The wait_for_event() function allows past events to cause this
function to return immediately. This behavior is known, and
relied on for some tests. But in some cases you want to only
handle _new_ events, so we need a way to clear out prior events.
The default() method was added for convenience but was extending the
test times significantly when the hostapd config was lengthy. This
was because it called set_value for every value regardless if it
had changed. Instead store the current configuration and in default()
only reset values that differ.
If tests end in an unknown state it is sometimes required that IWD
be stopped manually in order for future tests to run. Add a stop()
method so test tearDown() methods can explicitly stop IWD.
The path for IWD to call this doesn't ever happen in autotests
but during debugging of the DPP agent it was noticed that the
DBus signature was incorrect and would always result in an error
when calling from IWD.
- wait_for_event was returning a list in certain cases, not the
event itself
- The configurator ID was not being printed (',' instead of '%')
- The DPP ID was not being properly waited for with PKEX
In many tests the hostapd configuration does not include all the
values that a test uses. Its expected that each individual test
will add the values required. In many cases its required each test
slightly alter the configuration for each change every other test
has to set the value back to either a default or its own setting.
This results in a ton of duplicated code mainly setting things
back to defaults.
To help with this problem the hostapd configuration is read in
initially and stored as the default. Tests can then simply call
.default() to set everything back. This significantly reduces or
completely removes a ton of set_value() calls.
This does require that each hostapd configuration file includes all
values any of the subtests will set, which is a small price for the
convenience.
AP mode implements a few DBus methods/properties which are named
the same as station: Scan, Scanning, and GetOrderedNetworks. Allow
the Device object to work with these in AP mode by calling the
correct method if the Mode is 'ap'.
The AP mode device APIs were hacked together and only able to start
stop an AP. Now that the AP interface has more functionality its
best to use the DBus class template to access the full AP interface
capabilities.
The __str__ function assumed station mode which throws an exception
if the device is in AP mode. Fix this as well as print out the mode
the device is in.
This API optimizes scanning to run tests quickly by only scanning
the frequencies which hostapd is using. But if a test doesn't use
hostapd this API raises an uncaught exception.
Check if hostapd is being used, and if not just do a full scan.
Instead of requiring the initial condition be met when calling
wait_for_object_change, wait for it.
This is how every caller of this function uses it, specifically
with roaming where we first wait for DeviceState.roaming, then
call wait_for_object_change. This can be simplified for the caller
so the initial condition is first waited for.
Due to those variables being global (IWD class variables) calling either
unregister_psk_agent or del on one IWD class instance would unregister
all agents on all instances. Move .psk_agents and two other class
variables to the object. They were already referenced using "self."
as if they were object variables throughout the class.
This adds a few utilities for setting up an FT environment. All the
roaming tests basically copy/paste the same code for setting up the
hostapd instances and this can cause problems if not done correctly.
set_address() sets the MAC address on the device, and restarts hostapd
group_neighbors() takes a list of HostapdCLI objects and makes each a
neighbor to the others.
The neighbor report element requires the operating class which isn't
advertised by hostapd. For this we assume operating class 81 but this
can be set explicitly if it differs. Currently no roaming tests use
5/6GHz frequencies, and just in case an exception will be thrown if
the channel is greater than 14 and the op_class didn't change.
Test that the DHCPv4 lease got renewed after the T1 timer runs out.
Then also simulate the DHCPREQUEST during renew being lost and
retransmitted and the lease eventually getting renewed T1 + 60s later.
The main downside is that this test will inevitably take a while if
running in Qemu without the time travel ability.
Update the test and some utility code to run hostapd in an isolated net
namespace for connection_test.py. We now need a second hostapd
instance though because in static_test.py we test ACD and we need to
produce an IP conflict. Moving the hostapd instance unexpectedly fixes
dhcpd's internal mechanism to avoid IP conflicts and it would no longer
assign 192.168.1.10 to the second client, it'd notice that address was
already in use and assign the next free address, or fail if there was
none. So add a second hostapd instance that runs in the main namespace
together with the statically-configured client, it turns out the test
relies on the kernel being unable to deliver IP traffic to interfaces on
the same system.
By creating a new bus connection for each agent we can register multiple
with IWD. This did mean the agent interface needs to be unique for each
agent (removing _agent_manager_if) as well as tracking multiple agents
in a list.
The rekey/reauth logic was broken in a few different ways.
For rekeys the event list was not being reset so any past 4-way
handshake would allow the call to pass. This actually removes
the need for the sleep in the extended key ID test because the
actual handshake event is waited for correctly.
For both rekeys and reauths, just waiting for the EAP/handshake
events was not enough. Without checking if the client got
disconnected we essentially allow a full disconnect and reconnect,
meaning the rekey/reauth failed.
Now a 'disallow' array can be passed to wait_for_event which will
throw an exception if any events in that array are encountered
while waiting for the target event.
In UML if any process dies while test-runner is waiting for the DBus
service or some socket to be available it will block forever. This
is due to the way the non_block_wait works.
Its not optimal but it essentially polls over some input function
until the conditions are met. And, depending on the input function,
this can cause UML to hang since it never has a chance to go idle
and advance the time clock.
This can be fixed, at least for services/sockets, by sleeping in
the input function allowing time to pass. This will then allow
test-runner to bail out with an exception.
This patch adds a new wait_for_service function which handles this
automatically, and wait_for_socket was refactored to behave
similarly.
In iwd.py make sure all the static methods that touch IWD storage take the
storage_dir parameter instead of hardcoding IWD_STORAGE_DIR, and make
sure that parameter is actually used.
Create the directory if it doesn't exist before copying files into it.
This fixes a problem in testNetconfig where
`IWD.copy_to_storage('ssidTKIP.psk', '/tmp/storage')`
would result in /tmp/storage being created as a file, rather than a
directory containing a file, and resulting in IWD failing to start with:
`Failed to create /tmp/storage`
runner.py creates /tmp/iwd but that doesn't account for IWD sessions
with a custom storage dir path.
Extend test_ip_address_match to support IPv6 and to test the
netmask/prefix length while it reads the local address since those are
retrieved using the same API.
Modify testNetconfig to validate the prefix lengths, change the prefix
lengths to be less common values (not 24 bits for IPv4 or 64 for IPv6),
minor cleanup.
Similarly to ofono/phonesim allow tests to be skipped if wpa_supplicant
is not found on the system.
This required some changes to DPP/P2P where Wpas() should be called first
since this can now throw a SkipTest exception.
The Wpas class was also made to allow __del__ to be called without
throwing additional exceptions in case wpa_supplicant was not found.
The current way this was being done was to import collections and
use collections.Mapping. This has been deprecated since python 3.3
but has worked up until python 3.10. After python 3.10 this will
no longer work, and Mapping must be imported from collections.abc.
This was passing IFNAME= along with EAPOL_REAUTH which does not work
in the context of a hostapd socket where the iface is already implied.
This fixes that issue as well as resets the events array and actually
waits for the required events afterwards.
Use scapy library which allows one to easily construct and fudge various
network packets. This makes constructing spoofed packets much easier
and more readable compared to hex-encoded, hand-crafted frames.
The TA/BSSID addresses of spoofed disassociate frames were set
incorrectly. They should be using the 02:00:00:XX:XX:XX address, but
instead were being converted over to 42:00:00:XX:XX:XX address
There is really no reason to have hwsim create interfaces automatically
for test-runner. test-runner already does this for wpa_supplicant and
hostapd, and IWD can create the interface itself.
Similarly to hostapd.wait_for_event, IWD's variant needed to act on
an IO watch because events were being received prior to even calling
wait_for_event.
With how fast UML is hostapd events were being sent out prior to
ever calling wait_for_event. Instead set an IO watch on the control
socket and cache all events as they come. Then, when wait_for_event
is called, it can reference this list. If the event is found any
older events are purged from the list.
The AP-ENABLED event needed a special case because hostapd gets
started before the IO watch can be registered. To fix this an
enabled property was added which queries the state directly. This
is checked first, and if not enabled wait_for_event continues normally.
This was not being properly honored when existing networks were
already populated. This poses an issue for any test which uses
full_scan after setting radio values such as signal strength.
If an event is in response to some command which is returning an
unexpected value (unexpected with respect to wpas.py) handle_eow
would raise an exception.
Specifically with DPP this was being hit when the URI was being
returned.
Adds a new wait argument which, if false, will call the DBus method
and return immediately. This allows the caller to create multiple
radios very quickly, simulating (as close as we can) a wifi card
with dual phy's which appear in the kernel simultaneously.
The name argument was also changed to be mandatory, which is now
required by hwsim.