In certain cases the autoconnect portion of each subtest was connecting
to the network so fast that the check for obj.scanning was never successful
since IWD was already connected (and in turn not scanning). Since the
autoconnect path will wait for the device to be connected there really isn't
a reason to wait for any scanning conditions. The normal connect path does
need to wait for scanning though, and for this we can now use the new
scan_if_needed parameter to get_ordered_networks.
There is a very common block of code inside many autotests
which goes something like:
device.scan()
condition = 'obj.scanning'
wd.wait_for_object_condition(device, condition)
condition = 'not obj.scanning'
wd.wait_for_object_condition(device, condition)
network = device.get_ordered_network('an-ssid')
When you see the same pattern in nearly all the tests this shows
we need a helper. Basic autotests which merely check that a
connection succeeded should not need to write the same code again
and again. This code ends up being copy-pasted which can lead to
bugs.
There is also a code pattern which attempts to get ordered
networks, and if this fails it scans and tries again. This, while
not optimal, does prevent unneeded scanning by first checking if
any networks already exist.
This patch solves both the code reuse issue as well as the recovery
if get_ordered_network(s) fails. A new optional parameter was
added to get_ordered_network(s) which is False by default. If True
get_ordered_network(s) will perform a scan if the initial call
yields no networks. Tests will now be able to simply call
get_ordered_network(s) without performing a scan before hand.
These values were meant only to force IWD's BSS preference but
since the RSSI's were so low in some cases this caused a roam
immediately after connecting. This patch changes the RSSI values
to prevent a roam from happening.
'Connected' property of the network object is set before the connection
attempt is made and does not indicate a connection success. Therefore,
use device status property to identify the connection status of the device.
This test made it past the initial refactor to use HostapdCLI with the
'config' parameter. This avoids the need to iterate the hostapd map in
the actual test.
This test merely verifies hostapd receieved our measurement reports
and verified they were valid. Hostapd does not verify the actual
beacon report body. Really, the only way to test this is on an
actual network which makes these requests.
Hostapd has a feature where you can connect to its control socket and
receive events it generates. Currently we only send commands via this
socket.
First we open the socket (/var/run/hostapd/<iface>) and send the
ATTACH command. This tells hostapd we are ready and after this any
events will be sent over this socket.
A new API, wait_for_event, was added which takes an event string and
waits for some timeout. The glib event loop has been integrated into
this, though its not technically async since we are selecting over a
socket which blocks. To mitigate this a small timeout was chosen for
each select call and then wrapped in a while loop which waits for the
full timeout.
Its difficult to know 100%, but this random test failures appeared
to be caused by two issues. One was that get_ordered_network is being
checked for None, when it was returning a zero length array. Because
of this the scanning block was never executed in any cases. This was
fixed in the previous commit. The other issue was the disconnect at
the start of the tests. The disconnect will cause all pending scans
to cancel, which appeared to cause the scanning block below to be
skipped over quickly if the timing was right. Then, afterwards,
getting a single network failed because scanning was not complete.
If no networks are found, return None rather than an empty
array. This is easier to check by the caller (and was assumed
in some cases). Also add an exception to get_ordered_network
if no network is found.
If the config file passed in is not found we would continue and
eventually something else would fail. Instead immediately raise an
exception to be more clear on what is actually failing.
This autotest was manually creating the .known_network.freq file so
the UUID needed to be manually generated and updated for the test
to function correctly.