The diagnostic interface returns an error anyways if station is
not connected so it makes more sense to only bring the interface
up when its actually usable. This also removes the interface
when station disconnects, which was never done before (the
interface stayed up indefinitely due to a forgotten remove call).
When we're auto-connecting and have hidden networks configured, use
active scans regardless of whether we see any hidden BSSes in our
existing scan results.
This allows us to more effectively see/connect to hidden networks
when first powering up or after suspend.
Kernel might report hidden BSSes that are reported from beacon frames
separately than ones reported due to probe responses. This may confuse
the station network collation logic since the scan_bss generated by the
probe response might be removed erroneously when processing the scan_bss
that was generated due to a beacon.
Make sure that bss_match also takes the SSID into account and only
matches scan_bss structures that have the same BSSID and SSID contents.
Instead of manually managing whether to expire BSSes or not, use the
scanned frequency set instead. This makes the API slightly easier to
understand (dropping two boolean arguments in a row) and also a bit more
future-proof.
Commit d372d59bea checks whether a hidden network had a previous
connection attempt and re-tries. However, it inadvertently dropped
handling of a condition where a non-hidden network SSID is provided to
ConnectHiddenNetwork. Fix that.
Fixes: d372d59bea ("station: Allow ConnectHiddenNetwork to be retried")
The diagnostic interface serves no purpose until the AP has
been started. Any calls on it will return an error so instead
it makes more sense to bring it up when the AP is started, and
down when the AP is stopped.
Its useful being able to refer to the network Name/SSID once
an AP is started. For example opening an iwctl session with an
already started AP provides no way of obtaining the SSID.
In some cases the AP can send a deauthenticate frame right after
accepting our authentication. In this case the kernel never properly
sends a CMD_CONNECT event with a failure, even though CMD_COONNECT was
used to initiate the connection. Try to work around that by detecting
that a Deauthenticate event arrives prior to any Associte or Connect
events and handle this case as a connect failure.
Now that ConnectHiddenNetwork can be invoked while we're connected, set
the mac randomization hint parameter properly. The kernel will reject
requests if randomization is enabled while we're connected to a network.
If we forget a hidden network, then make sure to remove it from the
network list completely. Otherwise it would be possible to still
issue a Network.Connect to that particular object, but the fact that the
network is hidden would be lost.
==17639== 72 (16 direct, 56 indirect) bytes in 1 blocks are definitely
lost in loss record 3 of 3
==17639== at 0x4C2F0CF: malloc (vg_replace_malloc.c:299)
==17639== by 0x4670AD: l_malloc (util.c:61)
==17639== by 0x4215AA: scan_freq_set_new (scan.c:1906)
==17639== by 0x412A9C: parse_neighbor_report (station.c:1910)
==17639== by 0x407335: netdev_neighbor_report_frame_event
(netdev.c:3522)
==17639== by 0x44BBE6: frame_watch_unicast_notify (frame-xchg.c:233)
==17639== by 0x470C04: dispatch_unicast_watches (genl.c:961)
==17639== by 0x470C04: process_unicast (genl.c:980)
==17639== by 0x470C04: received_data (genl.c:1101)
==17639== by 0x46D9DB: io_callback (io.c:118)
==17639== by 0x46CC0C: l_main_iterate (main.c:477)
==17639== by 0x46CCDB: l_main_run (main.c:524)
==17639== by 0x46CF01: l_main_run_with_signal (main.c:656)
==17639== by 0x403EDE: main (main.c:490)
In the case that ConnectHiddenNetwork scans successfully, but fails for
some other reason, the network object is left in the scan results until
it expires. This will prevent subsequent attempts to use
ConnectHiddenNetwork with a .NotHidden error. Fix that by checking
whether a found network is hidden, and if so, allow the request to
proceed.
Rework the logic slightly so that this function returns an error message
on error and NULL on success, just like other D-Bus method
implementations. This also simplifies the code slightly.
We used to not allow to connect to a different network while already
connected. One had to disconnect first. This also applied to
ConnectHiddenNetwork calls.
This restriction can be dropped now. station will intelligently
disconnect from the current AP when a station_connect_network() is
issued.
If the disconnect fails and station_disconnect_onconnect_cb is called
with an error, we reply to the original message accordingly.
Unfortunately pending_connect is not unrefed or cleared in this case.
Fix that.
Fixes: d0ee923dda ("station: Disconnect, if needed, on a new connection attempt")
An invalid known_network.freq file containing several UUID
groups which have the same 'name' key results in memory leaks
in IWD. This is because the file is loaded and the group's
are iterated without detecting duplicates. This leads to the
same network_info's known_frequencies being set/overridden
multiple times.
To fix this we just check if the network_info already has a
UUID set. If so remove the stale entry.
There may be other old, invalid, or stale entries from previous
versions of IWD, or a user misconfiguring the file. These will
now also be removed during load.
netdev_shutdown calls queue_destroy on the netdev_list, which in turn
calls netdev_free. netdev_free invokes the watches to notify them about
the netdev being removed. Those clients, or anything downstream can
still invoke netdev_find. Unfortunately queue_destroy is not re-entrant
safe, so netdev_find might return stale data. Fix that by using
l_queue_peek_head / l_queue_pop_head instead.
src/station.c:station_enter_state() Old State: connecting, new state:
connected
^CTerminate
src/netdev.c:netdev_free() Freeing netdev wlan1[6]
src/device.c:device_free()
Removing scan context for wdev 100000001
src/scan.c:scan_context_free() sc: 0x4ae9ca0
src/netdev.c:netdev_free() Freeing netdev wlan0[48]
src/device.c:device_free()
src/station.c:station_free()
src/netconfig.c:netconfig_destroy()
==103174== Invalid read of size 8
==103174== at 0x467AA9: l_queue_find (queue.c:346)
==103174== by 0x43ACFF: netconfig_reset (netconfig.c:1027)
==103174== by 0x43AFFC: netconfig_destroy (netconfig.c:1123)
==103174== by 0x414379: station_free (station.c:3369)
==103174== by 0x414379: station_destroy_interface (station.c:3466)
==103174== by 0x47C80C: interface_instance_free (dbus-service.c:510)
==103174== by 0x47C80C: _dbus_object_tree_remove_interface
(dbus-service.c:1694)
==103174== by 0x47C99C: _dbus_object_tree_object_destroy
(dbus-service.c:795)
==103174== by 0x409A87: netdev_free (netdev.c:770)
==103174== by 0x4677AE: l_queue_clear (queue.c:107)
==103174== by 0x4677F8: l_queue_destroy (queue.c:82)
==103174== by 0x40CDC1: netdev_shutdown (netdev.c:5089)
==103174== by 0x404736: iwd_shutdown (main.c:78)
==103174== by 0x404736: iwd_shutdown (main.c:65)
==103174== by 0x46BD61: handle_callback (signal.c:78)
==103174== by 0x46BD61: signalfd_read_cb (signal.c:104)
In the case of module_init failing due to a module that comes after
netdev, the netdev module doesn't clean up netdev_list properly.
==6254== 24 bytes in 1 blocks are still reachable in loss record 1 of 1
==6254== at 0x483777F: malloc (in
/usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
==6254== by 0x4675ED: l_malloc (util.c:61)
==6254== by 0x46909D: l_queue_new (queue.c:63)
==6254== by 0x406AE4: netdev_init (netdev.c:5038)
==6254== by 0x44A7B3: iwd_modules_init (module.c:152)
==6254== by 0x404713: nl80211_appeared (main.c:171)
==6254== by 0x4713DE: process_unicast (genl.c:993)
==6254== by 0x4713DE: received_data (genl.c:1101)
==6254== by 0x46E00B: io_callback (io.c:118)
==6254== by 0x46D20C: l_main_iterate (main.c:477)
==6254== by 0x46D2DB: l_main_run (main.c:524)
==6254== by 0x46D2DB: l_main_run (main.c:506)
==6254== by 0x46D502: l_main_run_with_signal (main.c:656)
==6254== by 0x403EDB: main (main.c:490)
Rather than the previous hack which disabled group traffic it
was found that the GTK RSC could be manually set to zero which
allows group traffic. This appears to fix AP mode on brcmfmac
along with the previous fixes. This is not documented in
nl80211, but appears to work with this driver.
This is how a fullmac card tells userspace that a station has
left. This fixes the issue where the same client cannot re-connect
to the same AP multiple times. ap_new_station was renamed to
ap_handle_new_station for consistency.
Some fullmac cards were found to be buggy with getting the GTK
where it returns a BIP key for the GTK index, even after creating
a GTK with NEW_KEY explicitly. In an effort to get these cards
semi-working we can treat this just as a warning and continue with
the handshake without a GTK set which disables group traffic. A
warning is printed in this case so the user is not completely in
the dark.
Fix an issue with the recent changes to signal monitoring from commit
f456501b ("station: retry roaming unless notified of a high RSSI"):
1. driver sends NL80211_CQM_RSSI_THRESHOLD_EVENT_LOW
2. netdev->cur_rssi_low changes from FALSE to TRUE
3. netdev sends NETDEV_EVENT_RSSI_THRESHOLD_LOW to station
4. on roam reassociation, cur_rssi_low is reset to FALSE
5. station still assumes RSSI is low, periodically roams
until netdev sends NETDEV_EVENT_RSSI_THRESHOLD_HIGH
6. driver sends NL80211_CQM_RSSI_THRESHOLD_EVENT_HIGH
7. netdev->cur_rssi_low doesn't change (still FALSE)
8. netdev never sends NETDEV_EVENT_RSSI_THRESHOLD_HIGH
9. station remains stuck in an infinite roaming loop
The commit in question introduced the logic in (5). Previously the
assumption in station was - like in netdev - that if the signal was
still low, the driver would send a duplicate LOW event after
reassociation. This change makes netdev follow the same new logic as
station, i.e. assume the same signal state (LOW/HIGH) until told
otherwise by the driver.
Since fullmac cards handle auth/assoc in firmware IWD must
react differently while in AP mode just as it does in station.
For fullmac cards a NEW_STATION event is emitted post association
and from here the 4-way handshake can begin. In this NEW_STATION
handler a new sta_state is created and the needed members are
set in order to inject us back into the normal code execution
for softmac post association (i.e. creating group keys and
starting the 4-way handshake). From here everything works the
same as softmac.
At some point the non-interactive client tests began failing.
This was due to a bug in station where it would transition from
'connected' to 'autoconnect' due to a failed scan request. This
happened because a quick scan got scheduled during an ongoing
scan, then a Connect() gets issued. The work queue treats the
Connect as a priority so it delays the quick scan until after the
connection succeeds. This results in a failed quick scan which
IWD does not expect to happen when in a 'connected' state. This
failed scan actually triggers a state transition which then
gets IWD into a strange state where its connected from the
kernel point of view but does not think it is:
src/station.c:station_connect_cb() 13, result: 0
src/station.c:station_enter_state() Old State: connecting, new state: connected
src/wiphy.c:wiphy_radio_work_done() Work item 6 done
src/wiphy.c:wiphy_radio_work_next() Starting work item 5
src/station.c:station_quick_scan_triggered() Quick scan trigger failed: -95
src/station.c:station_enter_state() Old State: connected, new state: autoconnect_full
To fix this IWD should simply cancel any pending quick scans
if/when a Connect() call comes in.
Switch EAP-TLS-ClientCert and EAP-TLS-ClientKey to use
l_cert_load_container_file for file loading so that the file format is
autodetected. Add new setting EAP-TLS-ClientKeyBundle for loading both
the client certificate and private key from one file.
As requested move the client certificate and private key loading from
eap-tls-common.c to eap-tls.c. No man page change needed because those
two settings weren't documented in it in the first place.
This adds a new AccessPointDiagnostic interface. This interface
provides similar low level functionality as StationDiagnostic, but
for when IWD is in AP mode. This uses netdev_get_all_stations
which will dump all stations, parse, and return each station in
an individual callback. Once the dump is complete the destroy is
called and all data is packaged as an array of dictionaries.
AP mode will use the same structure for its diagnostic interface
and mostly the same dictionary keys. Apart from ConnectedBss and
Address being different, the remainder are the same so the
diagnostic_station_info to DBus dictionary conversion has been made
common so both station and AP can use it to build its diagnostic
dictionaries.