In order to complete the learned default group behavior station needs
to be aware of when an SAE/OWE connection retried. This is all
handled within netdev/sae so add a new netdev event so station can
set the appropriate network flags to prevent trying the non-default
group again.
Essentially exposes (and renames) netdev_ft_tx_associate in order to
be called similarly to netdev_reassociate/netdev_connect where a
connect callback can be provided. This will fix the current bug where
if association times out during FT IWD will hang and never transition
to disconnected.
This also removes the calling of the FT_ROAMED event and instead just
calls the connect callback (since its now set). This unifies the
callback path for reassociation and FT roaming.
Beacon loss handling was removed in the past because it was
determined that this even always resulted in a disconnect. This
was short sighted and not always true. The default kernel behavior
waits for 7 lost beacons before emitting this event, then sends
either a few nullfuncs or probe requests to the BSS to determine
if its really gone. If these come back successfully the connection
will remain alive. This can give IWD some time to roam in some
cases so we should be handling this event.
Since beacon loss indicates a very poor connection the roam scan
is delayed by a few seconds in order to give the kernel a chance
to send the nullfuncs/probes or receive more beacons. This may
result in a disconnect, but it would have happened anyways.
Attempting a roam mainly handles the case when the connection can
be maintained after beacon loss, but is still poor.
FT is now driven (mostly) by station which removes the connect
callback. Instead once FT is completed, keys set, etc. netdev
will send an event to notify station.
netdev does not keep any pointers to struct scan_bss arguments that are
passed in. Make this explicitly clear by modifying the API definitions
and mark these as const.
This adds a new netdev event for packet loss notifications from
the kernel. Depending on the scenario a station may see packet
loss events without any other indications like low RSSI. In these
cases IWD should still roam since there is no data flowing.
This variable ended up being used only on the fast-transition path. On
the re-associate path it was never used, but memcpy-ied nevertheless.
Since its only use is by auth_proto based protocols, move it to the
auth_proto object directly.
Due to how prepare_ft works (we need prev_bssid from the handshake, but
the handshake is reset), have netdev_ft_* methods take an 'orig_bss'
parameter, similar to netdev_reassociate.
If the connected BSS announces that it is switching operating channel,
the kernel may emit the NL80211_CMD_CH_SWTICH_NOTIFY event when the
switch is complete. Add a new netdev event NETDEV_EVENT_CHANNEL_SWITCHED
to signal to interested modules that the connected BSS has changed
channel. The event carries a pointer to the new channel's frequency.
Since netdev maintains the list of FT over DS info structs there is not
any need for station to get callbacks when the initial action frame
is received, or not. This removes the need for the callback handler,
user data, and response timeout.
FT-over-DS followed the same pattern as FT-over-Air which worked,
but really limited how the protocol could be used. FT-over-DS is
unique in that we can authenticate to many APs by sending out
FT action frames and parsing the results. Once parsed IWD can
immediately Reassociate, or do so at a later time.
To take advantage of this IWD need to separate FT-over-DS into
two stages: action frame and reassociation.
The initial action frame stage is started by netdev. The target
BSS is sent an FT action frame and a new cache entry is created
in ft.c. Once the response is received the entry is updated
with all the needed data to Reassociate. To limit the record
keeping on netdev each FT-over-DS entry holds a userdata pointer
so netdev doesn't need to maintain its own list of data for
callbacks.
Once the action response is parsed netdev will call back signalling
the action frame sequence was completed (either successfully or not).
At this point the 'normal' FT procedure can start using the
FT-over-DS auth-proto.
This makes conversions simpler. Also fixes a bug where P2P devices were
printed with an incorrect Mode value since dbus_iftype_to_string was
assuming that an iftype as defined in nl80211.h was being passed in,
while netdev was returning an enum value defined in netdev.h.
Roaming on a full mac card is quite different than soft mac
and needs to be specially handled. The process starts with
the CMD_ROAM event, which tells us the driver is already
roamed and associated with a new AP. After this it expects
the 4-way handshake to be initiated. This in itself is quite
simple, the complexity comes with how this is piped into IWD.
After CMD_ROAM fires its assumed that a scan result is
available in the kernel, which is obtained using a newly
added scan API scan_get_firmware_scan. The only special
bit of this is that it does not 'schedule' a scan but simply
calls GET_SCAN. This is treated special and will not be
queued behind any other pending scan requests. This lets us
reuse some parsing code paths in scan and initialize a
scan_bss object which ultimately gets handed to station so
it can update connected_bss/bss_list.
For consistency station must also transition to a roaming state.
Since this roam is all handled by netdev two new events were
added, NETDEV_EVENT_ROAMING and NETDEV_EVENT_ROAMED. Both allow
station to transition between roaming/connected states, and ROAMED
provides station with the new scan_bss to replace connected_bss.
With AP now getting its own diagnostic interface it made sense
to move the netdev_station_info struct definition into its own
header which eventually can be accompanied by utilities in
diagnostic.c. These utilities can then be shared with AP and
station as needed.
This is a nl80211 dump version of netdev_get_station aimed at
AP mode. This will dump all stations, parse into
netdev_station_info structs, and call the callback for each
individual station found. Once the dump is completed the destroy
callback is called.
This adds a generalized API for GET_STATION. This API handles
calling and parsing the results into a new structure,
netdev_station_info. This results structure will hold any
data needed by consumers of netdev_get_station. A helper API
(netdev_get_current_station) was added as a convenience which
automatically passes handshake->aa as the MAC.
For now only the RSSI is parsed as this is already being
done for RSSI polling/events. Looking further more info will
be added such as rx/tx rates and estimated throughput.
Allow netdev_create_from_genl callers to draw a random or non-random MAC
and pass it in the parameter instead of a bool to tell us to generating
the MAC locally. In P2P we are generating the MAC some time before
creating the netdev in order to pass it to the peer during negotiation.
Create and destroy the device state struct and the DBus interfaces in a
way more similar to the Station, AdHoc and AP interfaces. Drop
netdev_get_device() and the device specific code in netdev that as far
as I can tell wasn't needed.
This adds a new API netdev_anqp_request which will send out a GAS
request, parses the GAS portion of the response and forwards the
ANQP response to the callers callback.
FT-over-DS is a way to do a Fast BSS Transition using action frames for
the authenticate step. This allows a station to start a fast transition
to a target AP while still being connected to the original AP. This,
in theory, can result in less carrier downtime.
The existing ft_sm_new was removed, and two new constructors were added;
one for over-air, and another for over-ds. The internals of ft.c mostly
remain the same. A flag to distinguish between air/ds was added along
with a new parser to parse the action frames rather than authenticate
frames. The IE parsing is identical.
Netdev now just initializes the auth-proto differently depending on if
its doing over-air or over-ds. A new TX authenticate function was added
and used for over-ds. This will send out the IEs from ft.c with an
FT Request action frame.
The FT Response action frame is then recieved from the AP and fed into
the auth-proto state machine. After this point ft-over-ds behaves the
same as ft-over-air (associate to the target AP).
Some simple code was added in station.c to determine if over-air or
over-ds should be used. FT-over-DS can be beneficial in cases where the
AP is directing us to roam, or if the RSSI falls below a threshold.
It should not be used if we have lost communication to the AP all
(beacon lost) as it only works while we can still talk to the original
AP.
Make netdev_create_from_genl public and change signature to return the
created netdev or NULL. Also add netdev_destroy that destroys and
unregisters the created netdevs. Both will be used to move the
whole interface management to a new file.
Also add a mask parameter to wiphy_get_supported_iftypes to make sure
the SupportedModes property only contains the values that can be used
as Device.Mode.
Several netdev events benefit from including event data in the callback.
This is similar to how the connect callback works as well. The content
of the event data is documented in netdev.h (netdev_event_func_t).
By including event data for the two disconnect events, we can pass the
reason code to better handle the failure in station.c. Now, inside
station_disconnect_event, we still check if there is a pending connection,
and if so we can call the connect callback directly with HANDSHAKE_FAILED.
Doing it this way unifies the code path into a single switch statment to
handle all failures.
In addition, we pass the RSSI level index as event data to
RSSI_LEVEL_NOTIFY. This removes the need for a getter to be exposed in
netdev.h.
This change cleans up the mess of status vs reason codes. The two
types of codes have already been separated into different enumerations,
but netdev was still treating them the same (with last_status_code).
A new 'event_data' argument was added to the connect callback, which
has a different meaning depending on the result of the connection
(described inside netdev.h, netdev_connect_cb_t). This allows for the
removal of netdev_get_last_status_code since the status or reason
code is now passed via event_data.
Inside the netdev object last_status_code was renamed to last_code, for
the purpose of storing either status or reason. This is only used when
a disconnect needs to be emitted before failing the connection. In all
other cases we just pass the code directly into the connect_cb and do
not store it.
All ocurrences of netdev_connect_failed were updated to use the proper
code depending on the netdev result. Most of these simply changed from
REASON_CODE_UNSPECIFIED to STATUS_CODE_UNSPECIFIED. This was simply for
consistency (both codes have the same value).
netdev_[authenticate|associate]_event's were updated to parse the
status code and, if present, use that if their was a failure rather
than defaulting to UNSPECIFIED.
Soon BSS blacklisting will be added, and in order to properly decide if
a BSS should be blacklisted we need the status code on a failed
connection. This change stores the status code when there is a failure
in netdev and adds a getter to retrieve later. In many cases we have
the actual status code from the AP, but in some corner cases its not
obtainable (e.g. an error sending an NL80211 command) in which case we
just default to MMPDU_REASON_CODE_UNSPECIFIED.
Rather than continue with the pattern of setting netdev->result and
now netdev->last_status_code, the netdev_connect_failed function was
redefined so its no longer used as both a NL80211 callback and called
directly. Instead a new function was added, netdev_disconnect_cb which
just calls netdev_connect_failed. netdev_disconnect_cb should not be
used for all the NL80211 disconnect commands. Now netdev_connect_failed
takes both a result and status code which it sets in the netdev object.
In the case where we were using netdev_connect_failed as a callback we
still need to set the result and last_status_code but at least this is
better than having to set those in all cases.
There was somewhat overlapping functionality in the device_watch
infrastructure as well as the netdev_event_watch. This commit combines
the two into a single watch based on the netdev object and cleans up the
various interface additions / removals.
With this commit the interfaces are created when the netdev/device is
switched to Powered=True state AND when the netdev iftype is also in the
correct state for that interface. If the device is brought down, then
all interfaces except the .Device interface are removed.
This will make it easy to implement Device.Mode property properly since
most nl80211 devices need to be brought into Powered=False state prior
to switching the iftype.