The OSEN AKM uses the vendor specific IE, so when finding the RSNE
element we need to handle it specially to ensure that its both
a vendor specific element and it matches the WFA OUI since other
vendor specific elements may be included.
A new eapol API was added specifically for FILS (eapol_set_started). Since
either way is special cased for FILS, its a bit cleaner to just check the
AKM inside eapol_start and, if FILS, dont start any timeouts or start the
handshake (effectively what eapol_set_started was doing).
FILS needs to allocate an extra 16 bytes of key data for the AES-SIV
vector. Instead of leaving it up to the caller to figure this out (as
was done with the GTK builder) eapol_create_common can allocate the
extra space since it knows the MIC length.
This also updates _create_gtk_2_of_2 as it no longer needs to create
an extra data array.
Since FILS does not use a MIC, the 1/4 handler would always get called
for FILS PTK rekeys. We can use the fact that message 1/4 has no MIC as
well as no encrypted data to determine which packet it is. Both no MIC
and no encrypted data means its message 1/4. Anything else is 3/4.
crypto_derive_pairwise_ptk was taking a boolean to decide whether to
use SHA1 or SHA256, but for FILS SHA384 may also be required for
rekeys depending on the AKM.
crypto_derive_pairwise_ptk was changed to take l_checksum_type instead
of a boolean to allow for all 3 SHA types.
FILS-SHA384 got overlooked and the kek length was being hard coded
to 32 bytes when encrypting the key data. There was also one occurence
where the kek_len was just being set incorrectly.
In eapol_key_handle, 'have_snonce' is checked before decrypting the
key data. For FILS, there will be no snonce so this check can be
skipped if mic_len == 0.
The GTK handshake for FILS uses AES-SIV to encrypt the key data, and
does away with the MIC completely. Now, when finalizing the 2/2 GTK
packet we check the MIC length, and if zero we assume FILS is being
used and we use AES-SIV to encrypt the key data.
For FILS, there is no actual data being encrypted for GTK 2/2 (hence
why the input data length is zero). This results in only the SIV
being generated, which essentially serves the same purpose as a MIC.
FILS does not use a MIC, as well as requires encrypted data on GTK 2/2.
This updates eapol_create_gtk_2_of_2 to pass in extra data to
eapol_create_common, which will reserve room for this encrypted data.
Extra data is only reserved if mic_len == 0.
FILS does not use a MIC in EAPoL frames and also requires encrypted
data on all EAPoL frames. In the common builder the mic_len is now
checked and the flags are set appropriately.
FILS authentication does away with the MIC, so checking for key_mic
in the eapol key frame does not allow FILS to work. Now we pass in
the mic_len to eapol_verify_gtk_1_of_2, and if it is non-zero we can
check that the MIC is present in the frame.
FILS does not require an eapol_sm for authentication, but rekeys
are still performed using the 4-way handshake. Because of this
FILS needs to create a eapol_sm in a 'started' state, but without
calling eapol_start as this will initialize EAP and create handshake
timeouts.
This allows EAPoL to wait for any 4-way packets, and handle them
as rekeys.
Since eapol_encrypt_key_data already calculates the key data length and
encodes it into the key frame, we can just return this length and avoid
having to obtain it again from the frame.
If we receive handshake message 1/4 after we are already connected
the AP is attempting to rekey. This may not be allowed and if not
we do not process the rekey and emit HANDSHAKE_EVENT_REKEY_FAILED
so any listeners can handle accordingly.
In preparation for OWE supporting multiple groups eapol needed some
additional cases to handle the OWE AKM since OWE dictates the KEK,
KCK and MIC key lengths (depending on group).
Right now the PMK is hard coded to 32 bytes, which works for the vast
majority of cases. The only outlier is OWE which can generate a PMK
of 32, 48 or 64 bytes depending on the ECC group used. The PMK length
is already stored in the handshake, so now we can just pass that to
crypto_derive_pairwise_ptk
The crypto_ptk was hard coded for 16 byte KCK/KEK. Depending on the
AKM these can be up to 32 bytes. This changes completely removes the
crypto_ptk struct and adds getters to the handshake object for the
kck and kek. Like before the PTK is derived into a continuous buffer,
and the kck/kek getters take care of returning the proper key offset
depending on AKM.
To allow for larger than 16 byte keys aes_unwrap needed to be
modified to take the kek length.
The MIC length was hard coded to 16 bytes everywhere, and since several
AKMs require larger MIC's (24/32) this needed to change. The main issue
was that the MIC was hard coded to 16 bytes inside eapol_key. Instead
of doing this, the MIC, key_data_length, and key_data elements were all
bundled into key_data[0]. In order to retrieve the MIC, key_data_len,
or key_data several macros were introduced which account for the MIC
length provided.
A consequence of this is that all the verify functions inside eapol now
require the MIC length as a parameter because without it they cannot
determine the byte offset of key_data or key_data_length.
The MIC length for a given handshake is set inside the SM when starting
EAPoL. This length is determined by the AKM for the handshake.
If we haven't sent a PMKID, and we're not running EAP, then ignore
whatever PMKID the AP sends us. Frequently the APs send us garbage in
this field. For PSK and related AKMs, if the PMK is wrong, then we
simply fail to generate a proper MIC and the handshake would fail at a
later stage anyway.
After moving AP EAPoL code into eapol.c there were a few functions that
no longer needed to be public API's. These were changed to static's and
the header definition was removed.
Currently, netdev triggers the HANDSHAKE_COMPLETE event after completing
the SET_STATION (after setting the pairwise key). Depending on the timing
this may happen before the GTK/IGTK are set which will result in group
traffic not working initially (the GTK/IGTK would still get set, but group
traffic would not work immediately after DBus said you were connected, this
mainly poses a problem with autotests).
In order to fix this, several flags were added in netdev_handshake_state:
ptk_installed, gtk_installed, igtk_installed, and completed. Each of these
flags are set true when their respective keys are set, and in each key
callback we try to trigger the handshake complete event (assuming all the
flags are true). Initially the gtk/igtk flags are set to true, for reasons
explained below.
In the WPA2 case, all the key setter functions are called sequentially from
eapol. With this change, the PTK is now set AFTER the gtk/igtk. This is
because the gtk/igtk are optional and only set if group traffic is allowed.
If the gtk/igtk are not used, we set the PTK and can immediately trigger the
handshake complete event (since gtk_installed/igtk_installed are initialized
as true). When the gtk/igtk are being set, we immediately set their flags to
false and wait for their callbacks in addition to the PTK callback. Doing it
this way handles both group traffic and non group traffic paths.
WPA1 throws a wrench into this since the group keys are obtained in a
separate handshake. For this case a new flag was added to the handshake_state,
'wait_for_gtk'. This allows netdev to set the PTK after the initial 4-way,
but still wait for the gtk/igtk setters to get called before triggering the
handshake complete event. As a precaution, netdev sets a timeout that will
trigger if the gtk/igtk setters are never called. In this case we can still
complete the connection, but print a warning that group traffic will not be
allowed.
To prepare for FT over SAE, several case/if statements needed to include
IE_RSN_AKM_SUITE_FT_OVER_SAE. Also a new macro was introduced to remove
duplicate if statement code checking for both FT_OVER_SAE and SAE AKM's.
To avoid confusion in case of an authenticator side handshake_state
structure and eapol_sm structure, rename own_ie to supplicant_ie and
ap_ie to authenticator_ie. Also rename
handshake_state_set_{own,ap}_{rsn,wpa} and fix when we call
handshake_state_setup_own_ciphers. As a result
handshake_state_set_authenticator, if needed, should be called before
handshake_state_set_{own,ap}_{rsn,wpa}.