only invoke connect_cb.
Disconnections that could be triggered outside of connection
related events are now handled on a different code path. For this
purpose, netdev_disconnected() is introduced.
When a roam event is received, iwd generates a firmware scan request and
notifies its event filter of the ROAMING condition. In cases where the
firmware scan could not be started successfully, netdev_connect_failed
is invoked. This is not a correct use of netev_connect_failed since it
doesn't actually disconnect the underlying netdev and the reflected
state becomes de-synchronized from the underlying kernel device.
The firmware scan request could currently fail for two reasons:
1. nl80211 genl socket is in a bad state, or
2. the scan context does not exist
Since both reasons are highly unlikely, simply use L_WARN instead.
The other two cases where netdev_connect_failed is used could only occur
if the kernel message is invalid. The message is ignored in that case
and a warning is printed.
The situation described above also exists in netdev_get_fw_scan_cb. If
the scan could not be completed successfully, there's not much iwd can
do to recover. Have iwd remain in roaming state and print an error.
There are generally three scenarios where iwd generates a disconnection
command to the kernel:
1. Error conditions stemming from a connection related event. For
example if SAE/FT/FILS authentication fails during Authenticate or
Associate steps and the kernel doesn't disconnect properly.
2. Deauthentication after the connection has been established and not
related to a connection attempt in progress. For example, SA Query
processing that triggers an disconnect.
3. Disconnects that are triggered due to a handshake failure or if
setting keys resulting from the handshake fails. These disconnects
can be triggered as a result of a pending connection or when a
connection has been established (e.g. due to rekeying).
Distinguish between 1 and 2/3 by having the disconnect procedure take
different paths. For now there are no functional changes since all
paths end up in netdev_connect_failed(), but this will change in the
future.
While here, also get rid of netdev_del_station. The only user of this
function was in ap.c and it could easily be replaced by invoking the new
nl80211_build_del_station function. The callback used by
netdev_build_del_station only printed an error and didn't do anything
useful. Get rid of it for now.
netdev_begin_connection() already invokes netdev_connect_failed on
error. Remove any calls to netdev_connect_failed in callers of
netdev_begin_connection().
Fixes: 4165d9414f ("netdev: use wiphy radio work queue for connections")
If netdev_get_oci fails, a goto deauth is invoked in order to terminate
the current connection and return an error to the caller. Unfortunately
the deauth label builds CMD_DEAUTHENTICATE in order to terminate the
connection. This was fine because it used to handle authentication
protocols that ran over CMD_AUTHENTICATE and CMD_ASSOCIATE. However,
OCI can also be used on FullMAC hardware that does not support them.
Use CMD_DISCONNECT instead which works everywhere.
Fixes: 06482b8116 ("netdev: Obtain operating channel info")
The reason code field was being obtained as a uint8_t value, while it is
actually a uint16_t in little-endian byte order.
Fixes: f3cc96499c ("netdev: added support for SA Query")
The reason code from deauthentication frame was being obtained as a
uint8_t instead of a uint16_t. The value was only ever used in an
informational statement. Since the value was in little endian, only the
first 8 bits of the reason code were obtained. Fix that.
Fixes: 2bebb4bdc7 ("netdev: Handle deauth frames prior to association")
Adds a configurator variant to be used along side an agent. When
called the configurator will start and wait for an initial PKEX
exchange message from an enrollee at which point it will request
the code from an agent. This provides more flexibility for
configurators that are capable of configuring multiple enrollees
with different identifiers/codes.
Note that the timing requirements per the DPP spec still apply
so this is not meant to be used with a human configurator but
within an automated agent which does a quick lookup of potential
identifiers/codes and can reply within the 200ms window.
The PKEX configurator role is currently limited to being a responder.
When started the configurator will listen on its current operating
channel for a PKEX exchange request. Once received it and the
encrypted key is properly decrypted it treats this peer as the
enrollee and won't allow configurations from other peers unless
PKEX is restarted. The configurator will encrypt and send its
encrypted ephemeral key in the PKEX exchange response. The enrollee
then sends its encrypted bootstrapping key (as commit-reveal request)
then the same for the configurator (as commit-reveal response).
After this, PKEX authentication begins. The enrollee is expected to
send the authenticate request, since its the initiator.
This is the initial support for PKEX enrollees acting as the
initiator. A PKEX initiator starts the protocol by broadcasting
the PKEX exchange request. This request contains a key encrypted
with the pre-shared PKEX code. If accepted the peer sends back
the exchange response with its own encrypted key. The enrollee
decrypts this and performs some crypto/hashing in order to establish
an ephemeral key used to encrypt its own boostrapping key. The
boostrapping key is encrypted and sent to the peer in the PKEX
commit-reveal request. The peer then does the same thing, encrypting
its own bootstrapping key and sending to the initiator as the
PKEX commit-reveal response.
After this, both peers have exchanged their boostrapping keys
securely and can begin DPP authentication, then configuration.
For now the enrollee will only iterate the default channel list
from the Easy Connect spec. Future upates will need to include some
way of discovering non-default channel configurators, but the
protocol needs to be ironed out first.
PKEX and DPP will share the same state machine since the DPP protocol
follows PKEX. This does pose an issue with the DBus interfaces
because we don't want DPP initiated by the SharedCode interface to
start setting properties on the DeviceProvisioning interface.
To handle this a dpp_interface enum is being introduced which binds
the dpp_sm object to a particular interface, for the life of the
protocol run. Once the protocol finishes the dpp_sm can be unbound
allowing either interface to use it again later.
This mispelling was present in the configuration, so I retained parsing
of the legacy BandModifier*Ghz options for compatibility. Without this
change anyone spelling GHz correctly in their configs would be very
confused.
Beacon loss handling was removed in the past because it was
determined that this even always resulted in a disconnect. This
was short sighted and not always true. The default kernel behavior
waits for 7 lost beacons before emitting this event, then sends
either a few nullfuncs or probe requests to the BSS to determine
if its really gone. If these come back successfully the connection
will remain alive. This can give IWD some time to roam in some
cases so we should be handling this event.
Since beacon loss indicates a very poor connection the roam scan
is delayed by a few seconds in order to give the kernel a chance
to send the nullfuncs/probes or receive more beacons. This may
result in a disconnect, but it would have happened anyways.
Attempting a roam mainly handles the case when the connection can
be maintained after beacon loss, but is still poor.
This is being done to allow the DPP module to work correctly. DPP
currently uses __station_connect_network incorrectly since it
does not (and cannot) change the state after calling. The only
way to connect with a state change is via station_connect_network
which requires a DBus method that triggered the connection; DPP
does not have this due to its potentially long run time.
To support DPP there are a few options:
1. Pass a state into __station_connect_network (this patch)
2. Support a NULL DBus message in station_connect_network. This
would require several NULL checks and adding all that to only
support DPP just didn't feel right.
3. A 3rd connect API in station which wraps
__station_connect_network and changes the state. And again, an
entirely new API for only DPP felt wrong (I guess we did this
for network_autoconnect though...)
Its about 50/50 between call sites that changed state after calling
and those that do not. Changing the state inside
__station_connect_network felt useful enough to cover the cases that
could benefit and the remaining cases could handle it easily enough:
- network_autoconnect(), and the state is changed by station after
calling so it more or less follows the same pattern just routes
through network. This will now pass the CONNECTING_AUTO state
from within network vs station.
- The disconnect/reconnect path. Here the state is changed to
ROAMING prior in order to avoid multiple state changes. Knowing
this the same ROAMING state can be passed which won't trigger a
state change.
- Retrying after a failed BSS. The state changes on the first call
then remains the same for each connection attempt. To support this
the current station->state is passed to avoid a state change.
Until now IWD only supported enrollees as responders (configurators
could do both). For PKEX it makes sense for the enrollee to be the
initiator because configurators in the area are already on their
operating channel and going off is inefficient. For PKEX, whoever
initiates also initiates authentication so for this reason the
authentication path is being opened up to allow enrollees to
initiate.
The check for the header was incorrect according to the spec.
Table 58 indicates that the "Query Response Info" should be set
to 0x00 for the configuration request. The frame handler was
expecting 0x7f which is the value for the config response frame.
Unfortunately wpa_supplicant also gets this wrong and uses 0x7f
in all cases which is likely why this value was set incorrectly
in IWD. The issue is that IWD's config request is correct which
means IWD<->IWD configuration is broken. (and wpa_supplicant as
a configurator likely doesn't validate the config request).
Fix this by checking both 0x7f and 0x00 to handle both
supplicants.
Stopping periodic scans and not restarting them prevents autoconnect
from working again if DPP (or the post-DPP connect) fails. Since
the DPP offchannel work is at a higher priority than scanning (and
since new offchannels are queue'd before canceling) there is no risk
of a scan happening during DPP so its safe to leave periodic scans
running.
The packet loss handler puts a higher priority on roaming compared
to the low signal roam path. This is generally beneficial since this
event usually indicates some problem with the BSS and generally is
an indicator that a disconnect will follow sometime soon.
But by immediately issuing a scan we run the risk of causing many
successive scans if more packet loss events arrive following
the roam scans (and if no candidates are found). Logs provided
further.
To help with this handle the first event with priority and
immediately issue a roam scan. If another event comes in within a
certain timeframe (2 seconds) don't immediately scan, but instead
rearm the roam timer instead of issuing a scan. This also handles
the case of a low signal roam scan followed by a packet loss
event. Delaying the roam will at least provide some time for packets
to get out in between roam scans.
Logs were snipped to be less verbose, but this cycled happened
5 times prior. In total 7 scans were issued in 5 seconds which may
very well have been the reason for the local disconnect:
Oct 27 16:23:46 src/station.c:station_roam_failed() 9
Oct 27 16:23:46 src/wiphy.c:wiphy_radio_work_done() Work item 29 done
Oct 27 16:23:47 src/netdev.c:netdev_mlme_notify() MLME notification Notify CQM(64)
Oct 27 16:23:47 src/station.c:station_packets_lost() Packets lost event: 10
Oct 27 16:23:47 src/station.c:station_roam_scan() ifindex: 9
Oct 27 16:23:47 src/wiphy.c:wiphy_radio_work_insert() Inserting work item 30
Oct 27 16:23:47 src/wiphy.c:wiphy_radio_work_next() Starting work item 30
Oct 27 16:23:47 src/station.c:station_start_roam() Using cached neighbor report for roam
Oct 27 16:23:47 src/scan.c:scan_notify() Scan notification Trigger Scan(33)
Oct 27 16:23:47 src/scan.c:scan_request_triggered() Active scan triggered for wdev a
Oct 27 16:23:47 src/scan.c:scan_notify() Scan notification New Scan Results(34)
Oct 27 16:23:47 src/netdev.c:netdev_link_notify() event 16 on ifindex 9
... scan results ...
Oct 27 16:23:47 src/station.c:station_roam_failed() 9
Oct 27 16:23:47 src/wiphy.c:wiphy_radio_work_done() Work item 30 done
Oct 27 16:23:47 src/netdev.c:netdev_mlme_notify() MLME notification Notify CQM(64)
Oct 27 16:23:47 src/station.c:station_packets_lost() Packets lost event: 10
Oct 27 16:23:47 src/station.c:station_roam_scan() ifindex: 9
Oct 27 16:23:47 src/wiphy.c:wiphy_radio_work_insert() Inserting work item 31
Oct 27 16:23:47 src/wiphy.c:wiphy_radio_work_next() Starting work item 31
Oct 27 16:23:47 src/station.c:station_start_roam() Using cached neighbor report for roam
Oct 27 16:23:47 src/scan.c:scan_notify() Scan notification Trigger Scan(33)
Oct 27 16:23:47 src/scan.c:scan_request_triggered() Active scan triggered for wdev a
Oct 27 16:23:48 src/scan.c:scan_notify() Scan notification New Scan Results(34)
Oct 27 16:23:48 src/netdev.c:netdev_link_notify() event 16 on ifindex 9
... scan results ...
Oct 27 16:23:48 src/station.c:station_roam_failed() 9
Oct 27 16:23:48 src/wiphy.c:wiphy_radio_work_done() Work item 31 done
Oct 27 16:23:48 src/netdev.c:netdev_mlme_notify() MLME notification Notify CQM(64)
Oct 27 16:23:48 src/station.c:station_packets_lost() Packets lost event: 10
Oct 27 16:23:48 src/station.c:station_roam_scan() ifindex: 9
Oct 27 16:23:48 src/wiphy.c:wiphy_radio_work_insert() Inserting work item 32
Oct 27 16:23:48 src/wiphy.c:wiphy_radio_work_next() Starting work item 32
Oct 27 16:23:48 src/station.c:station_start_roam() Using cached neighbor report for roam
Oct 27 16:23:48 src/scan.c:scan_notify() Scan notification Trigger Scan(33)
Oct 27 16:23:48 src/scan.c:scan_request_triggered() Active scan triggered for wdev a
Oct 27 16:23:49 src/netdev.c:netdev_link_notify() event 16 on ifindex 9
Oct 27 16:23:49 src/netdev.c:netdev_mlme_notify() MLME notification Del Station(20)
Oct 27 16:23:49 src/netdev.c:netdev_mlme_notify() MLME notification Deauthenticate(39)
Oct 27 16:23:49 src/netdev.c:netdev_deauthenticate_event()
Oct 27 16:23:49 src/netdev.c:netdev_mlme_notify() MLME notification Disconnect(48)
Oct 27 16:23:49 src/netdev.c:netdev_disconnect_event()
Oct 27 16:23:49 Received Deauthentication event, reason: 4, from_ap: false
Include a specific timeout value so different protocols can specify
different timeouts. For example once the authentication timeout
should not take very long (even 10 seconds seems excessive) but
adding PKEX may warrant longer timeouts.
For example discovering a configurator IWD may want to wait several
minutes before ending the discovery. Similarly running PKEX as a
configurator we should put a hard limit on the time, but again
minutes rather than 10 seconds.
Its been seen (so far only in mac80211_hwsim + UML) where an
offchannel requests ACK comes after the ROC started event. This
causes the ROC started event to never call back to notify since
info->roc_cookie is unset and it appears to be coming from an
external process.
We can detect this situation in the ROC notify event by checking
if there is a pending ROC command and if info->roc_cookie does
not match. This can also be true for an external event so we just
set a new "early_cookie" member and return.
Then, when the ACK comes in for the ROC request, we can validate
if the prior event was associated with IWD or some external
process. If it was from IWD call the started callback, otherwise
the ROC notify event should come later and handled under the
normal logic where the cookies match.
Instead of looking up by wdev, lookup by the ID itself. We
shouldn't ever have more than one info per wdev in the queue but
looking up the _exact_ info structure doesn't hurt in case things
change in the future.
If netconfig is canceled before completion (when roaming) the
settings are freed and never loaded again once netconfig is started
post-roam. Now after a roam make sure to re-load the settings and
start netconfig.
Commit 23f0f5717c did not correctly handle the reassociation
case where the state is set from within station_try_next_transition.
If IWD reassociates netconfig will get reset and DHCP will need to
be done over again after the roam. Instead get the state ahead of
station_try_next_transition.
Fixes: 23f0f5717c ("station: allow roaming before netconfig finishes")
When using mutual authentication an additional value needs to
be hashed when deriving i/r_auth values. A NULL value indicates
no mutual authentication (zero length iovec is passed to hash).
DPP configurators are running the majority of the protocol on the
current operating channel, meaning no ROC work. The retry logic
was bailing out if !dpp->roc_started with the assumption that DPP
was in between requesting offchannel work and it actually starting.
For configurators, this may not be the case. The offchannel ID also
needs to be checked, and if no work is scheduled we can send the
frame.
The prf_plus API was a bit restrictive because it only took a
string label which isn't compatible with some specs (e.g. DPP
inputs to HKDF-Expand). In addition it took additional label
aruments which were appended to the HMAC call (and the
non-intuitive '\0' if there were extra arguments).
Instead the label argument has been removed and callers can pass
it in through va_args. This also lets the caller decided the length
and can include the '\0' or not, dependent on the spec the caller
is following.
SAE was also relying on the ELL bug which was incorrectly performing
a subtraction on the Y coordinate based on the compressed point type.
Correct this and make the point type more clear (rather than
something like "is_odd + 2").
EAP-PWD was incorrectly computing the PWE but due to the also
incorrect logic in ELL the point converted correctly. This is
being fixed, so both places need the reverse logic.
Also added a big comment explaining why this is, and how
l_ecc_point_from_data behaves since its somewhat confusing since
EAP-PWD expects the pwd-seed to be compared to the actual Y
coordinate (which is handled automatically by ELL).
The previous attempt at working around this warning seems to no longer
work with gcc 13
In function ‘eap_handle_response’,
inlined from ‘eap_rx_packet’ at src/eap.c:570:3:
src/eap.c:421:49: error: ‘vendor_id’ may be used uninitialized [-Werror=maybe-uninitialized]
421 | (type == EAP_TYPE_EXPANDED && vendor_id == (id) && vendor_type == (t))
| ~~~~~~~~~~^~~~~~~
src/eap.c:533:20: note: in expansion of macro ‘IS_EXPANDED_RESPONSE’
533 | } else if (IS_EXPANDED_RESPONSE(our_vendor_id, our_vendor_type))
| ^~~~~~~~~~~~~~~~~~~~
src/eap.c: In function ‘eap_rx_packet’:
src/eap.c:431:18: note: ‘vendor_id’ was declared here
431 | uint32_t vendor_id;
| ^~~~~~~~~
width must be initialized since it depends on best not being NULL. If
best passes the non-NULL check above, then width must be initialized
since both width and best are set at the same time.
For IWD to work correctly either 2.4GHz or 5GHz bands must be enabled
(even for 6GHz to work). Check this and don't allow IWD to initialize
if both 2.4 and 5GHz is disabled.
wiphy_get_allowed_freqs was only being used to see if 6GHz was disabled
or not. This is expensive and requires several allocations when there
already exists wiphy_is_band_disabled(). The prior patch modified
wiphy_is_band_disabled() to return -ENOTSUP which allows scan.c to
completely remove the need for wiphy_get_allowed_freqs.
scan_wiphy_watch was also slightly re-ordered to avoid allocating
freqs_6ghz if the scan request was being completed.
The function wiphy_band_is_disabled() return was a bit misleading
because if the band was not supported it would return true which
could be misunderstood as the band is supported, but disabled.
There was only one call site and because of this behavior
wiphy_band_is_disabled needed to be paired with checking if the
band was supported.
To be more descriptive to the caller, wiphy_band_is_disabled() now
returns an int and if the band isn't supported -ENOTSUP will be
returned, otherwise 1 is returned if the band is disabled and 0
otherwise.
This adds support to allow users to disable entire bands, preventing
scanning and connecting on those frequencies. If the
[Rank].BandModifier* options are set to 0.0 it will imply those
bands should not be used for scanning, connecting or roaming. This
now applies to autoconnect, quick, hidden, roam, and dbus scans.
This is a station only feature meaning other modules like RRM, DPP,
WSC or P2P may still utilize those bands. Trying to limit bands in
those modules may sometimes conflict with the spec which is why it
was not added there. In addition modules like DPP/WSC are only used
in limited capacity for connecting so there is little benefit gained
to disallowing those bands.
To support user-disabled bands periodic scans need to specify a
frequency list filtered by any bands that are disabled. This was
needed in scan.c since periodic scans don't provide a frequency
list in the scan request.
If no bands are disabled the allowed freqs API should still
result in the same scan behavior as if a frequency list is left
out i.e. IWD just filters the frequencies as opposed to the kernel.
Currently the only way a scan can be split is if the request does
not specify any frequencies, implying the request should scan the
entire spectrum. This allows the scan logic to issue an extra
request if 6GHz becomes available during the 2.4 or 5GHz scans.
This restriction was somewhat arbitrary and done to let periodic
scans pick up 6GHz APs through a single scan request.
But now with the addition of allowing user-disabled bands
periodic scans will need to specify a frequency list in case a
given band has been disabled. This will break the scan splitting
code which is why this prep work is being done.
The main difference now is the original scan frequencies are
tracked with the scan request. The reason for this is so if a
request comes in with a limited set of 6GHz frequences IWD won't
end up scanning the full 6GHz spectrum later on.
This is more or less copied from scan_get_allowed_freqs but is
going to be needed by station (basically just saves the need for
station to do the same clone/constrain sequence itself).
One slight alteration is now a band mask can be passed in which
provides more flexibility for additional filtering.
This exposes the [Rank].BandModifier* settings so other modules
can use then. Doing this will allow user-disabling of certain
bands by setting these modifier values to 0.0.
The loop iterating the frequency attributes list was not including
the entire channel set since it was stopping at i < band->freqs_len.
The freq_attrs array is allocated to include the last channel:
band->freq_attrs = l_new(struct band_freq_attrs, num_channels + 1);
band->freqs_len = num_channels;
So instead the for loop should use i <= band->freqs_len. (I also
changed this to start the loop at 1 since channel zero is invalid).
The auth/action status is now tracked in ft.c. If an AP rejects the
FT attempt with "Invalid PMKID" we can now assume this AP is either
mis-configured for FT or is lagging behind getting the proper keys
from neighboring APs (e.g. was just rebooted).
If we see this condition IWD can now fall back to reassociation in
an attempt to still roam to the best candidate. The fallback decision
is still rank based: if a BSS fails FT it is marked as such, its
ranking is reset removing the FT factor and it is inserted back
into the queue.
The motivation behind this isn't necessarily to always force a roam,
but instead to handle two cases where IWD can either make a bad roam
decision or get 'stuck' and never roam:
1. If there is one good roam candidate and other bad ones. For
example say BSS A is experiencing this FT key pull issue:
Current BSS: -85dbm
BSS A: -55dbm
BSS B: -80dbm
The current logic would fail A, and roam to B. In this case
reassociation would have likely succeeded so it makes more sense
to reassociate to A as a fallback.
2. If there is only one candidate, but its failing FT. IWD will
never try anything other than FT and repeatedly fail.
Both of the above have been seen on real network deployments and
result in either poor performance (1) or eventually lead to a full
disconnect due to never roaming (2).
Certain return codes, though failures, can indicate that the AP is
just confused or booting up and treating it as a full failure may
not be the best route.
For example in some production deployments if an AP is rebooted it
may take some time for neighboring APs to exchange keys for
current associations. If a client roams during that time it will
reject saying the PMKID is invalid.
Use the ft_associate call return to communicate the status (if any)
that was in the auth/action response. If there was a parsing error
or no response -ENOENT is still returned.
Removed several debug prints which are very verbose and provide
little to no important information.
The get_scan_{done,callback} prints are pointless since all the
parsed scan results are printed by station anyways.
Printing the BSS load is also not that useful since it doesn't
include the BSSID. If anything the BSS load should be included
when station prints out each individual BSS (along with frequency,
rank, etc).
The advertisement protocol print was just just left in there by
accident when debugging, and also provides basically no useful
information.
Some APs don't include the RSNE in the associate reply during
the OWE exchange. This causes IWD to be incompatible since it has
a hard requirement on the AKM being included.
This relaxes the requirement for the AKM and instead warns if it
is not included.
Below is an example of an association reply without the RSN element
IEEE 802.11 Association Response, Flags: ........
Type/Subtype: Association Response (0x0001)
Frame Control Field: 0x1000
.000 0000 0011 1100 = Duration: 60 microseconds
Receiver address: 64:c4:03:88:ff:26
Destination address: 64:c4:03:88:ff:26
Transmitter address: fc:34:97:2b:1b:48
Source address: fc:34:97:2b:1b:48
BSS Id: fc:34:97:2b:1b:48
.... .... .... 0000 = Fragment number: 0
0001 1100 1000 .... = Sequence number: 456
IEEE 802.11 wireless LAN
Fixed parameters (6 bytes)
Tagged parameters (196 bytes)
Tag: Supported Rates 6(B), 9, 12(B), 18, 24(B), 36, 48, 54, [Mbit/sec]
Tag: RM Enabled Capabilities (5 octets)
Tag: Extended Capabilities (11 octets)
Ext Tag: HE Capabilities (IEEE Std 802.11ax/D3.0)
Ext Tag: HE Operation (IEEE Std 802.11ax/D3.0)
Ext Tag: MU EDCA Parameter Set
Ext Tag: HE 6GHz Band Capabilities
Ext Tag: OWE Diffie-Hellman Parameter
Tag Number: Element ID Extension (255)
Ext Tag length: 51
Ext Tag Number: OWE Diffie-Hellman Parameter (32)
Group: 384-bit random ECP group (20)
Public Key: 14ba9d8abeb2ecd5d95e6c12491b16489d1bcc303e7a7fbd…
Tag: Vendor Specific: Broadcom
Tag: Vendor Specific: Microsoft Corp.: WMM/WME: Parameter Element
Reported-By: Wen Gong <quic_wgong@quicinc.com>
Tested-By: Wen Gong <quic_wgong@quicinc.com>
Hostapd commit b6d3fd05e3 changed the PMKID derivation in accordance
with 802.11-2020 which then breaks PMKID validation in IWD. This
breaks the FT-8021x AKM in IWD if the AP uses this hostapd version
since the PMKID doesn't validate during EAPoL.
This updates the PMKID derivation to use the correct SHA hash for
this AKM and adds SHA1 based PMKID checking for interoperability
with older hostapd versions.
The PMKID derivation has gotten messy due to the spec
updating/clarifying the hash size for the FT-8021X AKM. This
has led to hostapd updating the derivation which leaves older
hostapd versions using SHA1 and newer versions using SHA256.
To support this the checksum type is being fed to
handshake_state_get_pmkid so the caller can decide what sha to
use. In addition handshake_state_pmkid_matches is being added
which uses get_pmkid() but handles sorting out the hash type
automatically.
This lets preauthentication use handshake_state_get_pmkid where
there is the potential that a new PMKID is derived and eapol
can use handshake_state_pmkid_matches which only derives the
PMKID to compare against the peers.
The existing API was limited to SHA1 or SHA256 and assumed a key
length of 32 bytes. Since other AKMs plan to be added update
this to take the checksum/length directly for better flexibility.
This is consistent with the over-Air path, and makes it clear when
reading the logs if over-DS was used, if there was a response frame,
and if the frame failed to parse in some way.
Disable power save if the wiphy indicates its needed. Do this
before issuing GET_LINK so the netdev doesn't signal its up until
power save is disabled.
Certain drivers do not handle power save very well resulting in
missed frames, firmware crashes, or other bad behavior. Its easy
enough to disable power save via iw, iwconfig, etc but since IWD
removes and creates the interface on startup it blows away any
previous power save setting. The setting must be done *after* IWD
creates the interface which can be done, but needs to be via some
external daemon monitoring IWD's state. For minimal systems,
e.g. without NetworkManager, it becomes difficult and annoying to
persistently disable power save.
For this reason a new driver flag POWER_SAVE_DISABLE is being
added. This can then be referenced when creating the interfaces
and if set, disable power save.
The driver_infos list in wiphy.c is hard coded and, naturally,
not configurable from a user perspective. As drivers are updated
or added users may be left with their system being broken until the
driver is added, IWD released, and packaged.
This adds the ability to define driver flags inside main.conf under
the "DriverQuirks" group. Keys in this group correspond to values in
enum driver_flag and values are a list of glob matches for specific
drivers:
[DriverQuirks]
DefaultInterface=rtl81*,rtl87*,rtl88*,rtw_*,brcmfmac,bcmsdh_sdmmc
ForcePae=buggy_pae_*
Rather than keep a pointer to the driver_info entry copy the flags
into the wiphy object. This preps for supporting driver flags via
a configuration file, specifically allowing for entries that are a
subset of others. For example:
{ "rtl88*", DEFAULT_IF },
{ "rtl88x2bu", FORCE_PAE },
Before it was not possible to add entires like this since only the
last entry match would get set. Now DEFAULT_IF would get set to all
matches, and FORCE_PAE to only rtl88x2bu. This isn't especially
important for the static list since it could be modified to work
correctly, but will be needed when parsing flags from a
configuration file that may contain duplicates or subsets of the
static list.
If there was some problem during the FT authenticate stage
its nice to know more of what happened: whether the AP didn't
respond, rejected the attempt, or sent an invalid frame/IEs.
In some situations its convenient for the same work item to be
inserted (rescheduled) while its in progress. FT for example does
this now if a roam fails. The same ft_work item gets re-inserted
which, currently, is not safe to do since the item is modified
and removed once completed.
Fix this by introducing wiphy_radio_work_reschedule which is an
explicit API for re-inserting work items from within the do_work
callback.
The wiphy work logic was changed around slightly to remove the item
at the head of the queue prior to starting and note the ID going
into do_work. If do_work signaled done and ID changed we know it
was re-inserted and can skip the destroy logic and move onto the
next item. If the item is not done continue as normal but set the
priority to INT_MIN, as usual, to prevent other items from getting
to the head of the queue.
If IWD connects under bad RF conditions and netconfig takes
a while to complete (e.g. slow DHCP), the roam timeout
could fire before DHCP is done. Then, after the roam,
IWD would transition automatically to connected before
DHCP was finished. In theory DHCP could still complete after
this point but any process depending on IWD's connected
state would be uninformed and assume IP networking is up.
Fix this by stopping netconfig prior to a roam if IWD is not
in a connected state. Then, once the roam either failed or
succeeded, start netconfig again.
When acting as a configurator the enrollee can start on a different
channel than IWD is connected to. IWD will begin the auth process
on this channel but tell the enrollee to transition to the current
channel after the auth request. Since a configurator must be
connected (a requirement IWD enforces) we can assume a channel
transition will always be to the currently connected channel. This
allows us to simply cancel the offchannel request and wait for a
response (rather than start another offchannel).
Doing this improves the DPP performance and reduces the potential
for a lost frame during the channel transition.
This patch also addresses the comment that we should wait for the
auth request ACK before canceling the offchannel. Now a flag is
set and IWD will cancel the offchannel once the ACK is received.
If IWD gets a disconnect during FT the roaming state will be
cleared, as well as any ft_info's during ft_clear_authentications.
This includes canceling the offchannel operation which also
destroys any pending ft_info's if !info->parsed. This causes a
double free afterwards. In addition the l_queue_remove inside the
foreach callback is not a safe operation either.
To fix this don't remove the ft_info inside the offchannel
destroy callback. The info will get freed by ft_associate regardless
of the outcome (parsed or !parsed). This is also consistent with
how the onchannel logic works.
Log and crash backtrace below:
iwd[488]: src/station.c:station_try_next_transition() 5, target aa:46:8d:37:7c:87
iwd[488]: src/wiphy.c:wiphy_radio_work_insert() Inserting work item 16668
iwd[488]: src/wiphy.c:wiphy_radio_work_insert() Inserting work item 16669
iwd[488]: src/wiphy.c:wiphy_radio_work_done() Work item 16667 done
iwd[488]: src/wiphy.c:wiphy_radio_work_next() Starting work item 16668
iwd[488]: src/netdev.c:netdev_mlme_notify() MLME notification Remain on Channel(55)
iwd[488]: src/netdev.c:netdev_mlme_notify() MLME notification Del Station(20)
iwd[488]: src/netdev.c:netdev_link_notify() event 16 on ifindex 5
iwd[488]: src/netdev.c:netdev_mlme_notify() MLME notification Deauthenticate(39)
iwd[488]: src/netdev.c:netdev_deauthenticate_event()
iwd[488]: src/netdev.c:netdev_mlme_notify() MLME notification Disconnect(48)
iwd[488]: src/netdev.c:netdev_disconnect_event()
iwd[488]: Received Deauthentication event, reason: 6, from_ap: true
iwd[488]: src/station.c:station_disconnect_event() 5
iwd[488]: src/station.c:station_disassociated() 5
iwd[488]: src/station.c:station_reset_connection_state() 5
iwd[488]: src/station.c:station_roam_state_clear() 5
iwd[488]: double free or corruption (fasttop)
5 0x0000555b3dbf44a4 in ft_info_destroy ()
6 0x0000555b3dbf45b3 in remove_ifindex ()
7 0x0000555b3dc4653c in l_queue_foreach_remove ()
8 0x0000555b3dbd0dd1 in station_reset_connection_state ()
9 0x0000555b3dbd37e5 in station_disassociated ()
10 0x0000555b3dbc8bb8 in netdev_mlme_notify ()
11 0x0000555b3dc4e80b in received_data ()
12 0x0000555b3dc4b430 in io_callback ()
13 0x0000555b3dc4a5ed in l_main_iterate ()
14 0x0000555b3dc4a6bc in l_main_run ()
15 0x0000555b3dc4a8e0 in l_main_run_with_signal ()
16 0x0000555b3dbbe888 in main ()
Hostapd commit bc36991791 now properly sets the secure bit on
message 1/4. This was addressed in an earlier IWD commit but
neglected to allow for backwards compatibility. The check is
fatal which now breaks earlier hostapd version (older than 2.10).
Instead warn on this condition rather than reject the rekey.
Fixes: 7fad6590bd ("eapol: allow 'secure' to be set on rekeys")
The HT40+/- flags were reversed when checking against the 802.11
behavior flags.
HT40+ means the secondary channel is above (+) the primary channel
therefore corresponds to the PRIMARY_CHANNEL_LOWER behavior. And
the opposite for HT40-.
Reported-By: Alagu Sankar <alagusankar@gmail.com>
Use a more appropriate printf conversion string in order to avoid
unnecessary implicit conversion which can lead to a buffer overflow.
Reasons similar to commit:
98b758f893 ("knownnetworks: fix printing SSID in hex")
In the case that the FT target is on the same channel as we're currently
operating on, use ft_authenticate_onchannel instead of ft_authenticate.
Going offchannel in this case can confuse some drivers.
Currently when we try FT-over-Air, the Authenticate frame is always
sent via offchannel infrastructure We request the driver to go
offchannel, then send the Authenticate frame. This works fine as long
as the target AP is on a different channel. On some networks some (or
all) APs might actually be located on the same channel. In this case
going offchannel will result in some drivers not actually sending the
Authenticate frame until after the offchannel operation completes.
Work around this by introducing a new ft_authenticate variant that will
not request an offchannel operation first.
Force conversion to unsigned char before printing to avoid sign
extension when printing SSID in hex. For example, if there are CJK
characters in SSID, it will generate a very long string like
/net/connman/iwd/ffffffe8ffffffaeffffffa1.
If a very long ssid was used (e.g. CJK characters in SSID), it might do
out of bounds write to static variable for lack of checking the position
before the last snprintf() call.
Seeing that some authenticators can't handle TLS session caching
properly, allow the EAP-TLS-based methods session caching support to be
disabled per-network using a method specific FastReauthentication setting.
Defaults to true.
With the previous commit, authentication should succeed at least every
other attempt. I'd also expect that EAP-TLS is not usually affected
because there's no phase2, unlike with EAP-PEAP/EAP-TTLS.
If we have a TLS session cached from this attempt or a previous
successful connection attempt but the overall EAP method fails, forget
the session to improve the chances that authentication succeeds on the
next attempt considering that some authenticators strangely allow
resumption but can't handle it all the way to EAP method success.
Logically the session resumption in the TLS layers on the server should
be transparent to the EAP layers so I guess those may be failed
attempts to further optimise phase 2 when the server thinks it can
already trust the client.
The extra IE length for the WMM IE was being set to 26 which is
the HT IE length, not WMM. Fix this and use the proper size for
the WMM IE of 50 bytes.
This shouldn't have caused any problems prior as the tail length
is always allocated with 256 or 512 extra bytes of headroom.
Since channels numbers are used as indexes into the array, and given
that channel numbers start at '1' instead of 0, make sure to allocate a
buffer large enough to not overflow when the max channel number for a
given band is accessed.
src/manager.c:manager_wiphy_dump_callback() New wiphy phy1 added (1)
==22290== Invalid write of size 2
==22290== at 0x4624B2: nl80211_parse_supported_frequencies (nl80211util.c:570)
==22290== by 0x417CA5: parse_supported_bands (wiphy.c:1636)
==22290== by 0x418594: wiphy_parse_attributes (wiphy.c:1805)
==22290== by 0x418E20: wiphy_update_from_genl (wiphy.c:1991)
==22290== by 0x464589: manager_wiphy_dump_callback (manager.c:564)
==22290== by 0x4CBDDA: process_unicast (genl.c:944)
==22290== by 0x4CC19C: received_data (genl.c:1056)
==22290== by 0x4C7140: io_callback (io.c:120)
==22290== by 0x4C5A97: l_main_iterate (main.c:476)
==22290== by 0x4C5BDC: l_main_run (main.c:523)
==22290== by 0x4C5F0F: l_main_run_with_signal (main.c:645)
==22290== by 0x40503B: main (main.c:600)
==22290== Address 0x4aa76ec is 0 bytes after a block of size 28 alloc'd
==22290== at 0x48417B5: malloc (vg_replace_malloc.c:393)
==22290== by 0x4BC4D1: l_malloc (util.c:62)
==22290== by 0x417BE4: parse_supported_bands (wiphy.c:1619)
==22290== by 0x418594: wiphy_parse_attributes (wiphy.c:1805)
==22290== by 0x418E20: wiphy_update_from_genl (wiphy.c:1991)
==22290== by 0x464589: manager_wiphy_dump_callback (manager.c:564)
==22290== by 0x4CBDDA: process_unicast (genl.c:944)
==22290== by 0x4CC19C: received_data (genl.c:1056)
==22290== by 0x4C7140: io_callback (io.c:120)
==22290== by 0x4C5A97: l_main_iterate (main.c:476)
==22290== by 0x4C5BDC: l_main_run (main.c:523)
==22290== by 0x4C5F0F: l_main_run_with_signal (main.c:645)
==22290==
This adds support for rekeys to AP mode. A single timer is used and
reset to the next station needing a rekey. A default rekey timer of
600 seconds is used unless the profile sets a timeout.
The only changes required was to set the secure bit for message 1,
reset the frame retry counter, and change the 2/4 verifier to use
the rekey flag rather than ptk_complete. This is because we must
set ptk_complete false in order to detect retransmissions of the
4/4 frame.
Initiating a rekey can now be done by simply calling eapol_start().
If IWD ends up dumping wiphy's twice (because of NEW_WIPHY event
soon after initial dump) it will also try and dump interfaces
twice leading to multiple DEL_INTERFACE calls. The second attempt
will fail with -ENODEV (since the interface was already deleted).
Just silently fail with this case and let the other DEL_INTERFACE
path handle the re-creation.
With really badly timed events a wiphy can be registered twice. This
happens when IWD starts and requests a wiphy dump. Immediately after
a NEW_WIPHY event comes in (presumably when the driver loads) which
starts another dump. The NEW_WIPHY event can't simply be ignored
since it could be a hotplug (e.g. USB card) so to fix this we can
instead just prevent it from being registered.
This does mean both dumps will happen but the information will just
be added to the same wiphy object.
Past commits should address any potential problems of the timer
firing during FT, but its still good practice to cancel the timer
once it is no longer needed, i.e. once FT has started.
If station has already started FT ensure station_cannot_roam takes
that into account. Since the state has not yet changed it must also
check if the FT work ID is set.
Under the following conditions IWD can accidentally trigger a second
roam scan while one is already in progress:
- A low RSSI condition is met. This starts the roam rearm timer.
- A packet loss condition is met, which triggers a roam scan.
- The roam rearm timer fires and starts another roam scan while
also overwriting the first roam scan ID.
- Then, if IWD gets disconnected the overwritten roam scan gets
canceled, and the roam state is cleared which NULL's
station->connected_network.
- The initial roam scan results then come in with the assumption
that IWD is still connected which results in a crash trying to
reference station->connected_network.
This can be fixed by adding a station_cannot_roam check in the rearm
timer. If IWD is already doing a roam scan station->preparing_roam
should be set which will cause it to return true and stop any further
action.
Aborting (signal 11) [/usr/libexec/iwd]
iwd[426]: ++++++++ backtrace ++++++++
iwd[426]: #0 0x7f858d7b2090 in /lib/x86_64-linux-gnu/libc.so.6
iwd[426]: #1 0x443df7 in network_get_security() at ome/locus/workspace/iwd/src/network.c:287
iwd[426]: #2 0x421fbb in station_roam_scan_notify() at ome/locus/workspace/iwd/src/station.c:2516
iwd[426]: #3 0x43ebc1 in scan_finished() at ome/locus/workspace/iwd/src/scan.c:1861
iwd[426]: #4 0x43ecf2 in get_scan_done() at ome/locus/workspace/iwd/src/scan.c:1891
iwd[426]: #5 0x4cbfe9 in destroy_request() at ome/locus/workspace/iwd/ell/genl.c:676
iwd[426]: #6 0x4cc98b in process_unicast() at ome/locus/workspace/iwd/ell/genl.c:954
iwd[426]: #7 0x4ccd28 in received_data() at ome/locus/workspace/iwd/ell/genl.c:1052
iwd[426]: #8 0x4c79c9 in io_callback() at ome/locus/workspace/iwd/ell/io.c:120
iwd[426]: #9 0x4c62e3 in l_main_iterate() at ome/locus/workspace/iwd/ell/main.c:476
iwd[426]: #10 0x4c6426 in l_main_run() at ome/locus/workspace/iwd/ell/main.c:519
iwd[426]: #11 0x4c6752 in l_main_run_with_signal() at ome/locus/workspace/iwd/ell/main.c:645
iwd[426]: #12 0x405987 in main() at ome/locus/workspace/iwd/src/main.c:600
iwd[426]: #13 0x7f858d793083 in /lib/x86_64-linux-gnu/libc.so.6
iwd[426]: +++++++++++++++++++++++++++
If the authenticator has already set an snonce then the packet must
be a retransmit. Handle this by sending 3/4 again but making sure
to not reset the frame counter.
Old wpa_supplicant versions do not set the secure bit on 2/4 during
rekeys which causes IWD to reject the message and eventually time out.
Modern versions do set it correctly but even Android 13 (Pixel 5a)
still uses an ancient version of wpa_supplicant which does not set the
bit.
Relax this check and instead just print a warning but allow the message
to be processed.
In try_handshake_complete() we return early if all the keys had
been installed before (initial associations). For rekeys we can
now emit the REKEY_COMPLETE event which lets AP mode reset the
rekey timer for that station.
When the TK is installed the 'ptk_installed' flag was never set to
zero. For initial associations this was fine (already zero) but for
rekeys the flag needs to be unset so try_handshake_complete knows
if the key was installed. This is consistent with how gtk/igtk keys
work as well.
Rekeys for station mode don't need to know when complete since
there is nothing to do once done. AP mode on the other hand needs
to know if the rekey was successful in order to reset/set the next
rekey timer.
The second handshake message was hard coded with the secure bit as
zero but for rekeys the secure bit should be set to 1. Fix this by
changing the 2/4 builder to take a boolean which will set the bit
properly.
It should be noted that hostapd doesn't check this bit so EAPoL
worked just fine, but IWD's checks are more strict.
The PEAP RFC wants implementations to enforce that Phase2 methods have
been successfully completed prior to accepting a successful result TLV.
However, when TLS session resumption is used, some servers will skip
phase2 methods entirely and simply send a Result TLV with a success
code. This results in iwd (erroneously) rejecting the authentication
attempt.
Fix this by marking phase2 method as successful if session resumption is
being used.
This adds a builder which sets the country IE in probes/beacons.
The IE will use the 'single subband triplet sequence' meaning
dot11OperatingClassesRequired is false. This is much easier to
build and doesn't require knowing an operating class.
The IE itself is variable in length and potentially could grow
large if the hardware has a weird configuration (many different
power levels or segmentation in supported channels) so the
overall builder was changed to take the length of the buffer and
warnings will be printed if any space issues are encountered.