First, this was renamed to 'count_tokens_in_container' to be
more general purpose (i.e. include future array counting).
The way the tokens are counted also changed to be more intuitive.
While the previous way was correct, it was somewhat convoluted in
how it worked (finding the next parent of the objects parent).
Instead we can use the container token itself as the parent and
begin counting tokens. When we find a token with a parent index
less than the target we have reached the end of this container.
This also works for nested containers, including arrays since we
no longer rely on a key (which an array element would not have).
For example::
{
"first":{"foo":"bar"},
"second":{"foo2":"bar2"}
}
index 0 <overall object>
index 1 "first" with parent 0
index 2 {"foo":"bar"} with parent 1
Counting tokens inside "first"'s object we have:
index 3 "foo" with parent 2
index 4 "bar" with parent 3
If we continue counting we reach:
index 5 "second" with parent 0
This terminates the counting loop since the parent index is
less than '2' (the index of {"foo":"bar"} object).
In file included from ./ell/ell.h:15,
from ../../src/dpp.c:29:
../../src/dpp.c: In function ‘authenticate_request’:
../../ell/log.h:79:22: warning: format ‘%lu’ expects argument of type ‘long unsigned int’, but argument 8 has type ‘size_t’ {aka ‘unsigned int’} [-Wformat=]
79 | l_log(L_LOG_DEBUG, "%s:%s() " format, __FILE__, \
| ^~~~~~~~~~
../../ell/log.h:54:16: note: in definition of macro ‘l_log’
54 | __func__, format "\n", ##__VA_ARGS__)
| ^~~~~~
../../ell/log.h:103:31: note: in expansion of macro ‘L_DEBUG_SYMBOL’
103 | #define l_debug(format, ...) L_DEBUG_SYMBOL(__debug_desc, format, ##__VA_ARGS__)
| ^~~~~~~~~~~~~~
../../src/dpp.c:1235:3: note: in expansion of macro ‘l_debug’
1235 | l_debug("I-Nonce has unexpected length %lu", i_nonce_len);
| ^~~~~~~
Direct leak of 64 byte(s) in 1 object(s) allocated from:
#0 0x7fa226fbf0f8 in __interceptor_malloc (/usr/lib/gcc/x86_64-pc-linux-gnu/9.4.0/libasan.so.5+0x10c0f8)
#1 0x688c98 in l_malloc ell/util.c:62
#2 0x6c2b19 in msg_alloc ell/genl.c:740
#3 0x6cb32c in l_genl_msg_new_sized ell/genl.c:1567
#4 0x424f57 in netdev_build_cmd_authenticate src/netdev.c:3285
#5 0x425b50 in netdev_sae_tx_authenticate src/netdev.c:3385
Direct leak of 7 byte(s) in 1 object(s) allocated from:
#0 0x7fd748ad00f8 in __interceptor_malloc (/usr/lib/gcc/x86_64-pc-linux-gnu/9.4.0/libasan.so.5+0x10c0f8)
#1 0x688c21 in l_malloc ell/util.c:62
#2 0x4beec7 in handshake_state_set_vendor_ies src/handshake.c:324
#3 0x464e4e in station_handshake_setup src/station.c:1203
#4 0x472a2f in __station_connect_network src/station.c:2975
#5 0x473a30 in station_connect_network src/station.c:3078
#6 0x4ed728 in network_connect_8021x src/network.c:1497
Fixes: f24cfa481b ("handshake: Add setter for vendor IEs")
This implements a configurator in the responder role. Currently
configuring an enrollee is limited to only the connected network.
This is to avoid the need to go offchannel for any reason. But
because of this a roam, channel switch, or disconnect will cause
the configuration to fail as none of the frames are being sent
offchannel.
Added both enrollee and configurator roles, as well as the needed
logic inside the authentication protocol to verify role compatibility.
The dpp_sm's role will now be used when setting capability bits making
the auth protocol agnostic to enrollees or configurators.
This also allows the card to re-issue ROC if it ends in the middle of
authenticating or configuring as well as add a maximum timeout for
auth/config protocols.
IO errors were also handled as these sometimes can happen with
certain drivers but are not fatal.
Allows creating a new configuration object based on settings, ssid,
and akm suite (for configurator role) as well as converting a
configuration object to JSON.
Rather than hard coding ad0, use the actual frame data. There really
isn't a reason this would differ (only status attribute) but just
in case its better to use the frame data directly.
This is a minimal implementation only supporting legacy network
configuration, i.e. only SSID and PSK/passphrase are supported.
Missing features include:
- Fragmentation/comeback delay support
- DPP AKM support
- 8021x/PKEX support
This implements the DPP protocol used to authenticate to a
DPP configurator.
Note this is not a full implementation of the protocol and
there are a few missing features which will be added as
needed:
- Mutual authentication (needed for BLE bootstrapping)
- Configurator support
- Initiator role
The presence procedure implemented is a far cry from what the spec
actually wants. There are two reason for this: a) the kernels offchannel
support is not at a level where it will work without rather annoying
work arounds, and b) doing the procedure outlined in the spec will
result in terrible discovery performance.
Because of this a simpler single channel announcement is done by default
and the full presence procedure is left out until/if it is needed.
This is a minimal wrapper around jsmn.h to make things a bit easier
for iterating through a JSON object.
To use, first parse the JSON and create a contents object using
json_contents_new(). This object can then be used to initialize a
json_iter object using json_iter_init().
The json_iter object can then be parsed with json_iter_parse by
passing in JSON_MANDATORY/JSON_OPTIONAL arguments. Currently only
JSON_STRING and JSON_OBJECT types are supported. Any JSON_MANDATORY
values that are not found will result in an error.
If a JSON_OPTIONAL string is not found, the pointer will be NULL.
If a JSON_OPTIONAL object is not found, this iterator will be
initialized but 'start' will be -1. This can be checked with a
convenience macro json_object_not_found();
Static analysis was not happy since this return can be negative and
it was being fed into an unsigned argument. In reality this cannot
happen since the key buffer is always set to the maximum size supported
by any curves.
This module provides a convenient wrapper around both
CMD_[CANCEL_]_REMAIN_ON_CHANNEL APIs.
Certain protocols require going offchannel to send frames, and/or
wait for a response. The frame-xchg module somewhat does this but
has some limitations. For example you cannot just go offchannel;
an initial frame must be sent out to start the procedure. In addition
frame-xchg does not work for broadcasts since it expects an ACK.
This module is much simpler and only handles going offchannel for
a duration. During this time frames may be sent or received. After
the duration the caller will get a callback and any included error
if there was one. Any offchannel request can be cancelled prior to
the duration expriring if the offchannel work has finished early.
The disconnect event handler was mistakenly bailing out if FT or
reassociation was going on. This was done because a disconnect
event is sent by the kernel when CMD_AUTH/CMD_ASSOC is used.
The problem is an AP could also disconnect IWD which should never
be ignored.
To fix this always parse the disconnect event and, if issued by
the AP, always notify watchers of the disconnect.
LLD 13 and GNU ld 2.37 support -z start-stop-gc which allows garbage
collection of C identifier name sections despite the __start_/__stop_
references. GNU ld before 2015-10 had the behavior as well. Simply set
the retain attribute so that GCC 11 (if configure-time binutils is 2.36
or newer)/Clang 13 will set the SHF_GNU_RETAIN section attribute to
prevent garbage collection.
Without the patch, there are linker errors with -z start-stop-gc
(LLD default) when -Wl,--gc-sections is used:
```
ld.lld: error: undefined symbol: __start___eap
>>> referenced by eap.c
>>> src/eap.o:(eap_init)
```
The remain attribute will not be needed if the metadata sections are
referenced by code directly.
ap.c has been mostly careful to call the event handler at the end of any
externally called function to allow methods like ap_free() to be called
within the handler, but that isn't enough. For example in
ap_del_station we may end up emitting two events: STATION_REMOVED and
DHCP_LEASE_EXPIRED. Use a slightly more complicated mechanism to
explicitly guard ap_free calls inside the event handler.
To make it easier, simplify cleanup in ap_assoc_reassoc with the use of
_auto_.
In ap_del_station reorder the actions to send the STATION_REMOVED event
first as the DHCP_LEASE_EXPIRED is a consequence of the former and it
makes sense for the handler to react to it first.
src/eap.c: In function 'eap_rx_packet':
src/eap.c:419:50: error: 'vendor_type' may be used uninitialized in this function [-Werror=maybe-uninitialized]
419 | (type == EAP_TYPE_EXPANDED && vendor_id == (id) && vendor_type == (t))
| ^~
src/eap.c:430:11: note: 'vendor_type' was declared here
430 | uint32_t vendor_type;
It isn't clear why GCC complains about vendor_type, but not vendor_id.
But in all cases if type == EAP_TYPE_EXPANDED, then vendor_type and
vendor_id are set. Silence this spurious warning.
There is an unchecked NULL pointer access in network_has_open_pair.
open_info can be NULL, when out of multiple APs in range that advertise
the same SSID some advertise OWE transition elments and some don't.
The Hotspot 2.0 spec has some requirements that IWD was missing depending
on a few bits in extended capabilities and the HS2.0 indication element.
These requirements correspond to a few sysfs options that can be set in
the kernel which are now set on CONNECTED and unset on DISCONNECTED.
Netconfig was the only user of sysfs but now other modules will
also need it.
Adding existing API for IPv6 settings, a IPv4 and IPv6 'supports'
checker, and a setter for IPv4 settings.
The way a SA Query was done following a channel switch was slightly
incorrect. One because it is only needed when OCVC is set, and two
because IWD was not waiting a random delay between 0 and 5000us as
lined out by the spec. This patch fixes both these issues.
Cache the latest v4 and v6 domain string lists in struct netconfig state
to be able to more easily detect changes in those values in future
commits. For that split netconfig_set_domains's code into this function,
which now only commits the values in netconfig->v{4,6}_domain{,s} to the
resolver, and netconfig_domains_update() which figures out the active
domains string list and saves it into netconfig->v{4,6}_domain{,s}. This
probably saves some cycles as the callers can now decide to only
recalculate the domains list which may have changed.
While there simplify netconfig_set_domains return type to void as the
result was always 0 anyway and was never checked by callers.
Cache the latest v4 and v6 DNS IP string lists in struct netconfig state
to be able to more easily detect changes in those values in future
commits. For that split netconfig_set_dns's code into this function,
which now only commit the values in netconfig->dns{4,6}_list to the
resolver, and netconfig_dns_list_update() which figures out the active
DNS IP address list and saves it in netconfig->dns{4,6} list. This
probably saves some cycles as the callers can now decide to only
recalculate the dns_list which may have changed.
While there simplify netconfig_set_dns return type to void as the result
was always 0 anyway and was never checked by callers.
Cache the latest v4 and v6 gateway IP string in struct netconfig state
to be able to more easily detect changes in those values in future
commits and perhaps to simplify the ..._routes_install functions.
netconfig_ipv4_get_gateway's out_mac parameter can now be NULL. While
editing that function fix a small formatting annoyance.
Use a separate fils variable to make the code a bit prettier.
Also make sure that the out_mac parameter is not NULL prior to storing
the gateway_mac in it.
Add netconfig_enabled() and use that in all places that want to know
whether network configuration is enabled. Drop the enable_network_config
deprecated setting, which was only being handled in one of these 5 or so
places.
This code path was never tested and used to ensure a OWE transition
candidate gets selected over an open one (e.g. if all the BSS's are
blacklisted). But this logic was incorrect and the path was being
taken for BSS's that did not contain the owe_trans element, basically
all BSS's. For RSN's this was somewhat fine since the final check
would set a candidate, but for open BSS's the loop would start over
and potentially complete the loop without ever returning a candidate.
If fallback was false, NULL would be returned.
To fix this only take the OWE transition path if its an OWE transition
BSS, i.e. inverse the logic.
Normally Beacon Reporting subelements are present only if repeated
measurements are requested. However, an all-zero Beacon Reporting
subelement is included by some implementations. Handle this case
similarly to the absent case.
Since Reporting Detail subelement is listed as 'extensible', make sure
that the length check is not overly restrictive. We only interpret the
first field.
It was seen during testing that several offload-capable cards
were not including the OCI in the 4-way handshake. This made
any OCV capable AP unconnectable.
To be safe disable OCV on any cards that support offloading.
802.11 requires an STA initiate the SA Query procedure on channel
switch events. This patch refactors sending the SA Query into its
own routine and starts the procedure when the channel switch event
comes in.
In addition the OCI needs to be verified, so the channel info is
parsed and set into the handshakes chandef.
There are several events for channel switching, and nl80211cmd was
naming two of them "Channel Switch Notify". Change
CH_SWITCH_STARTED_NOTIFY to "Channel Switch Started Notify" to
distinguish the two events.
SA query is the final protocol that requires OCI inclusion and
verification. The OCI element is now included and verified in
both request and response frames as required by 802.11.
strcmp behavior is undefined if one of the parameters is NULL.
Server-id is a mandatory value and cannot be NULL. Gateway can be NULL
in DHCP, so check that explicitly.
Reported-by: Andrew Zaborowski <andrew.zaborowski@intel.com>
In certain situations, it is possible for us to know the MAC of the
default gateway when DHCP finishes. This is quite typical on many home
network and small network setups. It is thus possible to pre-populate
the ARP cache with the gateway MAC address to save an extra round trip
at connection time.
Another advantage is during roaming. After version 4.20, linux kernel
flushes ARP caches by default whenever netdev encounters a no carrier
condition (as is the case during roaming). This can prevent packets
from going out after a roam for a significant amount of time due to
lost/delayed ARP responses.
This implements the new handshake callback for setting a TK with
an extended key ID. The procedure is different from legacy zero
index TKs.
First the new TK is set as RX only. Then message 4 should be sent
out (so it uses the existing TK). This poses a slight issue with
PAE sockets since message order is not guaranteed. In this case
the 4th message is stored and sent after the new TK is installed.
Then the new TK is modified using SET_KEY to both send and
receive.
In the case of control port over NL80211 the above can be avoided
and we can simply install the new key, send message 4, and modify
the TK as TX + RX all in sequence, without waiting for any callbacks.
When UseDefaultInterface is set, iwd doesn't attempt to destroy and
recreate any default interfaces it detects. However, only a single
default interface was ever remembered & initialized. This is fine for
most cases since the kernel would typically only create a single netdev
by default.
However, some drivers can create multiple netdevs by default, if
configured to do so. Other usecases, such as tethering, can also
benefit if iwd initialized & managed all default netdevs that were
detected at iwd start time or device hotplug.
oci variable is always set during handshake_util_find_kde. Do not
initialize it unnecessarily to help the compiler / static analysis find
potential issues.
If OCI is not used, then the oci array is never initialized. Do not try
to include it in our GTK 2_of_2 message.
Fixes: ad4d639854 ("eapol: include OCI in GTK 2/2")
802.11 added Extended Key IDs which aim to solve the issue of PTK
key replacement during rekeys. Since swapping out the existing PTK
may result in data loss because there may be in flight packets still
using the old PTK.
Extended Key IDs use two key IDs for the PTK, which toggle between
0 and 1. During a rekey a new PTK is derived which uses the key ID
not already taken by the existing PTK. This new PTK is added as RX
only, then message 4/4 is sent. This ensure message 4 is encrypted
using the previous PTK. Once sent, the new PTK can be modified to
both RX and TX and the rekey is complete.
To handle this in eapol the extended key ID KDE is parsed which
gives us the new PTK key index. Using the new handshake callback
(handshake_state_set_ext_tk) the new TK is installed. The 4th
message is also included as an argument which is taken care of by
netdev (in case waiting for NEW_KEY is required due to PAE socekts).