Due to timing this test sometimes does not pass because it was
just asserting on the device state rather than waiting for a
change. This generally worked but not always.
Both these tests create many radios which sometimes causes timing
problems when hwsim is running. Since hwsim is not required for
these tests we can disable it and increase test reliability.
When network namespaces are introduced there may be multiple
IWD class instances. This makes IWD.get_instance ambiguous
when namespaces are involved. iwd.py has been refactored to
not use IWD.get_instance, but testutil still needs it since
its purely based off interface names. Rather than remove it
and modify every test to pass the IWD object we can just
maintain the existing behavior for only the root namespace.
The agent path was generated based on the current time which
sometimes yielded duplicate paths if agents were created quickly
after one another. Instead a simple iterator removes any chance
of a duplicate path.
If running multiple tests testNetconfig would fail due to the
hardcoded wln0 in the dhcpd.conf file. dhcpd can actually start
by passing in the interface to the run command rather than
inside the config file.
The existing AP tests needed to be modified to start IWD from
python since the DHCP test uses a different main.conf.
Also removed some stale hw.conf options that are no longer used.
If the caller specifies the number of devices only return that many.
Some sub-tests may only need a subset of the total number of devices
for the test. If the number of devices expected is less than the total
being returned, python would throw an exception.
If a test does not need any hostapd instances but still loads
hostapd.py for some reason we want to gracefully throw an
exception rather than fail in some other manor.
Add the new wpas.Wpas class roughly based on hostapd.HostapdCLI but only
adding methods for the P2P-related stuff.
Adding "wpa_supplicant" to -v will enable output from the wpa_supplicant
process to be printed and "wpa_supplicant-dbg" will make it more verbose
("wpa_supplicant" is not needed because it seems to be automatically
enabled because of the glob matching in ctx.is_verbose)
The host systems configuration directories for IWD/EAD were
being mounted in the virtual machine. This required that the
host create these directories before hand. Instead we can
just set up the system and IWD/EAD to use directories in /tmp
that we create when we start the VM. This avoids the need for
any host configuration.
This module is essentially a heavily stripped down version of iwd.py
to work with EAD. Class names were changed to match EAD but basically
the EAD, Adapter, and AdapterList classes map 1:1 to IWD, Device, and
DeviceList.
This is somewhat of a hack, but the IWDDBusAbstract is a very
convenient abstraction to DBus objects. The only piece that restricts
it to IWD is the hardcoded IWD_SERVICE. Instead we can pass in a
keyword argument which defaults to IWD_SERVICE. That way other modules
(like EAD) can utilize this abstraction with their own service simply
by changing that service argument.
The interface was hard coded to wln0 which works when running single
tests but not when running multiple. Instead use the actual ifname
that hostapd is using.
Tests that DHCP using IWD's internal netconfig functions properly.
The actual IP address assignment is not verified, but since IWD does
not signal the connection as successful unless DHCP succeeds we
can assume it was successful by checking that the device is connected.
The process of actually starting dhcpd and configuring the interfaces
is quite simple so it was left in the autotest itself. If (or when)
more tests require IP capabilities (p2p, FILS, etc) this could be
moved into test-runner itself and be made common. The reason I did not
put it in there now is a) because this is the only test and b) more
complex DHCP cases are likely to develop and may require more than this
simplistic setup (like multiple APs/interfaces)
The AdHoc functionality in iwd.py was not consistent at all with
how all the other classes worked (my bad). Instead we can create
a very simple AdHocDevice class which inherits all the DBus magic
in the IWDDBusAbstract class.
Many tests waited on the network object 'connected' property after
issuing a Connect command. This is not correct as 'connected' is
set quite early in the connection process. The correct way of doing
this is waiting for the device state to change to connected.
This common code was replaced, hopefully putting to rest any random
failures that happen occasionally.
Some cleanup code got removed by mistake which cleared out any
hwsim rules before the next subtest. Without this the second test
would end up getting erroneous signal strength numbers in the scan
results causing a failure.
This got added in the re-write but a __del__ method was also
added to the Rule class as well. This caused problems if hwsim
cleaned up since it removed the rules, which caused each rule
to call __del__. Since the rule had already been removed there
was no longer a DBus interface which raised an exception.
Before the re-write there was interesting escapes being used for
set_neighbor. Curiously now hostapd fails to set the neighbor due
to these escapes so they have been removed.
Switched around hwsim rules with the IWD initializer to avoid
IWD periodically scanning before hwsim rules are in place. Removed
some unneeded code during teardown.
Changed to wait for DeviceState instead of network object as well
as moved hwsim rules ahead of the IWD initializer to avoid IWD
scanning before the rules are fully in place.
This test occationally failed, and it uses the old style of waiting
for connected on the network object instead of the device object.
The hwsim rule was also moved ahead of the IWD() initializer which
ensures that IWD doesn't scan before the rule can be set/processed.
This test occationally fails due to no hwsim rules. Basically we
were just expecting iwd to connect to one of 3 access points but
the ranking was equal, so it chose the first in the scan list.
Now a signal strength is assigned to each AP to steer IWD into
connecting to the expected AP.
As with other tests, wait on device state instead of the network
object. The connectivity test was also changed to not check for
group traffic since AP does not negotiate the IGTK at this time.
There were a number of fixes here. The waits were changed to wait
on the device state instead of the network state and hwsim rules
were removed after the test as to not interfere with future tests.
One of the rules was setting the signal to -10000 wich was causing
the ranking to be zero.