IWD was optimizing FT-over-DS by authenticating to multiple BSS's
at the time of connecting which then made future roams slightly
faster since they could jump right into association. So far this
hasn't posed a problem but it was reported that some AP's actually
enforce a reassociation timeout (included in 4-way handshake).
Hostapd itself does no such enforcement but anything external to
hostapd could monitor FT events and clear the cache if any exceeded
this timeout.
For now remove the early action frames and treat FT-over-DS the
same as FT-over-Air. In the future we could parse the reassociation
timeout, batch out FT-Action frames and track responses but for the
time being this just fix the issue at a small performance cost.
Queue the FT action just like we do with FT Authenticate which makes
it able to be used the same way, i.e. call ft_action() then queue
the ft_associate work right away.
A timer was added to end the work item in case the target never
responds.
If the regdom updates during a periodic scan the results will be
delayed until after the update in order to, potentially, add 6GHz
frequencies since they may become available. The delayed results
happen regardless of 6GHz support but scan_wiphy_watch() was
returning early if 6GHz was not supported causing the scan request
to never complete.
The blamed commit argues that the periodic scan callback doesn't do
anything useful in the event of an aborted scan, but this is not
entirely true. In particular, the callback is responsible for re-arming
the periodic scan timer. Make sure to call scan_finished() so that iwd's
periodic scanning logic continues unabated even when a periodic scan is
aborted.
Also remove the periodic boolean member of struct scan_request, as it
serves no purpose anymore.
Fixes: 6051a14952 ("scan: Don't callback on SCAN_ABORTED")
This enables IWD to use 5GHz frequencies in AP mode. Currently
6GHz is not supported so we can assume a [General].Channel value
36 or above indicates the 5GHz band.
It should be noted that the system will probably need a regulatory
domain set in order for 5GHz to be allowed in AP mode. This is due
to world roaming (00) restricting any/all 5GHz frequencies. This
can be accomplished by setting main.conf [General].Country=CC to
the country this AP will operate in.
wiphy_get_supported_rates expected an enum defined in the nl80211
header but the argument type was an unsigned int, not exactly
intuitive to anyone using the API. Since the nl80211 enum value
was only used in a switch statement it could just as well be IWD's
internal enum band_freq.
This also allows modules which do not reference nl80211.h to use
wiphy_get_supported_rates().
Before this change, I noticed that some non-interactive commands
don't work,
$ iwctl version
$ iwctl help
while other ones do.
$ iwctl station wlan0 show
This seems to be a typo bug in the if clause checking for additional
arguments.
This file is a compilation command database used by clangd and ccls,
and can be generated by tools like https://github.com/rizsotto/Bear.
$ bear -- make clean all
If a CMD_TRIGGER_SCAN request fails with -EBUSY, iwd currently assumes
that a scan is ongoing on the underlying wdev and will retry the same
command when that scan is complete. It gets notified of that completion
via the scan_notify() function, and kicks the scan logic to try again.
However, if there is another wdev on the same wiphy and that wdev has a
scan request in flight, the kernel will also return -EBUSY. In other
words, only one scan request per wiphy is permitted.
As an example, the brcmfmac driver can create an AP interface on the
same wiphy as the default station interface, and scans can be triggered
on that AP interface.
If -EBUSY is returned because another wdev is scanning, then iwd won't
know when it can retry the original trigger request because the relevant
netlink event will arrive on a different wdev. Indeed, if no scan
context exists for that other wdev, then scan_notify will return early
and the scan logic will stall indefinitely.
Instead, and in the event that no scan context matches, use it as a cue
to retry a pending scan request that happens to be destined for the same
wiphy.
The previous commit added an invocation of known_networks_watch_add, but
never updated the module dependency graph.
Fixes: a793a41662 ("station, eapol: Set up eap-tls-common for session caching")
Use eap_set_peer_id() to set a string identifying the TLS server,
currently the hex-encoded SSID of the network, to be used as group name
and primary key in the session cache l_settings object. Provide pointers
to storage_eap_tls_cache_{load,sync} to eap-tls-common.c using
eap_tls_set_session_cache_ops(). Listen to Known Network removed
signals and call eap_tls_forget_peer() to have any session related to
the network also dropped from the cache.
Use l_tls_set_session_cache() to enable session cache/resume in the
TLS-based EAP methods. Sessions for all 802.1x networks are stored in
one l_settings object.
eap_{get,set}_peer_id() API is added for the upper layers to set the
identifier of the authenticator (or the supplicant if we're the
authenticator, if there's ever a use case for that.)
eap-tls-common.c can't call storage_eap_tls_cache_{load,sync}()
or known_networks_watch_add() (to handle known network removals) because
it's linked into some executables that don't have storage.o,
knownnetworks.o or common.o so an upper layer (station.c) will call
eap_tls_set_session_cache_ops() and eap_tls_forget_peer() as needed.
Minor changes to these two methods resulting from two rewrites of them.
Actual changes are:
* storage_tls_session_sync parameter is const,
* more specific naming,
* storage_tls_session_load will return an empty l_settings instead of
NULL so eap-tls-common.c doesn't have to handle this.
storage.c makes no assumptions about the group names in the l_settings
object and keeps no reference to that object, eap-tls-common.c is going
to maintain the memory copy of the cache since this cache and the disk
copy of it are reserved for EAP methods only.
A comma separated list as a string was ok for pure display purposes
but if any processing needed to be done on these values by external
consumers it really makes more sense to use a DBus array.
AP mode implements a few DBus methods/properties which are named
the same as station: Scan, Scanning, and GetOrderedNetworks. Allow
the Device object to work with these in AP mode by calling the
correct method if the Mode is 'ap'.
This wasn't being updated meaning the property is missing until a
scan is issued over DBus.
Rather than duplicate all the property changed calls they were all
factored out into a helper function.
Adds the MulticastDNS option globally to main.conf. If set all
network connections (when netconfig is enabled) will set mDNS
support into the resolver. Note that an individual network profile
can still override the global value if it sets MulticastDNS.
The AP mode device APIs were hacked together and only able to start
stop an AP. Now that the AP interface has more functionality its
best to use the DBus class template to access the full AP interface
capabilities.
The limitation of cipher selection in ap.c was done so to allow p2p to
work. Now with the ability to specify ciphers in the AP config put the
burden on p2p to limit ciphers as it needs which is only CCMP according
to the spec.
These can now be optionally provided in an AP profile and provide a
way to limit what ciphers can be chosen. This still is dependent on
what the hardware supports.
The validation of these ciphers for station is done when parsing
the BSS RSNE but for AP mode there is no such validation and
potentially any supported cipher could be chosen, even if its
incompatible for the type of key.
This change removes duplicate calls to display_table_footer(), in
station show.
Before this change, the bug caused an extra newline to be output every
time the table updated. This only occurred when the network was
disconnected.
$ iwctl
[iwd]# station wlan0 show