Due to timing this test sometimes does not pass because it was
just asserting on the device state rather than waiting for a
change. This generally worked but not always.
==5279== 104 bytes in 2 blocks are definitely lost in loss record 1 of 1
==5279== at 0x4C2F0CF: malloc (vg_replace_malloc.c:299)
==5279== by 0x4655CD: l_malloc (util.c:61)
==5279== by 0x47116B: l_rtnl_address_new (rtnl.c:136)
==5279== by 0x438F4B: netconfig_get_dhcp4_address (netconfig.c:429)
==5279== by 0x438F4B: netconfig_ipv4_dhcp_event_handler
(netconfig.c:735)
==5279== by 0x491C77: dhcp_client_event_notify (dhcp.c:332)
==5279== by 0x491C77: dhcp_client_rx_message (dhcp.c:810)
==5279== by 0x492A88: _dhcp_default_transport_read_handler
(dhcp-transport.c:151)
==5279== by 0x46BECB: io_callback (io.c:118)
==5279== by 0x46B10C: l_main_iterate (main.c:477)
==5279== by 0x46B1DB: l_main_run (main.c:524)
==5279== by 0x46B3EA: l_main_run_with_signal (main.c:646)
==5279== by 0x403ECE: main (main.c:490)
Fix the AlwaysRandomizeAddress setting name.
Add the stricter specification of the extension syntax.
Clarify that GTC and MD5 can't be used as outer EAP methods with wifi.
Tracking of addresses that weren't set by us seemed a bit questionable.
Take this out for now. If this is ever needed, then a queue with
l_rtnl_address objects should be used.
Introduce a new v4_address member which will hold the currently
configured IPV4 address (static or obtained via DHCP). Use the new
l_rtnl_address class for this.
As a side-effect, lease expiration will now properly remove the
configured address.
This patch converts the code to use the new l_rtnl_address class. The
settings parsing code will now return an l_rtnl_address object which
can be installed directly.
Also, address removal path for static addresses has been removed, since
netconfig_reset() sets disable_ipv6 setting to '1', which will remove
all IPV6 addresses for the interface.
This patch converts the code to use the new l_rtnl_route class instead
of using l_rtnl_route6* utilities. The settings parsing code will now
return an l_rtnl_route object which can be installed directly.
Also, the route removal path has been removed since netconfig_reset()
sets disable_ipv6 setting to '1' which will remove all IPV6 routes and
addresses for the interface.
Our simulated environment was really only meant to test air-to-air
communication by using mac80211_hwsim. Protocols like DHCP use IP
communication which starts to fall apart when using hwsim radios.
Mainly unicast sockets do not work since there is no underlying
network infrastructure.
In order to simulate a more realistic environment network namespaces
are introduced in this patch. This allows wireless phy's to be added
to a network namespace and unique IWD instances manage those phys.
This is done automatically when 'NameSpaces' entries are configured
in hw.conf:
[SETUP]
num_radios=2
[NameSpaces]
ns0=rad1,...
This will create a namespace named ns0, and add rad1 to that
namespace. rad1 will not appear as a phy in what's being called the
'root' namespace (the default namespace).
As far as a test is concerned you can create a new IWD() class and
pass the namespace in. This will start a new IWD instance in that
namespace:
ns0 = ctx.get_namespace('ns0')
wd_ns0 = IWD(start_iwd=True, namespace=ns0)
'wd_ns0' can now be used to interact with IWD in that namespace, just
like any other IWD class object.
This also changes the resolve API a little bit to act as a 'set' API
instead of an incremental 'add' API. This is actually easier to manage
in the resolve module since both systemd and resolvconf want changes
wholesale and not incrementally.
Both these tests create many radios which sometimes causes timing
problems when hwsim is running. Since hwsim is not required for
these tests we can disable it and increase test reliability.
Waiting to request neighbor reports until we are in need of a roam
delays the roam time, and probably isn't as reliable since we are
most likely in a low RSSI state. Instead the neighbor report can
be requested immediately after connecting, saved, and used if/when
a roam is needed. The existing behavior is maintained if the early
neighbor report fails where a neighbor report is requested at the
time of the roam.
The code which parses the reports was factored out and shared
between the existing (late) neighbor report callback and the early
neighbor report callback.
Sometimes improperly written tests can end up causing future tests
to fail. For faster debugging you can now add a '+' after a given
autotest which will start that test and run all tests which come
alphabetically after it (as if you are running a full autotest suite).
Example:
./test-runner -A testWPA+
This will run testWPA, testWPA2, testWPA2-no-CCMP, testWPA2-SHA256,
and testWPA2withMFP.
This can result in strange test results since there was no less
than zero checks before subtracting the total tests from failed
tests. In case of an internal exception we can just set all values
to zero. This will be handled specially as we do for timeout
errors.
When network namespaces are introduced there may be multiple
IWD class instances. This makes IWD.get_instance ambiguous
when namespaces are involved. iwd.py has been refactored to
not use IWD.get_instance, but testutil still needs it since
its purely based off interface names. Rather than remove it
and modify every test to pass the IWD object we can just
maintain the existing behavior for only the root namespace.
You can now specify a limited list of subtests to run out of a
full auto-test using --sub-tests,-S. This option is limited in
that it is only meant to be used with a single autotest (since
it doesn't make much sense otherwise).
The subtest can be specified both with or without the file
extension.
Example usage:
./test-runner -A testAP -S failure_test,dhcp_test.py
This will only run the two subtests and exclude any other *.py
tests present in the test directory.
handshake_state_set_authenticator_ie must be called to set group_cipher
in struct handshake_shake before handshake_set_gtk_state, otherwise
handshake_set_gtk_state is unable to determine the key length to set
handshake state gtk.
Fixes: 4bc20a0979 ("ap: Start EAP-WSC authentication with WSC enrollees")
For now the RA client is ran automatically when DHCPv6 client starts.
RA takes care of installing / deleting prefix routes and installing the
default gateway. If Router Advertisements indicate support DHCPv6, then
DHCPv6 transactions are kicked off and the address is set / removed
automatically.
Stateless configuration is not yet supported.
Modern kernels ~5.4+ have changed the way lost beacons are
reported and effectively make the lost beacon event useless
because it is immediately followed by a disconnect event. This
does not allow IWD enough time to do much of anything before
the disconnect comes in and we are forced to fully re-connect
to a different AP.
The agent path was generated based on the current time which
sometimes yielded duplicate paths if agents were created quickly
after one another. Instead a simple iterator removes any chance
of a duplicate path.